GUARDIANS

D2.1.3-4 The navigation capabilities
of the robot platforms for the
selected scenario and common API
specifications for the robot
platforms

Leo Nomdedeu (Universitat Jaume-I)

with contributions from:

Jorge Sales (Universitat Jaume-I), Enric Cervera (Universitat Jaume-I)

Abstract.

EU-IST STREP IST-2006-045269 Guardians

Deliverable D2.1.3-4 (WP2)

The aim of this document is to present an overview of the robot platforms used in the project,
focusing on their navigation capabilites, A common Application Programming Interface (API)
specification is also presented.

Keyword list: mobile robot, navigation, software specification.

Document Identifier | Guardians/2008/D2.1.3-4/v1.7
Project Guardians EU-IST-2006-045269
Version v1.7

Date February 18, 2008

State draft

Distribution public

Copyright (©) 2008 The contributors

Guardians Consortium

This document is part of a research project funded by the IST Programme of the Commission of the European Com-
munities as project number IST-2006-045269.

Sheffield Hallam University (SHU) - Coordinator Heinz Nixdorf Institute - University of Paderborn
United Kingdom (HNI)

Contact person: Jacques Penders Germany

E-mail address: J.Penders @shu.ac.uk Contact person: Dr. Ulf Witkowski

E-mail address: witkowski@hni.uni-paderborn.de

TOBB University of Economics and Technology Institute of Systems and Robotics - University of
(ETU) Coimbra (ISR-UC)

Turkey Portugal

Contact person: Dr. Veysel Gazi Contact person: Dr. Lino Marques

E-mail address: vgazi@etu.edu.tr E-mail address: lino@isr.uc.pt

K-Team (K-Team) Space Application Services (SAS)

Switzerland Belgium

Contact person: Pierre Bureau Contact person: Jeremi Gancet

E-mail address: pierre.bureau @k-team.com E-mail address: guardians @spaceapplications.com
Robotnik Automation (Robotnik) Universitat Jaume-I de Castellé (UJT)

Spain Spain

Contact person: Roberto Guzman Contact person: Enric Cervera

E-mail address: rguzman @robotnik.es E-mail address: ecervera@icc.uji.es

South Yorkshire Fire and Rescue Service
United Kingdom
Contact person: Neil Baugh

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this
document, even if they might not have directly contributed to writing parts of this document:

Sheffield Hallam University

Heinz Nixdorf Institute

TOBB University of Economics and Technology

Institute of Systems and Robotics - University of Coimbra
K-Team

Space Application Services

Robotnik Automation

Universitat Jaume-I de Castello

South Yorkshire Fire and Rescue Service

Changes

’ Version \ Date \ Author \ Changes
0.0 17.10.07 | Enric Cervera creation
0.1 10.12.07 | Leo Nomdedeu added content: s.2
0.2 11.12.07 | Jorge Sales added content: s.3
0.3 12.12.07 | Jorge Sales updated content: s.3
0.4 12.12.07 | Leo Nomdedeu added and updated content: s.2-3
0.5 13.12.07 | Leo Nomdedeu added and updated content: s.2
0.6 13.12.07 | Jorge Sales added and updated content: s.3 & annex
0.7 13.12.07 | Leo Nomdedeu added and updated content: s.2-3-4 & an-
nex
0.8 13.12.07 | Jorge Sales added content: annex
0.9 14.12.07 | Leo Nomdedeu added and updated content: s.1
1.0 22.01.07 | Leo Nomdedeu added and updated content: s.1-2
1.1 24.01.07 | Leo Nomdedeu added and updated content: s.2
1.2 25.01.07 | Leo Nomdedeu added and updated content: s.2-4
1.3 28.01.07 | Leo Nomdedeu added and updated content: s.2-3
1.4 01.02.07 | Leo Nomdedeu added and updated content: s.3 & annex
1.5 12.02.07 | Leo Nomdedeu added and updated content: s.3
1.6 15.02.07 | Leo Nomdedeu added and updated content: s.3 & annex
1.7 18.02.07 | Leo Nomdedeu added and updated content: s.2 & s.3 &

s.4 & annex

Executive Summary

The aim of this document is to present an overview of the robot platforms used in the
project, namely the Khepera, Erratic and Rescuer robots. We focus on their navigation
capabilites, according to the scenario envisaged (small-scale / full-scale demonstrations).
To cope with the diverse platforms, an homogeneous Application Programming Interface
(API) specification based on the open-source Player robot software is presented.

i

Contents

1 Overview of mobile robots

1.1 Introduction
1.2 Mobile robot platforms in Guardians
2 Specifications of the robot platforms 3
2.1 Kheperaplatform Lo 3
2.1.1 Navigation capabilities 4
2.1.2 Controller/Computer 4
2.1.3 Electronics 4
2.1.4 Software 5
2.1.5 ACCESSOTIES . . . v v v v v i e e e 5
216 TechViews 5
2.1.7 Configurations 7
2.2 Erraticplatform L 9
2.2.1 Navigation capabilities 9
2.2.2 Controller/Computer 10
223 Electronics 10
224 Software 11
225 ACCESSOTIES . .« v v v v v i i e e 11
226 TechViews 11
227 Configurations 12
2.3 Rescuerplatform 13
2.3.1 Navigation capabilities 13
2.3.2 Controller/Computer 14
233 Electronicso 14
234 Software 14
2.3.5 ACCESSOTIES . .« v v v v v i e e e 14
236 TechViews 15
2377 Configurations 15
24 Platform comparisono 16
3 Software interface for navigation 17
3.1 ThePlayerserver 17

11

CONTENTS

3.2 Playerasadeviceinterface, 18
3.3 Playerinterfaces 19
3.4 The Position2d interface Lo 19
3.5 Controlling a mobile robot using a client library 20
351 CAPL 20

352 C++APL 21

353 Java APl 22

354 APlcomparison 25

3.6 Example configuration 26
3.6.1 Kheperalll, 26

362 Erratic. 26

3,63 Rescuer 26

3.7 Example client applicationo 27
37.1 Cclient 27

372 CHtclient L 28

373 Javaclient. 28

4 Conclusion and future work 30

v

February 18, 2008 Guardians/2008/D2.1.3-4/v1.7

Chapter 1

Overview of mobile robots

1.1 Introduction

Mobile robots have the capability to move around in their environment (not only ground,
but also water, air or space) and are not fixed to one physical location. In contrast, in-
dustrial robots usually consist of a jointed arm (multi-linked manipulator) and gripper
assembly (or end effector) that is attached to a fixed surface.

Mobile robots are the focus of a great deal of current research and almost every major
university has one or more labs that focus on mobile robot research. Since the early
70s, much progress has been achieved, and ever-increasing computing performance has
boosted their capabilities, thus mobile robots are routinely found nowadays in industry,
space exploration, military and security environments. They also emerge as consumer
products, for entertainment or to perform certain service tasks like vacuum cleaning or
mowing !

This and more information regarding Mobile Platforms can be obtained in the previous
deliverable 2.1.1 [MMFTO07].

1.2 Mobile robot platforms in Guardians

The mobile platforms used by Guardians are composed by:

1. small platforms produced by SME partner K-Team, namely the Khepera-III robot.

2. medium-sized commercial platforms, namely Super Scouts, Pioneer, and Erratic
platforms, owned by research partners.

3. the Rescuer tracked platform developed by SME partner Robotnik

'http://en.wikipedia.org/wiki/Mobile_robot

1

https://en.wikipedia.org/wiki/Mobile_robot

1. OVERVIEW OF MOBILE ROBOTS

Small robots will be used for real experimentation in lower scale models. Solutions
will then be implemented in medium sized platforms for testing first in real scale labora-
tory environments, then in user scenarios.

The need for a common development environment arises from the use of different
platforms. Program code developed for the small platforms should be compatible, with
minor adjustments, with the bigger size platforms.

(a) Kepera III Mo- (b) Erratic Mobile platform
bile platform

(c) Rescuer Mobile platform

Figure 1.1: Mobile platforms used

2 February 18, 2008 Guardians/2008/D2.1.3-4/v1.7

Chapter 2

Specifications of the robot platforms

2.1 Khepera platform

Figure 2.1: Khepera III

The Khepera III platform (Fig. 2.1) is a new system from K-Team. The full specs can be
obtained at ' while the Users manual can be obtained at 2.

Several researches have used Kephera as the mobile real platform for development
and testing. A good amount of them are listed in it’s manufacturer’s web page®. We
could highlight among them the works done in the field “Collective Robotics” [MM95]
[KBKOO] [ACO7] [AACOT7].

'http://www.k-team.com/kteam/index.php?site=1srub=3supPage=200&page=
197&version=EN

http://ftp.k-team.com/Can/KIII/Kh3.Robot.UserManual.l.3.pdf

3http://www.k—team.com/kteam/index.php?sitezl&rusz&page:117&version:
EN

https://www.k-team.com/kteam/index.php?site=1&rub=3&upPage=200&page=197&version=EN
https://www.k-team.com/kteam/index.php?site=1&rub=3&upPage=200&page=197&version=EN
https://ftp.k-team.com/Can/KIII/Kh3.Robot.UserManual.1.3.pdf
https://www.k-team.com/kteam/index.php?site=1&rub=2&page=117&version=EN
https://www.k-team.com/kteam/index.php?site=1&rub=2&page=117&version=EN

2. SPECIFICATIONS OF THE ROBOT PLATFORMS

2.1.1 Navigation capabilities

Among other capabilities, this platform provides the basic navigation capabilities shown
in table 2.1. The sensor layout can be appreciated in figures 2.2 and 2.3.

Motion 2 DC brushed servo motors with incremental encoders (roughly 22 pulses per
mm of robot motion)
Speed Max: 0.5 m/s
Size Diameter: 130mm
Height: 70mm
Weight Approx 690g
Payload Approx 2000g
Sensors 9 Infra-red proximity and ambient light sensors with up to 25cm range
2 Infra-red ground proximity sensors for line following applications
5 Ultrasonic sensors with range 20cm to 4 meters

Table 2.1: Khepera III navigation capabilities

2.1.2 Controller / Computer

The Khepera III basic setup comes with a DsPIC but K-Team allows us to buy a more
powerful and versatile controller, based on a 400Mhz XScale called KoreBot.

Processor DsPIC 30F5011 at 60MHz. 400MHz XScale KoreBot Extension
RAM 4Kb on DsPIC, 64Mb on KoreBot Extension
Flash 66Kb on DsPIC, 32Mb on KoreBot Extension

Table 2.2: Khepera III Controller specs

2.1.3 Electronics

The Khepera III comes with enough connectivity methods to allow us a wide range of
posibilities.

4 February 18, 2008 Guardians/2008/D2.1.3-4/v1.7

D2.1.3-4 IST Project IST-2006-045269

I/0 Several 10 with KorelO Extension

2 programmable LED
Power Power Adapater

Swapable Lithium-Polymer battery pack (1400 mAh)
Autonomy 8 hours, moving continuously, without KoreBot.

Additional turrets will reduce battery life.

Comms Standard Serial Port, up to 115kbps

USB communication with KoreBot

Wireless Ethernet with KoreBot and WiFi card

Ext. Bus Expansion modules can be added to the robot using the KB-250 bus.

Table 2.3: Khepera III Electronics specs

2.1.4 Software

Among proprietary solutions, K-Team allows us to use free open-source software solu-
tions with its Khepera III robot platform.

Simulator WEBOTS, Realistic 3D Simulator and robot programming (Windows & Linux).

Dev. Env. GNU C/C++ compiler, for native on-board applications with KoreBot.
Freeware
Remote- LabVIEW® (on PC, MAC or SUN) using RS232.

—Control- MATLAB® (on PC, MAC, Linux or SUN) using RS232.
-Software SysQuake® (on PC, MAC, Linux or SUN) using RS232.

Freeware.

Any other software capable of RS232 communication

Table 2.4: Khepera III Software capabilities

2.1.5 Accessories

K-Team provides a number of accessories that we could use to enhance the Khepera 111
basic capabilities.

TODO

Table 2.5: Khepera III Available accessories

2.1.6 Tech Views

Here we have some technical views of this Khepera III platform.

Guardians/2008/D2.1.3-4/v1.7 February 18, 2008 5

2. SPECIFICATIONS OF THE ROBOT PLATFORMS

Figure 2.2: Khepera III technical views

Figure 2.3: Khepera III insides

Despite its slow speed, the Khepera III platform is very usefull in or project for small
scale testing. Obviously is not the end platform that will follow the fire-fighters into the
flames.

6 February 18, 2008 Guardians/2008/D2.1.3-4/v1.7

D2.1.3-4 IST Project IST-2006-045269

2.1.7 Configurations

The Khepera III is a very versatile platform which can be configured for many different
experiments. This page is a summary of the most common configurations, but many
others are possible to match exactly your requirement. Please send us an email for support
to configure your robot.

Remote Control Operation

The Khepera III can be completely remote controlled from a Personal Computer using a
serial communication protocol. The robot can be interfaced using a standard serial cable
and a KoreConnect module, but it also supports BlueTooth wireless connection using a
BlueTooth radio communication extension.

With such a configuration, no programming is required on the robot side. The robot
is fully controlled from a remote operation program running on a PC. The KoreBot is
unnecessary and not useful for this configuration, as the computing power and complex
calculations are hosted on the PC.

g+ <

Khepera3 BlueTooth

Autonomous Operation

Combined with the KoreBot, the Khepera III provides a complete embedded Linux envi-
ronment for autonomous robotic application development. This configuration is a power-
ful solution for fully autonomous algorithms, with all the calculations embedded on the
robot.

Programming on the robot is performed using the KoreBot tools, using the GNU
C/C++ cross-compiler for development and the libKoreBot as a base API for all appli-
cations.

= T
=
Khepera3 KoreBotLE

Guardians/2008/D2.1.3-4/v1.7 February 18, 2008 7

2. SPECIFICATIONS OF THE ROBOT PLATFORMS

Autonomous Operation with WiFi

The Khepera III is also able to include Wireless Ethernet network communication. This
configuration is a perfect solution for applications requiring communication between two
robots, or between robots and a Computer. Calculations for algorithm can be fully em-
bedded, hosted on a remote PC, or a combination of the two options.

- + Y +

Khepera3 KoreBotLE WiFi Card

Such configuration is the most advanced solution for collective robotics experiments
and swarm robotics projects. It provides high embedded computing power and high speed
network communication between robots with all the features of TCP/IP networking.

8 February 18, 2008 Guardians/2008/D2.1.3-4/v1.7

D2.1.3-4 IST Project IST-2006-045269

2.2 Erratic platform

Figure 2.4: Erratic

The Erratic platform (Fig. 2.4) from Videredesign* is a middle size platform for educa-

tional an research proposes. It is customizable since it’s controlled by a standard small-
size PC.

The full specs can be obtained at > while the Users manual can be obtained at 6.

Our Erratic platform provides the navigation capabilities shown in table 2.6. The
sensor capabilities are also explained along with it’s specs. Images of the entirely platform
setup can be seen in figure 2.6.

Although this is not the final platform that will follow the fire-fighters into the flames,
it let us make real scale tests in real size scenarios.

2.2.1 Navigation capabilities

Among other capabilities, this platform provides the basic navigation capabilities shown
in table 2.6.

“http://www.videredesign.com
5http://www.videredesign.com/robots/era_mobi.htm
Shttp://www.videredesign.com/docs/ERA-Rev-E-manual.pdf

Guardians/2008/D2.1.3-4/v1.7 February 18, 2008 9

https://www.videredesign.com
https://www.videredesign.com/robots/era_mobi.htm
https://www.videredesign.com/docs/ERA-Rev-E-manual.pdf

2. SPECIFICATIONS OF THE ROBOT PLATFORMS

Mot ion Differential, single rear caster

DC reversible with gearhead. 72 W continuous power
Wheels: 12.5 cm diameter (driven), 6.25 cm diameter (caster)
Speed Max: 2.0 m/s

Size Long: 400mm

Width: 410mm

Height: 150mm

Weight Approx 12900g (base, batteries, computer, sonar)
Payload Approx 20000g
Sensors 2 Infra-red Sharp GP2D15 ground proximity sensors

Precision optical encoders with 500 counts per motor revolution

Hokuyo URG Laser range finder with range up to 4m, and 240 degrees field of
view (Optional)

8 MaxSonar EZI Ultrasonic sensors with maximum range of 6m (Optional)

Other optional devices

Table 2.6: Erratic navigation capabilities

2.2.2 Controller / Computer

Erratic platforms comes with a 16bit microcontroller connected via USB-RS232 to the
main processing unit (a small PC on top of it). VidereDesign allows us to upgrade this
onboard PC to a more powerful one in its website.

Controller | 16 bit microcontroller. Integrated controller / motor driver
Processor 1.6 GHz Celeron M

RAM 512 MB memory

Hard Drive | 40 GB hard drive

Table 2.7: Erratic Controller specs

2.2.3 Electronics

As everybody can imagine, with an onboard PC the connection capabilities are endless.

10 February 18, 2008 Guardians/2008/D2.1.3-4/v1.7

D2.1.3-4 IST Project IST-2006-045269

1/0 N/A
Power 12V, 7AH lead-acid batteries (x3)
5V, 12V, 19V power bus for peripherals
5A charger
Autonomy > 10 hours, PC only
4-5 hours with nominal movement
Comms FireWire, USB, wireless (802.11 b/g) and wired ethernet
Ext. Bus N/A

Table 2.8: Erratic Electronics specs

2.2.4 Software

This platform can be controlled and simulated with Player/Stage. In fact, P/S is the pref-
fered middleware.

Simulator Player/Stage/Gazebo, Realistic 2D/3D Simulator and robot programming mid-
dleware (Linux).

Dev. Env. Any IDE for C, C++, Java, Python, etc.

Remote-— Linux OS, Player/Stage installed
-Control- Any other software capable of RS232 communication
—-Software

Table 2.9: Erratic Software capabilities

2.2.5 Accessories

VidereDesign provides a number of accessories that we could buy from its website to get
a more versatile platform.

TODO

Table 2.10: Erratic Available accessories

2.2.6 Tech Views

Here we have some technical views of this Erratic platform.

Guardians/2008/D2.1.3-4/v1.7 February 18, 2008 11

2. SPECIFICATIONS OF THE ROBOT PLATFORMS

(a) (b)

Figure 2.5: Erratic technical views

2.2.7 Configurations

A

(a) Mobile platform Erratic: H8S controller, Servo (b) Sonar r 1ng
and analog/digital I/O, 3x 7A 12V batteries. Onboard

PC: 1.4 GHz Celeron, 802.11b/g, USB 2.0, IEEE

1394b, 40 GB, 512 MB

(C) XSens MTi IMU device (d) Hokuyo URG Laser Rangefinder: Power 2.5W,

Weight 0.16 Kg

Figure 2.6: Mobile platform and sensors used

12 February 18, 2008 Guardians/2008/D2.1.3-4/v1.7

D2.1.3-4 IST Project IST-2006-045269

2.3 Rescuer platform

Figure 2.7: Rescuer

The Rescuer platform (Fig. 2.7) from Robotnik’ is a big size platform for research, civil
protection, and safety application proposes.

The product webpage is located at ® while the specs can be found at °.

2.3.1 Navigation capabilities

Among other capabilities, this platform provides the basic navigation capabilities shown
in table 2.11.

Motion Belts with suspension system
Climbing stairs capability
Different belt models on request

2 axis, skid configuration motors

2x750W
Speed Max: 1.25 m/s
Size Long: 1100mm

Width: 780mm
Height: 600mm

Weight Approx 250.000g
Payload Approx 200.000g
Sensors N/A

Table 2.11: Rescuer navigation capabilities

"http://www.robotnik.es

8http://www.robotnik.es/automation/productos/agvs/robotnik-p0l-s.
html

‘nttp://www.robotnik.es/automation/pdf/ROBOTNIK-Robot%20Movil$
20Rescuer.pdf

Guardians/2008/D2.1.3-4/v1.7 February 18, 2008 13

https://www.robotnik.es
https://www.robotnik.es/automation/productos/agvs/robotnik-p01-s.html
https://www.robotnik.es/automation/productos/agvs/robotnik-p01-s.html
https://www.robotnik.es/automation/pdf/ROBOTNIK-Robot%20Movil%20Rescuer.pdf
https://www.robotnik.es/automation/pdf/ROBOTNIK-Robot%20Movil%20Rescuer.pdf

2. SPECIFICATIONS OF THE ROBOT PLATFORMS

2.3.2 Controller / Computer

The platform has a powerful enough onboard PC to carry out almost every dessired task.

Controller N/A

Processor AMD Athlon K8
RAM N/A

Hard Drive | HD Flash 2Gb

Table 2.12: Rescuer Controller specs

2.3.3 Electronics

AS it hasn a powerful onboard PC the capabilities are endless.

I/0 N/A

Power 12V, 100AH (x2)

Autonomy 8 hours in normal operation

Comms 2 serial, 8 USB 2.0/1.1, onboard RTL8100C wired ethernet (10/100)
RF WiFi/WiMan

Ext. Bus Distributed internal CAN bus net

Table 2.13: Rescuer Electronics specs

2.3.4 Software

The system can be controlled via Player/Stage. The drivers are under developement nowa-
days.

Simulator Player/Stage/Gazebo, Realistic 2D/3D Simulator and robot programming mid-
dleware (Linux).

Dev. Env. Any IDE for C, C++, Java, Python, etc.
Remote— LinuxRT OS installed

—-Control-

-Software

Table 2.14: Rescuer Software capabilities

2.3.5 Accessories

We do not have very much information on this platform yet as it’s under active develop-
ment nowadays. We hope to be able to provide this information in future releases.

14 February 18, 2008 Guardians/2008/D2.1.3-4/v1.7

D2.1.3-4

IST Project IST-2006-045269

N/A

2.3.6 Tech Views

N/A

2.3.7 Configurations

N/A

Guardians/2008/D2.1.3-4/v1.7

February 18, 2008

15

2. SPECIFICATIONS OF THE ROBOT PLATFORMS

uostredwoos senifiqedes uonesiaeN :G1°Z Q[qel,

3000°00¢ xo1ddy

3000°05¢ xo1ddy

w09 181K

w08, -YIiPIim

wupQ[] 3uoy

Sym ge [XY

MOSL X g "siojou

uonvn3ifuod prys ‘sixv g jsonbas uo
sjapowt 312q Jua42ffiq Knpgodpo sivis
Surquir)) w23sLs uoisuadsns yjm sjjog

30000z xoiddy

(4vuos “amd

-wod ‘sa11a13q ‘asvq) 8006z xoiddy
wuOS | YSIH

wg [YIpIM

wul(Qf Suoy

s/ 0°c X\

(4238D2) 42]WUDIP WD CT'Q (UIALLID)
A210WDIP WD G7] S]PYM Uomod sno
-NUNUOI A\ 7/ PPIYADIS YIIM 2]q1S4A
-o4 (] 421802 AD2d 2]3uls wyua2fficq

30007 xo1ddy

3069 xoiddy
wugy YS19g

WQOET 1212w

S/t G0 XD

(uonout Joqou fo wnu
4ad sasind 7z Kysnod) s1apooua [pjuau
-240Ul YIIM SLOJOUL 0AUDS PIYSNAQ D T

peoTAeg

Jybtem

°z1s

poads

UOTION

NELBIC)Y

oUDLL

111 viadoyy]

aA0qe umoys swaojierd aa1y ayy jo uostredwos saniqeded uonediaeu Jouq e Juasaid om a10H

uosrredwod waone|d $°¢

Guardians/2008/D2.1.3-4/v1.7

February 18, 2008

Chapter 3

Software interface for navigation

As mentioned in the previous deliverable [CNO7], the Player / Stage / Gazebo platform
has been chosen for simulation and robot development in Guardians. In the following
sections it is explained how Player interacts with a robotic platform and how a client
application communicates with Player in order to control a robot.

3.1 The Player server

Player is a network server for robot control. Running on a robot, Player provides a clean
and simple interface to the robot’s sensors and actuators over the IP network. A client pro-
gram talks to Player over a TCP socket, reading data from sensors, writing commmands
to actuators, and configuring devices on the fly.

Player supports a variety of robot hardware. The original Player platform is the Ac-
tivMedia Pioneer 2 family, but several other robots (such as the Khepera and Erratic plat-
forms used in Guardians) and many common sensors are supported. Player’s modular
architecture makes it easy to add support for new hardware (like in the case of the Res-
cuer platform), and an active user/developer community contributes new drivers.

Player runs on Linux (PC and embedded), Solaris and *BSD, but it is also designed to
be language and platform independent. This means that the client program can run on any
machine that has a network connection to the robot, and it can be written in any language
that supports TCP sockets.

The Player project provides client-side utilities for C++, Tcl, Java, and Python lan-
guages. Further, Player makes no assumptions about how the programmer might want to
structure the robot control programs. In this way, it is much more ‘minimal’ than other
robot interfaces. In this way, the robot control program can be either a highly concurrent
multi-threaded program, or a simple read-think-act loop.

Player allows multiple devices to present the same interface. For example the Khepera

17

3. SOFTWARE INTERFACE FOR NAVIGATION

I
: , I .
Drivers provide Interfaces € — 1 — > Proxies
‘p20s’ ‘position2d’ I Client Libraries:
‘khepera’ I -C
‘erratic’ | - C++
- Java
I
Rttt et 1 |
| Physical | |
| Devices : :
| ___________
I
| Server Side | : | Client Side |

Figure 3.1: Player architecture: Drivers, Interfaces and Proxies.

and Erratic drivers both use Player’s position interface to allow control of the robot’s
movement. Thus the same control code could drive both kinds of robot.

Player is also designed to support virtually any number of clients. Any client can
connect to and read sensor data from (and even write motor commands to) any instance
of Player on any robot. Aside from distributed sensing for control, Player can be used for
monitoring of experiments. For example, while a C++ client controls a robot, a graphical
visualization tool can be running elsewhere in order to show the current sensor data and
a logger program can be monitoring data for later analysis. On-the-fly device requests
allow client programs to gain access to differenct sensors and actuators as needed for the
task at hand.

3.2 Player as a device interface

Player is a robot device interface, i.e., a hardware abstraction layer (HAL) for robotic
devices, and act as an Operating System for the robot. Player defines a set of standard in-
terfaces, each of which is a specification of the ways that you can interact with some class
of devices (see Figure 3.1). For example the position2d interface covers ground-based
mobile robots, allowing them to accept commands to make them move (either velocity
or position targets) and to report their state (current velocity and position). Many drivers
support the position2d interface, including p2os, obot, and rflex, each of which controls
a different kind of robot. The job of the driver is to make the robot support the standard
interface. This way, Player control code that works with one robot will work (within
reason) on another robot.

18 February 18, 2008 Guardians/2008/D2.1.3-4/v1.7

D2.1.3-4 IST Project IST-2006-045269

3.3 Player interfaces

All Player communication occurs through interfaces, which specify the syntax and se-
mantics for a set of messages. An interface specifies of how to interact with a certain
class of robotic sensor, actuator, or algorithm. The interface defines the syntax and se-
mantics of all messages that can be exchanged with entities in the same class. For each
interface, the following is given:

e Relevant constants (size limits, etc.)
e Message subtypes:

— Data subtypes : codes for each kind of data message defined by the interface.

— Command subtypes : codes for each kind of command message define by the
interfce.

— Request/reply subtypes: codes for each kind of request/reply message defined
by the interface. Also specified are the interaction semantics, such as when
to send a null request and when to expect a null response. A ‘null’ request or
response is a zero-length message.

e Utility structures : structures that appear inside messages.
e Message structures:
— Data message structures : data messages that can be published via this inter-

face.

— Command message structures : command messages that can be sent to this
interface.

— Request/reply message structures : request messages that can be sent to this
interface and reply messages that can be expected from it.

It can be the case that a given message can be sent as data or in response to a request.
A common example is geometry. For many devices, geometry is fixed and so need only
be requested once. For others geometry may change dynamically and so the device will
publish it periodically.

3.4 The Position2d interface

This interface offers a simple yet powerful way of controlling the 2D robot motion. It lets
you set the initial Pose and the robot geometry, the desired speed and turn rate, and even
a desired destination pose to reach and let the underlying driver manage to get to the goal.
Obviously it let you query any of this information at any given time.

Guardians/2008/D2.1.3-4/v1.7 February 18, 2008 19

3. SOFTWARE INTERFACE FOR NAVIGATION

playerc_client_t * playerc_client_create (playerc_mclient_t =smclient,
const char xhost, int port)

Create a client object.

void playerc_client_destroy (playerc_client_t +*client)

Destroy a client object.

int playerc_client_connect (playerc_client_t =xclient)

Connect to the server.

int playerc_client_disconnect (playerc_client_t xclient)

Disconnect from the server.

void * playerc_client_read (playerc_client_t =xclient)

Read data from the server (blocking).

Table 3.1: Most important functions contained in the C client API

3.5 Controlling a mobile robot using a client library

Libraries are available in various languages (C, C++, Java, etc.) to facilitate the develop-
ment of TCP client programs. Any of these libraries can be used to develop your a robot
control program.

Client libraries are based on a device proxy model (see Figure 3.1), in which the client
maintains a local proxy for each of the devices on the remote server. Thus, for example,
one can create local proxies for the position and laser devices. There is also a special
client proxy, used to control the Player server itself.

3.5.1 CAPI

Libplayerc is a client library for the player server. The client playerc_client_t data
structure maintains the data connection with the Player server; it is responsible for reading
new data, setting data transmission modes and so on. The client object must be created and
connected before device proxies are initialized. Through the playerc client _create
and playerc_client_connect functions the client can connect to the server. The most
important functions contained in the client API can be seen in Table 3.1.

Once the client is connected to the Player server, the position2d proxy provides
an interface to a mobile robot allowing to control the respective position2d device. The
most important functions to handle this proxy can be seen in Table 3.2. The playerc_
position2d._create function creates de proxy and the playerc_position2d.subs
cribe function subscribes it to the server.

In Section 3.7.1, a C client library sample code is presented. This simple client pro-
gram connects to the server and makes simple robot movements and sensor readings. The
playerc_position2d_enable function enables the robot motors. Then, the playerc._
position2d_set_cmd_vel function sets the desired robot speed.

20 February 18, 2008 Guardians/2008/D2.1.3-4/v1.7

D2.1.3-4 IST Project IST-2006-045269

playerc_position2d_create (playerc_client_t =xclient, int index)

Create a position2d device proxy.

playerc_position2d_destroy (playerc_position2d_t =device)

Destroy a position2d device proxy.

playerc_position2d_subscribe (playerc_position2d_t =xdevice, int access)

Subscribe to the position2d device.

playerc_position2d_unsubscribe (playerc_position2d_t =xdevice)

Un-subscribe from the position2d device.

playerc_position2d_enable (playerc_position2d_t =*device, int enable)

Enable/disable the motors.

playerc_position2d_get_geom (playerc_position2d_t xdevice)

Get the position2d geometry.

playerc_position2d_set_cmd_vel (playerc_position2d_t =xdevice,
double vx, double vy, double va, int state)

Set the target speed.

playerc_position2d_set_cmd_pose (playerc_position2d_t xdevice, double gx,
double gy, double ga, int state)

Set the target pose (gx, gy, ga) in the odometric coordinate system.

playerc_position2d_set_odom (playerc_position2d_t =device,
double ox, double oy, double oa)
Set the odometry offset.

Table 3.2: Most important functions to handle position2d proxy in the C client API

After that, the playerc_client_read function reads multiple data from the server
and stores the information in the client playerc_client_t data structure, displaying it
on screen.

3.5.2 C++ API

The C++ client is generally the most comprehensive library, since it is used by Player
developers to test new features as they are implemented in the server. It is also the most
widely used client library and thus the best debugged by the maintainers of the Player
project.

This library has two kinds of proxies: the special server proxy PlayerClient and
the various device-specific proxies. Each kind of proxy is implemented as a separate class.
The user first creates a PlayerClient proxy and uses it to establish a connection to a
Player server. Next, the proxies of the appropriate device-specific types are created and
initialized using the existing PlayerClient proxy, such as the Position2DProxy
proxy to control the robot’s motors.

The PlayerClient object is used to control each connection to a Player server.

Guardians/2008/D2.1.3-4/v1.7 February 18, 2008 21

3. SOFTWARE INTERFACE FOR NAVIGATION

PlayerClient (const std::string aHostname=PLAYER_ HOSTNAME,
uint aPort=PLAYER_PORTNUM,
int transport=PLAYERC_TRANSPORT_TCP)

Make a client and connect it as indicated.

“"PlayerClient ()

destructor

Read ()
A blocking Read.
StartThread ()

Start the run thread.

StopThread ()

Stop the run thread.

RequestDeviceList ()

Get the list of available device ids.

Table 3.3: Most important PlayerClient class methods of the C++ client API

Position2dProxy (PlayerClient =xaPc, uint aIndex=0)

constructor

“Position2dProxy ()

destructor

SetSpeed (double aXSpeed, double aYSpeed, double aYawSpeed)

Send a motor command for velocity control mode.

GoTo (player_pose_t pos, player_pose_t vel)

Send a motor command for position control mode.

RequestGeom ()

Get the device’s geometry;, it is read into the relevant class attributes.

Table 3.4: Most important methods to handle Position2dProxy proxy in the C++
client API

Contained within this object are methods for changing the connection parameters and
obtaining access to devices (see Table 3.3).

The Position2dProxy class is used to control a position2d device. The most
important public member methods can be seen in Table 3.4.

In Section 3.7.2, a C++ client library sample code is presented. This simple client
program does the same as the sample code in Section 3.7.1.

3.5.3 Java API

The Java client library implementation is called JavaClient. Javaclient allows develop-
ment of applications for Player/Stage using the Java programming language. The client

22 February 18, 2008 Guardians/2008/D2.1.3-4/v1.7

D2.1.3-4 IST Project IST-2006-045269

PlayerClient (java.lang.String serverName, int portNumber)

The PlayerClient constructor.

close ()

The PlayerClient 'destructor.

requestInterface{InterfaceName} (int index, int access)

Request the InterfaceName device.

runThreaded(long millis, int nanos)

Start a threaded copy of Javaclient.

setNotThreaded ()

Change the mode Javaclient runs to non-threaded.

requestData ()

Configuration request: Get data.

readAll ()

Read the Player server replies in non-threaded mode.

Table 3.5: Most important PlayerClient class methods of the Java client API

implements all interfaces described in the Player manual, plus several various additions.

PlayerClient is the main Javaclient class. It contains methods for interacting
with the player device (see Table 3.5). The player device represents the server itself, and
is used in configuring the behavior of the server. There is only one such device (with
index 0) and it is always open. Once the constructor is called, it will create a socket with
the Player server running on a specified host and port number.

The Position2DInterface class is used to control a mobile robot in 2D. The
most important public member methods can be seen in Table 3.6.

In Section 3.7.3, a Java client library sample code is presented. This simple client
program does the same as the sample code in Section 3.7.1.

The requestInterfacePosition2D and requestInterfaceSonar lets the client
program to manage the robot movements and read sonar values. The runThreaded
method starts a threaded copy of Javaclient. After that, a read-compute-act cycle is
started. If there is data available from sonar devices (i sDataReady method), get data
from them (getData method) and calculate new translational and rotational velocities
for the robot, based on the sonar sensor values. With the set Speed method of the
Position2DInterface, new velocities are commanded to the robot.

Guardians/2008/D2.1.3-4/v1.7 February 18, 2008 23

3. SOFTWARE INTERFACE FOR NAVIGATION

Position2DInterface (PlayerClient pc)

Constructor for Position2DInterface.

setPosition (PlayerPose pos, int state)

New position for the robot’s motors.

setSpeed (float speed, float turnrate)

New position for the robot’s motors.

queryGeometry ()

Request/reply: Query geometry.

isDataReady ()
Check if data is available.

isGeomReady ()

Check if geometry data is available.

getData ()
Get the Position2D data.

getGeom ()

Get the geometry data.

Table 3.6: Most important methods to handle Position2DInterface proxy in the
Java client API

24 February 18, 2008 Guardians/2008/D2.1.3-4/v1.7

IST Project IST-2006-045269

D2.1.3-4

uostredwod [V :L°€ dIqeL

(21015 11 ‘sod 2504424D]J JUONISOJ12S

(19a12s09uafin)d ‘sodtaso diadnd) ofon

(21035 Ju1 ‘v3 21qnop «8 ajqnop x8 apgnop
‘@0142p,, I"pzuonisod-a21advyd) asod-pwio-1as~pzuonisod-aiasvjd

uoTjow TeRODH

(2m.1my oY ‘paads woyf)paad§ias

(paadsmgp ajqnop ‘paad§ v a1qnop ‘paadsxy ajqnop) paadsiag

(21038 Jul ‘DA 2qnop Ka 2jqnop ‘xa
21qnop ‘a3149p, rpguonsod-ouadvyd) jaa-pwd1as~pguonisod-aiadvjd

uoTjow poadg

($5200p Ju1 “Xapu ju1)[2N 2Ivf121u] [2oDf123upisanba. 1ua1])24 v]d
40 7/ (2d 1ua11)424v]])20 121Ul 7UOISOF

() &xougpzuonisog
(0=xapupp jumn 2gv,, 211)120]J) {X0IJPZUOISO

(20109, 1 pguonisod-ouakvjd) aqriosqnsunpzuonisod-siasvjd
(5582000

Ju1 ‘20143p,, 1"pguonisod-a1aLvjd) aqriosqns~pzuonisod-aialvyd
(20109, 1 pguomisod-ouakvjd) Lousap~pzuoisod-aialvyd
(xopul ju1 ‘2112, 1 1ua11o~4a4p)d) 21215~ pguonisod-auadvyd

Ax01g

payounvy aq o1 sppai
pIop 40f paay) v yuvm nok Ji// (souvu i ‘syju Suoj)pappa.y fun.t
uoyp12do ppai £1242 041u03 01 jupm no« Jiy/ ()11ypras

payounvy aq 01 sppa.1 vipp 10f prayl v uvm nok fi// () ppay [1vig
uoypado ppat £1242 jo41u0d 01 jupm nod Jiy/ () ppay

(U212, 1 1u21)272424D]d) ppas1ua1)o-2424v)d . proa

res1 eieq

(12110, 1 1u2119~242&p]d) Loapsap~1ua1)o-2124v)d proa

()asop> () wan1280]q (32112, TI1U2119~2426D]d) 102UUOISIP™1UIYI™ 244D d JUI sI030nI3s9q
(dOL LIOdSNVIL DYAAVId =Modsup.y (a2, rua1jo-2u2(v)d) 122107 U211~ 2424D)d 111
ur ‘WANLIOd YTAVId=10dD jum (140d pu1 4501y, ADYD ISUOD

(aquinpiod Jur QUIDNAALIS SuLS SUD] PADL) U1 12KD]] DWVNLSOH YAV Td =2WDUISOFID SULS::PIS ISUO0D) JUdD4IED]J QuaIIUL, TIUINOUr 24K D)d) 210245 1U1"242KD)d 4 I"IU1"242KD)d SI10210NI3U0)D

papf

++D

0

‘sogen3ue| Surwer3ord pajuasaxd a1 oY) udamlaq uostredwod [JV JoLq & judsard om a1y

uosrredwod |dV +°S°€

25

February 18, 2008

Guardians/2008/D2.1.3-4/v1.7

3. SOFTWARE INTERFACE FOR NAVIGATION

3.6 Example configuration

In this section we presetn an example configuration file for each robot. This configuration
files specifies which interfaces they will provide.

For a Stage simulator configuration file, please refer to Deliverable D2.3.1 ??.

3.6.1 Khepera III

In this section an example configuration file for the Khepera robot is presented. In this
example, position2d, sonar and ir (infrared) interfaces are provided:

driver
(
name "khepera"
provides ["position2d:0" "sonar:0" "ir:0"]

)

3.6.2 Erratic

In this section an example configuration file for the Erratic robot is presented. In this
example, position2d, power, aio (analogic input/output), i r (infrared) and sonar
interfaces are provided:

driver

(

name "erratic"

provides ["position2d:0"

"power:0"
"aio:0"
"ir:oll
"sonar:0"

port "/dev/erratic"

)

3.6.3 Rescuer

In this section an example of configuration file for the Rescuer robot is presented. In this
example, position2d and sonar interfaces are provided:

driver
(
name "rescuer"
provides ["position2d:0" "sonar:0"]

)

As the development of this driver is still an ongoing work, the complete list of features
is not available at the moment.

26 February 18, 2008 Guardians/2008/D2.1.3-4/v1.7

D2.1.3-4 IST Project IST-2006-045269

3.7 Example client application

Here we present the very same application written in the three presented languages using
the different APIs.

This application does really nothing but connecting to a robot in host “localhost”
and port 6665, retreaving the position2d proxy, sending a simple motion command and
quering and printing 200 times the robot pose. After this it disconnects from the robot.

3.7.1 C client

#include <stdio.h>
#include <libplayerc/playerc.h>

int main(int argc, const char x*argv)
{
int i;
playerc_client_t =*client;
playerc_position2d_t *position2d;

// Create a client object and connect to the server; the server must
// be running on "localhost" at port 6665
client = playerc_client_create (NULL, "localhost", 6665);
if (playerc_client_connect (client) != 0)
{
fprintf (stderr, "error: %s\n", playerc_error_str());
return -1;

}

// Create a position2d proxy (device id "position2d:0") and susbscribe
// in read/write mode
position2d = playerc_position2d_create(client, 0);
if (playerc_position2d_subscribe (position2d, PLAYERC_OPEN_MODE) != 0)
{

fprintf (stderr, "error: %$s\n", playerc_error_str());

return -1;

}

// Enable the robots motors
playerc_position2d_enable (position2d, 1);

// Start the robot turning slowing
playerc_position2d_set_cmd_vel (position2d, 0, 0, 0.1, 1);

for (1 = 0; 1 < 200; i++)
{
// Read data from the server and display current robot position
playerc_client_read(client);
printf ("position : %f %f %f\n",
position2d->px, position2d->py, position2d->pa);

}

// Shutdown and tidy up
playerc_position2d_unsubscribe (position2d);
playerc_position2d_destroy (position2d);
playerc_client_disconnect (client);
playerc_client_destroy(client);

return 0;

Guardians/2008/D2.1.3-4/v1.7 February 18, 2008 27

3. SOFTWARE INTERFACE FOR NAVIGATION

3.7.2 C++ client

#include <iostream>
#include <libplayerc++/playerc++.h>

int main(int argc, char xargv[])
{

using namespace PlayerCc;

PlayerClient robot ("localhost");
Position2dProxy pp (&robot,0);

// Enable the robots motors
pp.SetMotorEnable (TRUE) ;

// Start the robot turning slowing
pp.SetSpeed (0, 0, 0.1);

for (1 = 0; 1 < 200; i++)
{
// read from the proxies
robot .Read() ;
std:cout << "position : " << pp.GetXPos () << " " << pp.GetYPos () <<
" " << pp.GetYaw () << std:endl;

3.7.3 Java client

import javaclient2.PlayerClient;
import javaclient2.Position2DInterface;
import javaclient2.structures.PlayerConstants;

public class SimpleTest {

public static void main (String[] args) {
PlayerClient robot = null;
Position2DInterface posi = null;

// Connect to the Player server and request access to Position and Sonar
robot = new PlayerClient ("localhost", 6665);
posi = robot.requestInterfacePosition2D (0, PlayerConstants.PLAYER_OPEN_MODE) ;

robot.runThreaded (-1, -1);

// Enable the robots motors
posi.setMotorPower (1) ;

// Start the robot turning slowing
posi.setSpeed (0, 0.1);

for (1 = 0; i < 200; i++)
{
// read from the proxies
robot .Read() ;
System.out.println("position : " + posi.getXPos() + " " +
posi.getYPos() + " " + posi.getYaw() + "\n";

28 February 18, 2008 Guardians/2008/D2.1.3-4/v1.7

D2.1.3-4 IST Project IST-2006-045269

Guardians/2008/D2.1.3-4/v1.7 February 18, 2008 29

Chapter 4

Conclusion and future work

This document presents the three platforms involved in the GUARDIANS project. Each
one will be used in its own scale environment and will provide valuable information for
each step in the process.

In Section 1 we have presented an overview of mobile platforms, a basic the state of
the art and some ideas of the uses of this platforms for tasks as the one we are involved
in.

Section 2 describes the three actual platforms we plan to use in our project. The spec-
ifications of each of them as well as a basic comparison of their navigation capabilities
are presented.

Section 3 talks about the software layer. Which interfaces from Player / Stage we are
going to use, and how they will work. In addition to this Sections from 3.7.1 to 3.7.3
present a basic application in C, C++, and Java, while Section 3.6 draws basic Player
/ Stage configuration files in order to let the reader easily set up a testing environment,
regardless if it is real or simulated.

Although we will not come up with a final platform, this three platforms will let us
know, at each step, if we are in the right way. They will let us test each of the several
pieces of the development at the right time, avoiding for example field tests in the first
steps of the development. We hope it to speed up the development process.

30

Bibliography

[AACO7]

[ACO7]

[CNO7]

[KBKOO]

[MMO95]

[MMFTO07]

G. Antonelli, F. Arrichiello, and S. Chiaverini. The null-space-based be-
havioral control for autonomous robotic systems. International Journal of
Intelligent Service Robotics, 2007.

G. Antonelli and S. Chiaverini. Linear estimation of the physical odometric
parameters for differential-drive mobile robots. Autonomous Robots, 2007.

Enric Cervera and Leo Nomdedeu. Simulated environment for navigation
tasks. Work Package 2. Deliverable 2.3.1, 2007.

M. J. B. Krieger, J.B. Billeter, and L. Keller. Ant-like task allocation and
recruitment in co-operative robots. Nature, 406:992-995, 2000.

A. Martinoli and F. Mondada. Collective and cooperative group behaviours:
Biologically inspired experiments in robotics. In O. Khatib and J. K. Salis-
bury, editors, Proceedings of the Fourth International Symposium on Exper-
imental Robotics ISER-95, pages 3—10. Springer Verlag, June 1995.

Lino Marques, Ali Marjovi, José Francisco, and Mohmoud Tavakoli. Com-
piled list of recommended sensors and sensor-carriers (robots). Work Pack-
age 2. Deliverable 2.1.1, 2007.

31

	Overview of mobile robots
	Introduction
	Mobile robot platforms in Guardians

	Specifications of the robot platforms
	Khepera platform
	Navigation capabilities
	Controller / Computer
	Electronics
	Software
	Accessories
	Tech Views
	Configurations

	Erratic platform
	Navigation capabilities
	Controller / Computer
	Electronics
	Software
	Accessories
	Tech Views
	Configurations

	Rescuer platform
	Navigation capabilities
	Controller / Computer
	Electronics
	Software
	Accessories
	Tech Views
	Configurations

	Platform comparison

	Software interface for navigation
	The Player server
	Player as a device interface
	Player interfaces
	The Position2d interface
	Controlling a mobile robot using a client library
	C API
	C++ API
	Java API
	API comparison

	Example configuration
	Khepera III
	Erratic
	Rescuer

	Example client application
	C client
	C++ client
	Java client

	Conclusion and future work

