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Abstract— In this paper we consider the aggregation of
swarms whose agents are moving in 2-dimensions with a
non-holonomic agent dynamics. We approach this problem
using artificial potentials and sliding mode control. The main
contribution is the extension of the recent results in the
literature based on a similar approach for simple integrator
agent dynamics model to a significantly more realistic and more
difficult setting with non-holonomic unicycle agent dynamics
model. In particular, we design a continuous-time control
scheme via a constructive analysis based on artificial potentials
and sliding mode control techniques. The effectiveness of the
proposed design for solving the swarm aggregation problem
is demonstrated analytically as well as via a set of simulation
results.

I. INTRODUCTION

Aggregation (or gathering together) is a basic behavior

exhibited by many swarms in nature, including simple bac-

teria colonies, flocks of birds, schools of fish, and herds of

mammals. Such behavior of biological swarms is observed

to be helpful in meeting various tasks such as avoiding

predators, increasing the chance of finding food, etc. [1]. This

can be explained by the relative appropriateness of an ag-

gregated swarm structure to meet these tasks collaboratively

as compared to a non-aggregated setting. Because of the

same reason, aggregation is a desired behavior in engineer-

ing multi-agent dynamic systems as well. Moreover, many

of the collective behaviors seen in biological swarms and

some behaviors to be possible implemented in engineering

multi-agent dynamic systems emerge in aggregated swarms.

Therefore, studying the dynamics and properties of swarm

aggregations is important in developing efficient cooperative

multi-agent dynamic systems.

Aggregation in biological swarms were initially modelled

and simulated by biologists [2], [3], [4], [5]. Inspired by

these works, a recent series of studies [6], [7], [8], [9],

[10], [11], [12], [13] has provided rigorous stability and con-

vergence analysis of swarm aggregations based on artificial

The work of V. Gazi and M. İ. Köksal is supported in part by TÜBİTAK
(the Scientific and Technological Research Council of Turkey) under grant
No. 104E170 and by the European Commission under FP6 contract No.
045269. The work of B. Fidan is supported by by National ICT Australia,
which is funded by the Australian Government’s Department of Communi-
cations, Information Tehcnology and the Arts and the Australian Research
Council through the Backing Australia’s Ability initiative and the ICT
Centre of Excellence Program.
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potential functions both with continuous-time and discrete-

time formulations. Particularly, in [6], [7] a biologically in-

spired n-dimensional (where n is arbitrary) continuous time

synchronous swarm model based on artificial potentials is

considered and some results on cohesive swarm aggregation

have been obtained. Similar results based on artificial poten-

tials and virtual leaders have been independently obtained

by Leonard and coworkers in [14], [15] for agents with

point mass dynamics. The papers [10], [11], [12] focus

on asynchronous swarm models with time delays for swarm

aggregation in discrete-time settings.

In [13], which has more emphasis on design than analysis

as opposed to the papers mentioned in the previous para-

graph, a particular control strategy for aggregation in swarms

has been developed based on artificial potential functions

and sliding mode control, assuming simple integrator agent

dynamics with model uncertainties and disturbances. The

main contribution of this paper is the extension of the results

in [13] to a significantly more realistic and more difficult

setting with non-holonomic unicycle agent dynamics models,

again using the tools of artificial potential functions and

sliding mode control, but in a slightly different way than [13].

Artificial potential functions have been used extensively

for robot navigation and control, see e.g. [16], [17]. There

exist a number of more recent studies on applications of

artificial potentials to multi-agent system coordination and

cooperative control [18], [19]. There is also a relevant

literature on formation control of autonomous vehicles [20],

[21], [22], [23], [24], [25] as well as control and analysis

of flocking behavior [26], [27], [28], [29], where artificial

potential functions are used together with a number of other

techniques including some graph theoretical and Lyapunov

analysis based ones. Some of these works are based on point

mass agent dynamics [18], [19], [24], [25], [26], [27], [28],

while others use non-holonomic agent dynamics [20], [21],

[22], [23], [29].

Sliding mode control [30], which is the main technique we

use in our work in addition to artificial potential functions,

is an important technique that has been used extensively in

various areas including navigation of vehicles and mobile

robots [31], [32], [33], [34], [35], [36]. The wide use of this

technique for various tracking control problems is mainly

because it is a robust technique which guarantees that the

tracking is achieved in the existence of uncertainties and

disturbances in the system dynamics.

In [31], [32], [33], sliding mode control is used for

navigation of holonomic robots and obstacle avoidance in

an environment modeled using harmonic potentials. In [34],
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[35], [36] the strategy is extended to navigation of robots

with non-holonomic dynamics as well. The strategy in

these works is based on forcing the motion of the robot

along the gradient of the potential function representing

the environment. In [13], a similar procedure is applied for

implementation of a class of engineering aggregating swarm

models composed of robots with fully actuated (holonomic)

motion dynamics. As mentioned earlier, in this paper, we

extend the study in [13] to a significantly more complex and

realistic setting with non-holonomic unicycle agent dynamics

models. In Section II, we present the mathematical swarm

model with non-holonomic agent dynamics we are assuming

in our work and define the aggregation problem we deal

with. In Sections III and IV, we describe our control design

for the aggregation problem defined in II based on artificial

potential fields and sliding mode control. In Section V,

we demonstrate the effectiveness and characteristics of our

design via a simulation example. The paper is concluded

with some final remarks in Section VI. An extended version

of this article, where the foraging and formation control

problems are considered (in addition to the aggregation

problem considered here), can be found in [37].

II. SWARM AGGREGATION PROBLEM WITH

NON-HOLONOMIC AGENTS

Consider a system of N non-holonomic mobile agents,

e.g. robots, moving in R
2 that are labelled as A1, . . . , AN .

Assume that each agent Ai (i = 1, . . . , N ) has the configura-

tion depicted in Figure 1 and the equations of motion given

by

ẋi = vi cos(θi),
ẏi = vi sin(θi),

θ̇i = wi,

v̇i = 1
mi

Fi,

ẇi = 1
Ii

τi

(1)

where xi and yi are the Cartesian coordinates, θi is the

steering angle, vi is the linear speed, and wi is the angular

speed of Ai. The quantities mi and Ii are positive constants

and represent the mass and the moment of inertia of the

agent Ai, respectively. The control inputs for the agent Ai

are the force input Fi and the torque input τi. Note that

this model includes both kinematic and dynamic equations

for each agent, i.e., it includes the (linear and angular)

velocity dynamics in addition to the agent kinematics. This is

equivalent to adding two integrators to the kinematic model.

In this article we are concerned with the aggregation

problem for the agents with the dynamics given in (1). In

other words, we would like to design the control inputs

ui1 = Fi and ui2 = τi such that the system of N agents with

the non-holonomic dynamics given in (1) and with arbitrary

initial positions aggregate (or gather) together.

Denoting the position of each agent Ai (i = 1, . . . , N )

by pi = [xi, yi]
⊤, we can formulate our control problem as

follows.

Fig. 1. The unicycle robot.

Problem 1: Design the control inputs ui = [ui1, ui2]
⊤ for

each agent Ai, i = 1, . . . N , such that for some ǫ > 0 as

t → ∞ we have

pi → Bǫ(pc) (2)

where pc = 1
N

∑N

i=1 pi is the centroid of the swarm and

Bǫ(pc) = {p ∈ R
2|‖p − pc‖ ≤ ǫ} is the disk with radius ǫ

around the centroid pc.

Note that this problem can be formulated also as

lim
t→∞

‖pi − pj‖ ≤ 2ǫ

for all i and j. Here the size of the swarm (or the gathering

area) ǫ is a design parameter that can be chosen by the

system designer. Note that for the above problem definition

it is assumed that the agents have point dimensions (although

moving with non-holonomic constraints). If the agents have

certain predefined dimensions/size, then the swarm size ǫ

cannot be chosen arbitrarily small and should be consistent

with the number of agents and the area each agent occupies.

III. ARTIFICIAL POTENTIAL FUNCTIONS

In our approach to Problem 1, we use artificial potential

functions in order to construct attractive-repulsive relations

among the agents. In other words, our design procedure is

based on a potential function which is selected such that the

corresponding potential field is attractive for agent pairs with

large inter-agent distances (in order to result in aggregation)

and repulsive for short inter-agent distances (in order to

avoid collisions between the robots). In our work, we use

a particular potential function of the form considered in [6],

[8], [7].

In [6], [7] it was shown for a certain class of potential

functions J(p) that if the agents move in the space R
n based

on

ṗi = −∇pi
J(p), (3)

where J : R
nN → R is the potential function, p =

[p⊤1 , . . . , p⊤N ]⊤ ∈ R
nN is the lumped vector of the positions

pi ∈ R
n of the agents Ai (i = 1, . . . , N ), then aggregation
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in the form defined in Problem 1 will be achieved.1 The

potential functions considered in [6], [7] satisfy

∇pi
J(p) =

N
∑

j=1,j 6=i

g(pi − pj), i = 1, . . . , N (4)

where g : R
n → R

n are odd functions (called attrac-

tion/repulsion functions) that represent the attraction and

repulsion relationship between the individuals. Moreover, it

was assumed that for any p̄ ∈ R
n, g(p̄) satisfies

g(p̄) = −p̄[ga(‖p̄‖) − gr(‖p̄‖)],

where ga(‖p̄‖) represents the attractive part which dominates

on large distances and gr(‖p̄‖) represents the repulsive part

which dominates on short distances. One potential function

which satisfies these assumptions and was used in [6], [8] is

J(p) =
N−1
∑

i=1

N
∑

j=i+1

[

a

2
‖pi − pj‖

2 +
bc

2
exp

(

−
‖pi − pj‖

2

c

)]

,

(5)

for which (4) is satisfied with

g(pi − pj) = −(pi − pj)

[

a − b exp

(

−
‖pi − pj‖

2

c

)]

(6)

where a, b and c are positive scalars that need to be chosen

appropriately. In particular, for the potential function in (5)

the size of the gathering region in Problem 1 is given by

ǫ =
b

a

√

c

2
exp

(

−
1

2

)

.

Note also that the above value of ǫ is a very conservative

bound obtained as a result of a Lyapunov analysis and

in reality the actual swarm size is much smaller than it.

Therefore, beside the value of ǫ another parameter that may

give information about the size of the swarm could be the

distances at which the attraction and repulsion between two

individuals balance. For the potential function in (5) this

happens at the distance

δ =

√

c ln

(

b

a

)

.

In this article, we also use the potential function (5).

Note that in our case p = [p⊤1 , . . . , p⊤N ]⊤ ∈ R
2N and

pi = [xi, yi]
⊤ ∈ R

2 for i = 1, . . . , N .

IV. SLIDING MODE CONTROL FOR SWARM

AGGREGATION

As mentioned in Section I, sliding mode control is a

widely used technique in various application areas, mainly

because of its suppressive and robust characteristics against

the uncertainties and the disturbances in the system dy-

namics. The shortcomings (of the raw form of the sliding

mode control scheme) on the other hand are the so-called

chattering effect and possible generation of high-magnitude

1Note that since we have n = 2 for the the model in (1), i.e., pi ∈ R
2,

the corresponding potential function will satisfy J : R
2N

→ R for this
case.

control signals. Note that these shortcomings may possibly

be avoided or relaxed via integration and some filtering

techniques.

In sliding mode control, a switching controller with high

enough gain is applied to suppress the effects of modelling

uncertainties and disturbances, and the agent dynamics are

forced to move along a stabilizing manifold, which is also

called a sliding manifold. The value of the gain is computed

using the known bounds on the uncertainties and distur-

bances.

In this section, we design a sliding mode control scheme

to solve Problem 1 via forcing the motion of each individual

agent along the negative gradient of the potential J(p) in (5),

i.e. forcing each agent to obey equation (3) where J is as

defined in (5). This will lead to recovering the aggregation

behavior (of the single-integrator dynamics) obtained in [6]

with non-holonomic agent dynamics.

Let

−∇pi
J(p) =

[

−Jxi
(p)

−Jyi
(p)

]

denote the gradient of the potential at pi. In order to achieve

satisfaction of (3) we need

−∇pi
J(p) =

[

−Jxi
(p)

−Jyi
(p)

]

=

[

vi cos θi

vi sin θi

]

(7)

i.e.

vi = ‖∇pi
J(p)‖, θi = arctan

(

Jyi
(p)

Jxi
(p)

)

(mod180◦) (8)

Note that since the inputs in the agent model (1) are ui1 =
Fi and ui2 = τi, i.e. vi and θi cannot be applied directly,

the terms

vid , ‖∇pi
J(p)‖, θid , arctan

(

Jyi
(p)

Jxi
(p)

)

(mod180◦)

(9)

need to be considered as desired set-point values for vi and

θi, respectively.

Our objective is to force the motion of the agents such that

the differences (vi − vid) and (θi − θid) converge to zero.

With this objective in mind, similar to [34], [35], [36], let

us define two sliding surfaces [30], one for the translational

speed vi and one for the orientation θi. Defining

svi
= vi − vid (10)

sθi
= c(θ̇i − θ̇id) + (θi − θid), (11)

where c > 0 is a positive constant, the corresponding sliding

surfaces are the surfaces at which svi
= 0 and sθi

= 0.

With these definitions, our objective becomes to design the

control inputs ui1 and ui2 so that svi
→ 0 and sθi

→ 0
asymptotically, since if they are achieved we will have

vi → vid and θi → θid. Note here that the existence of the

additional term c(θ̇i − θ̇id) in (11) is because of the double

integrator relationship between θi and the applicable input

ui2 = τi as opposed to the single integrator relationship

between vi and ui1 = Fi.
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It is well known from the sliding mode control theory that

if we have the reaching conditions

svi
ṡvi

≤ −ε1|svi
| (12)

sθi
ṡθi

≤ −ε2|sθi
| (13)

satisfied for some constants ε1, ε2 > 0, then svi
= 0 and

sθi
= 0 will be achieved in finite time.

Now let us assume that |v̇id| ≤ α(p) for some known

α(p) > 0. The properties of such α(p) depend on the

properties of the potential function, which is chosen by

the designer. In other words, one can choose the potential

function such that such α(p) exists. For example, for the

potential function in (5) one can calculate (see [37]) α(p) as

α(p) = 2ᾱ(p) max
i∈{1,...,N}





N
∑

j=1,j 6=i

‖G(pi − pj)‖



 ,

where

ᾱ(p) = max
k∈{1,...,N}

(‖∇pk
J(p)‖ + svk

(0)) .

and

G(pi − pj) =

aI + b exp
(

−
‖pi−pj‖

2

c

)

(

2
c
(pi − pj)(pi − pj)

⊤ − I
)

.

In order to achieve the satisfaction of (12) we choose the

first control input ui1 = Fi as

ui1 = −Ai1sgn(svi
) (14)

using which the time derivative of svi
becomes

ṡvi
= −

Ai1

mi

sgn(svi
) − v̇id

and we have

svi
ṡvi

= svi

(

−
Ai1

mi

sgn(svi
) − v̇id

)

= −
Ai1

mi

|svi
| − svi

v̇id

≤ −

(

Ai1

mi

− α(p)

)

|svi
| (15)

Then by choosing Ai1 according to

Ai1 ≥ mi(α(p) + ε1) (16)

one guarantees that (12) is satisfied and sliding mode occurs

(i.e., svi
= 0 is satisfied) in finite time.

Similarly, for the second sliding surface choosing the

control input as

ui2 = −Ai2sgn(sθi
) (17)

the time derivative of sθi
becomes

˙sθi
= −c

Ai2

Ii

sgn(sθi
) − cθ̈id + ωi − θ̇id (18)

and we have

sθi
˙sθi

= sθi

(

− cAi2

Ii
sgn(sθi

) − cθ̈id + ωi − θ̇id

)

≤ −
(

cAi2

Ii
− c|θ̈id| − |θ̇id| − |ωi|

)

|sθi
|

(19)

By choosing Ai2 as

Ai2 ≥
Ii

c

(

c|θ̈id| + |θ̇id| + |ωi| + ε2

)

(20)

one can guarantee that (13) is satisfied and the second sliding

surface sθi
= 0 will as well be reached in finite time (11).

In order to be able to compute the value of sθi
one needs

the time derivative of θid. Taking its derivative with respect

to time we obtain

θ̇id =

d
dt

(

Jyi

Jxi

)

1 +
(

Jyi

Jxi

)2

=
d
dt

(Jyi
) · Jxi

− d
dt

(Jxi
) · Jyi

(Jxi
)
2

(

1 +
(

Jyi

Jxi

)2
)

=
d
dt

(Jyi
) · Jxi

− d
dt

(Jxi
) · Jyi

(Jxi
)
2

+ (Jyi
)
2 (21)

For the potential function in (5) we have

d
dt

(Jxi
) =

∑N

j=1,j 6=i

[

−
[

a − b
(

1 −
2(xi−xj)

2

c

)

exp
(

−
‖pi−pj‖

2

c

) ]

(ẋi − ẋj)

+
[

b
2(xi−xj)(yi−yj)

c
exp

(

−
‖pi−pj‖

2

c

) ]

(ẏi − ẏj)

]

and

d
dt

(Jyi
) =

∑N

j=1,j 6=i

[

−
[

a − b
(

1 −
2(yi−yj)

2

c

)

exp
(

−
‖pi−pj‖

2

c

) ]

(ẏi − ẏj)

+
[

b
2(xi−xj)(yi−yj)

c
exp

(

−
‖pi−pj‖

2

c

) ]

(ẋi − ẋj)

]

.

One drawback here is that to implement the control

algorithm for agent Ai one needs not only the position

but also the velocity of its neighbors (which are all the

other agents in the particular setting here - but this is not

necessarily required to be the case in general).

We would like to also emphasize that although not explic-

itly considered here the procedure based on the sliding mode

control techniques discussed above will guarantee proper

behavior even in the presence of uncertainties in the mass

mi and the inertia Ii of the robots and disturbances and

additive disturbances/uncertainties to the linear and angular

speed dynamics which constitute very realistic assumptions.

Once the sliding mode occurs on all the surfaces (which

happens in finite time) and the equation in (3) is also satis-

fied, based on the results in [6] we know that Problem 1 will

be solved. One issue to note, however, is that after occurrence

of sliding mode we reach vi = vid but not necessarily

θi = θid. In fact, after occurrence of sliding mode we have
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θi → θid exponentially fast and the speed of convergence

depends on the slope of the sliding surface − 1
c
. Therefore,

one needs to choose c as small as possible in order to

achieve faster convergence and avoid any instabilities. Note

also that decreasing the parameter c will require increasing

the controller gain Ai2.

V. SIMULATION RESULTS

In this section we present simulation results to test the

effectiveness of the method used. In order to test the method

we ran the program many times with various simulation

parameters. By doing so we also observed the effects of the

simulation parameters.

The potential function that we used in the simulations is

the function with linear attraction and exponential repulsion

given in (5). We tested the method for various function

parameters a, b, and c, which control the swarm size (as well

as prevent collisions). Moreover, we performed simulations

for different number of agents in the swarm.

The sliding mode control method uses the sgn function

to calculate the control inputs ui1 and ui2. Although this

works very well in theory, in practice it may result in high

frequency chattering and numerical problems. There are var-

ious methods for smoothing the sliding mode control input

to reduce the chattering. The analysis of such techniques is

out of the scope of this article. Still however, we used the

tanh(γy) function instead of the the sgn(y) function in the

simulations, where γ > 0 is a smoothness parameter.

The values of the control gains Ai1 and Ai2 are also very

important and they need to be chosen “hight enough” in

order for the procedure to work properly. They also affect

the reaching time to the respective sliding surfaces. The

constant parameter c > 0 used in the derivation of the sliding

surface (11) which is used for orientation control determines

the slope of the sliding line (− 1
c

is the slope) that controls

the speed of the exponential decay of (θi −θid) to zero after

the sliding surface is reached. It provides also a smoother

rotation for the agent.

Since the simulations obtained for different parameters

and agent numbers are in principle the same (do not differ

qualitatively) here we show only the ones for N = 10 and

potential function parameters a = 0.01, b = 20, and c = 1.

The control input gains are chosen as Ai1 = Ai2 = 10.

The slope of the orientation sliding line/surface is chosen

as c = 0.5. The smoothness/sharpness parameter for the

tanh function for both of the control inputs are chosen as

γi1 = γi2 = 10. Without loss of generality the mass and the

inertia of all the agents are chosen equal and in particular

mi = 1 and Ii = 1 for all i = 1, . . . , N . The simulation

results show that the agents aggregate as predicted by the

theory.

Figure 2 shows the motion (the trajectories) for random

initial positions and orientations. The agents are plotted

as polygons so that their orientations are explicitly shown.

It is observed that the agents aggregate quickly and after

aggregation they start to reorient themselves since at the

aggregate the variation of the time-varying potential function
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Fig. 2. Trajectories of the agents of a 10-agent swarm during the
aggregation process.

(which is due to the motion of the other agents in the group)

is higher.
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Fig. 3. Inter-agent distances during the aggregation process.

In Figure 3 we see the inter-member distances between

robots. The curves specify the maximum, minimum and

average distances between the members of the swarm. The

distance decreases exponentially as expected and they con-

verge to constant values similar to the results obtained before

in [6]. For the above values of the parameters a, b and c the

distance at which the attraction and repulsion between two

individuals balance is δ = 2.7570.

In [6] it was shown that the centroid of the swarm will be

stationary for all time. Here this is guaranteed to be the case

once sliding mode occurs on all surfaces and the orientations

and the speeds of all the agents converge to the desired

values. Therefore, although initially the center may not be

stationary, after a while it must become stationary. Figure 4

shows the plot of the center movement. Keeping in mind

that we are working in 2-dimensional space, this plot shows
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Fig. 4. The x and y coordinates of the swarm center during the aggregation
process.

the center movement in x-axis and y-axis. As expected after

a while the location of the center converges to a constant

position and stays there during the rest of the simulation.
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Fig. 5. Average agent distance to the swarm center during the aggregation
process.

Figure 5 is the plot of the average distance of the swarm

members to the center of the swarm. The value decreases

exponentially during the simulation. It is stable and smooth.

Figure 6 shows the final positions of the swarm members

(shown as circles) and the center location movement (shown

as stars).

An interesting observation here is that at their final posi-

tions the swarm members are distributed in almost a grid-

like arrangement. Also one should note that the distances be-

tween final positions of swarm members change for different

values of attraction and repulsion parameters. For example,

decreasing the repulsion parameter b results in decrease in

the inter-agent distances at the final positions.

16 17 18 19 20 21 22 23
22

22.5

23

23.5

24

24.5

25

25.5

26

26.5

27
The final positions of the swarm members

Fig. 6. Final positions of the agents whose trajectories are given in Figure 2.

VI. CONCLUDING REMARKS

In this article we developed a strategy for aggregation of

a swarm of non-holonomic agents based on artificial poten-

tial functions and the sliding mode control technique. The

method is based on forcing the motion of the agents along

the gradient field of the potential function generated based

on the inter-individual distance requirements in the swarm

aggregate. The method can be extended to the formation

control and foraging problems as well [37]. Possible future

research directions could include extending the setting to

tracking desired trajectories or moving targets. In particular,

the agents may be required to keep a certain geometrical

formation while the centroid pc of the swarm is required

to track a certain trajectory. Other issues that could be

considered are the performance and modifications of the

algorithm under inter-agent distance measurement errors.
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