
Recognition of 2D-objects

using RANSAC

Sonia FERNADEZ-RODRIGUEZ

Project Supervisor

Jan WEDEKIND

May 2008



Index II

Contents

Chapter 1.   Introduction......................................................................... 7
 1.1 Motivation....................................................................................................... 8

 1.2 State-of-the-art................................................................................................ 8

 1.3 Context.......................................................................................................... 10

 1.3.1 MMVL.................................................................................................... 10
 1.3.2 HornetsEye............................................................................................. 10

Chapter 2.   Project Outline.................................................................. 11
 2.1 Project definition............................................................................................ 12

 2.2 Methodology.................................................................................................. 12

 2.3 Equipments.................................................................................................... 13

 2.3.1 Hardware Specifications.......................................................................... 13
 2.3.2 Software Specifications............................................................................ 13

Chapter 3.   Design................................................................................ 14
 3.1 Work objectives.............................................................................................. 15

 3.2 RANSAC........................................................................................................ 15

 3.2.1 Introduction............................................................................................ 15
 3.2.2 RANSAC behaviour in simple case (fitting line)....................................... 16

 3.3 Method for object recognition......................................................................... 23

 3.3.1 Features extraction.................................................................................. 24
 3.3.2 Feature descriptor................................................................................... 26
 3.3.3 Correlation coefficient.............................................................................. 27
 3.3.4 RANSAC for translations........................................................................ 28
 3.3.5 RANSAC for rotations............................................................................. 31

Chapter 4.   Results............................................................................... 38
 4.1 EXECUTION EXAMPLES IN SIMULATED DATA.................................... 39

 4.1.1 Example 1: Shift-RANSAC...................................................................... 39
 4.1.2 Example 2: Rotation-RANSAC............................................................... 42

 4.2 EXECUTION EXAMPLES IN REAL DATA................................................ 44

Chapter 5.   Conclusions and  Future Works........................................ 47



Index III

Appendix I. Main code........................................................................... 49

Appendix II. Matrix Class code............................................................. 59

Appendix III. Timer Class Code............................................................ 61

Bibliography.......................................................................................... 62



Index IV

List of Figures
Figure 1.1: Overview of a typical machine vision system.............................................. 9

Figure 3.1: Overview of RANSAC algorithm [6]......................................................... 16

Figure 3.2: Example RANSAC. Initial pixels............................................................. 18

Figure 3.3: Example RANSAC. Outliers & inliers....................................................... 19

Figure 3.4: Example RANSAC. Chosen pixels (e, g)................................................... 19

Figure 3.5: Example RANSAC. Fit line (e-g).............................................................. 20

Figure 3.6: Example RANSAC. Distances to fitted line (e-g)...................................... 20

Figure 3.7: Example RANSAC. Chosen pixels (c, h)................................................... 21

Figure 3.8: Example RANSAC. Fit line (c-h)............................................................. 21

Figure 3.9: Example RANSAC. Distances to fitted line (c-h)...................................... 22

Figure 3.10: Example RANSAC. Final line to fit points............................................. 22

Figure 3.11: Image using KLT over Model image....................................................... 24

Figure 3.12: Initial image. Model image..................................................................... 24

Figure 3.13: Feature pixels........................................................................................ 25

Figure 3.14: Template for histograms......................................................................... 26

Figure 3.15: Example of histogram............................................................................ 26

Figure 3.16: Example of correlation coefficients between a Model and a Scene image.. 28

Figure 3.17: Example of translation a figure.............................................................. 29

Figure 3.18: Example of rotation not around origin.................................................... 32

Figure 3.19: Example. Rotation of the figure around origin........................................ 32

Figure 3.20: Example. Translation of the figure......................................................... 33

Figure 3.21: Example of rotation and translation a figure........................................... 34

Figure 3.22: Example. Translation of model pixel, B.................................................. 36

Figure 3.23: Example. Rotate the figure and obtain the final point............................ 36

Figure 4.1: Model Image............................................................................................ 39

Figure 4.2: Example of translation. Program features in Model and Scene Frames [100, 
102]........................................................................................................................... 40

Figure 4.3: Example of translation. Frame 100.......................................................... 40

Figure 4.4: Example of translation. Frame 101.......................................................... 40

Figure 4.5: Example of translation. Program features in Scene Frames [103, 105]....... 41



Index V

Figure 4.6: Example of translation. Frame 103.......................................................... 41

Figure 4.7: Example of translation. Frame 105.......................................................... 41

Figure 4.8: Example of translation. Program features in Scene Frames [106, 107]....... 41

Figure 4.9: Example of translation. Frame 107.......................................................... 41

Figure 4.10: Example of rotation. Frame 178............................................................. 43

Figure 4.11: Example of rotation. Program features in Model and Scene Frames [178, 
179]........................................................................................................................... 43

Figure 4.12: Example of rotation. Frame 179............................................................. 43

Figure 4.13: Example of rotation. Frame 181............................................................. 43

Figure 4.14: Example of rotation. Program features in  Scene Frames [180, 182]........ 43

Figure 4.15: Example of rotation. Frame 183............................................................. 43

Figure 4.16: Example of rotation. Program features in Scene Frames [183, 185]......... 44

Figure 4.17: Example of rotation. Frame 184............................................................. 44

Figure 4.18: Example of rotation. Frame 185............................................................. 44

Figure 4.19: Example of real data. Model Image........................................................ 45

Figure 4.20: Example of real data. Rotation and Translation..................................... 46



Acknowledgements

First of all, I would like to express a massive thank you to my supervisor, Mr. Jan 
Wedekind,  for  his  infinite  patience  and reliability.  He  helped  me  everytime  I  needed, 
providing me the knowledge and support to carry out my project work.

Moreover, I would like to express thank you to Dr. Bala Amavasai, Sheffield Hallam 
University,  and Mr.  Eduardo Gutiérrez  de  Ravé  Agüera,  Universidad  de  Córdoba,  for 
giving me this chance to have this great experience.

Thanks too to my flatmates and friends, Rafa, María, Raquel, Silvia and José, for 
listening me and for advising me when I needed. Also, thanks for sharing with me the good 
and bad moments. Thanks to Bigotes for be always by my side.

Finally, thanks to my family for providing me all support and resources that I needed, 
specially thanks to my uncle for advising me during the writing of this report.

Recognition of 2D objects using RANSAC  6



Chapter 1.  

Introduction

Recognition of 2D objects using RANSAC  7



Chapter 1.  Introduction

 1.1 Motivation

Computer vision is about  building artificial systems in order to obtain information 
from images, interpret it and work with it later. Nowadays computer vision is used in a 
large  number  of  fields;  there  is  hardly  any  sector  where  image  processing  cannot  be 
applied. There are early applications (for example, mobile robot navigation and military 
intelligence) as well as novel ones (for example, human computer interaction and medical 
image analysis). As the field of computer vision is very broad and has undergone notable 
progress in the last years, we will focus on the field of image processing [6]. This paper is 
directed to applications in the fields of micro-  and nano-technology, since it  is a need 
which is becoming more and more important in industrial tools that try to automate with 
precision the process of assembly for small pieces. Therefore, the feedback system could 
need computer vision for control it in a near future.

If an optical microscope is fitted with a digital camera, images can be analysed in 
real-time and the control and monitoring of tool and object becomes possible. This work is 
about real-time recognition of rigid objects.

This project was done within the  Microsystems and Machine Vision Laboratory at 
Sheffield Hallam University. The project is in support of the PhD work on machine vision 
methods for microscopes and micromanipulation by Jan Wedekind The project makes use 
of HornetsEye which is an extension for the Ruby1 programming language. The main goal 
of  HornetsEye  is  to  provide  a  more  practical  tool  for  a  future  use  in  machine  vision 
systems.

 1.2 State-of-the-art

In  many  cases  there  are  several  computer  vision  methods  addressing  the  same 
problem, i.e , there is often a non-standard solution. Furthermore applications have to be 
tested  in a  particular  hardware,  so  that  a  result  forecast  usually  is  not  possible.  These 
reasons cause some problems when we work with algorithms of image processing. Despite 
the fact that multiple image processing applications can be found, the state of this kind of 
research is still not very developed in several areas. Hence, many applications for object 

1 http://www.ruby-lang.org/

Recognition of 2D objects using RANSAC  8



Chapter 1.  Introduction

recognition can be found, but in the field of  microscopy limits the number of applicable 
solutions.

There  are  a  significant  number  of  studies  about  computer  vision  in  general  and, 
specifically in area of microscopy. However, there is a non-model of steps to follow in 
order to recognise and track an object. Despite it, these systems frequently carry out the 
next flow of steps (see Figure 1.1). Thus, this paper mainly focuses on the following steps: 
Feature  Description and  Recognition/  Tracking in  this  context  of  object  recognition. 
Feature Description consists on determinate which are the features, that means, the pixels 
considered significant will be chosen. Recognition/ Tracking are made by means of these 
features and a known scene image.

In many situations, the interpretation of detected data becomes possible by means of 
predefined  models.  This  interpretation  covers  two  different  tasks,  classification  and 
parameter estimation, which usually are dependent. The former task consists on fitting the 
sensed data with the model. The latter is to compute the best values for the free parameters 
of the model chosen.

Several  techniques  for  parameter  estimation,  for  instance  least  squares,  have  not 
internal mechanisms to detect  and discard big errors,  since they assume that there is a 
direct function that will found good data,  although from the beginning, there are gross 
errors. However, several practical problems do not keep this assumption, called smoothing 
assumption [8]. On the other hand, previously to this project geometric hashing was used 
for the real-time object recognition of micro-objects in this team work, but the performance 
of geometric hashing does not scale well with increasing number of objects. To try to solve 
these problems, RANdom SAmple Consensus (RANSAC) is implanted in the current work 
[1]. RANSAC is a robust procedure used to fit figures.

Currently, RANSAC method is the option for an enormous amount of problems and 
has had a great impact on the structure from motion community. Moreover it is applied to 
fitting problems in image reconstruction. For example, interpretation of maps are being 
made and strategies applying to map reconstructions [6].

Recognition of 2D objects using RANSAC  9

Figure 1.1: Overview of a typical machine vision system



Chapter 1.  Introduction

 1.3 Context

 1.3.1 MMVL

The Microsystems and Machine Vision Laboratory, MMVL, is a work group of the 
Materials and Engineering Research Institute at Sheffield Hallam University, UK [1].

The leading works are associated with the design, development and implementation 
of machine vision techniques focused on several real-time and non real-time applications, 
such as, micro-robotic systems, micro-manipulation, microscope imaging [2].

 1.3.2 HornetsEye

HornetsEye  is  a  Ruby-extension  for  developing  video  processing  and  real-time 
computer vision software using GNU/Linux platform.  This new class incorporates into 
Ruby a better way of working with computer vision, since it makes easy the processing of 
image- and video-I/O with RMagick, Xine, firewire digital camera, and video for Linux. 
HornetsEye  provides  a  collection  of  algorithm,  such  as,  edge  detection  and  corner 
detection, which allow a simple search of the main pixels of the images to this program [1].

Moreover, this extension provides several features, for instance, “Ruby element-wise 
array  operations”  where  these  operations  are  provided  by  MultiArray  and  “XVideo 
widget”  which  is  a  Qt4-QtRuby widget  for  displaying  videos  using  XVideo  hardware 
acceleration. Several features are under testing while others are considered to work stable. 
However  the features do not work equally well on different platforms [4].

HornetsEye is a free software distributed under GPLv3 (General Public License1).

1 http://www.gnu.org/licenses/

Recognition of 2D objects using RANSAC  10



Chapter 2.  

Project Outline

Recognition of 2D objects using RANSAC  11



Chapter 2.  Project Outline

This chapter presents the purpose of this project, how this aim was achieved and the 
equipment used during the project's development.

 2.1 Project definition

The purpose of my work was to develop a software which is able to recognise rigid 
objects in 2D for real-time object recognition. This software must employ the RANSAC 
algorithm.  Moreover,  this  software  must  be  implemented  with  the  Ruby programming 
language.

First of  all  a literature survey about computer  vision in general  and RANSAC in 
particular was performed. Notable papers and books about RANSAC are [6], [7], [8] and 
[9] where I could find different kinds of RANSAC implementation.

 2.2 Methodology

The  project  objectives  are  given  in  chapter  3.1.  A  detailed  description  of  the 
RANSAC  algorithm  is  given  in  chapter  3.2.  Chapter  3.3 shows  how  the  RANSAC 
algorithm can be applied to the problem of 2-D rigid object recognition and test results are 
given.

The RANSAC algorithms for object recognition consists of the following steps which 
are going to be explained in detail later:

– Feature extaction.

– Feature descriptor.

– Correlation coefficient.

– RANSAC (for either translation only or translation and rotation)

Recognition of 2D objects using RANSAC  12



Chapter 2.  Project Outline

Finally,  it  will  be  made  some  examples  of  execution  and  conclusions  will  be 
expounded.

 2.3 Equipments

 2.3.1 Hardware Specifications

To develop this project a laptop with the following features was used:

 Intel Core Duo T2300 Processor, 1660 MHz

 1GB DDR2 SDRAM Memory

 100 GB Hard Disk Drive

 Graphic card: NVIDIA GFORCE GO 7300 MB

 2.3.2 Software Specifications

The software of this project has been implemented and tested under the GNU/Linux 
Kubuntu  distribution  version  7.0  using  the  Ruby programming  language.  Ruby  is  an 
interpreted and imperative language. This language is object oriented with single dispatch 
and single inheritance. Other features of Ruby are dynamic typing, support for modules, 
which can be imported into a class as mixins using the “include” statement (e.g. “include 
HornetsEye”). Other features of Ruby are reflection which lets you query the existence of 
methods and classes at runtime and generate method calls [10]. This makes Ruby a multi-
paradigm language.

Recognition of 2D objects using RANSAC  13



Chapter 3.  

Design

Recognition of 2D objects using RANSAC  14



Chapter 3.  Design

 3.1 Work objectives

The main goal of this project is to use the RANSAC algorithm in order to recognise 
rigid  2D  objects  in  real-time.  RANSAC  must  be  applied  to  at  least  three  degrees  of 
freedom problems.The project goal was achieved as follows:

– Implement an algorithm for selecting the main points of both model image and 
scene image, i.e., feature extraction.

– Implement a feature descriptor and an associated similarity measure.

– Implement  the  RANSAC  algorithm in  order  to  search  the  best  transform 
matching scene pixels with model pixels. A random sample of two model features and 
their best corresponding features in the scene is selected and checked for geometric 
consistency.  An  affine  transform is  determined  which  maps  the  randomly  selected 
features on their corresponding features in the scene. Then, a consensus with the most 
important pixels will be made to confirm a suitable fitting with the obtained pattern.

– Finally, the algorithm is tested on simulated and real data.

 3.2 RANSAC

 3.2.1 Introduction

A large number of image processing and computer vision activities are performed by 
fitting a set of data to a suitable model. Moreover, registration of two partly overlapping 
images taken from different observations is a significant task in 3D computer vision [3]. 
Thus, some of the advantages which can be found in Random Sample Consensus are the 
following: it is a paradigm using to fit a model to experimetal data, it allows interpretating 
and smoothing data which contain a great number of gross errors and it does not require 
initial estimates of motion parameters and can solve the partly overlapping 3D problem.

Recognition of 2D objects using RANSAC  15



Chapter 3.  Design

To understand the RANSAC algorithm in a better way, an overview of the method is 
shown in the next diagram:

Where  “fitting  points”  means  to  establish  a  relationship  between  the  subset  of 
obtained points and a subset of the searching image pixels.

Therefore, the main aim of RANSAC is to search a subset of good points by means 
of a random sample of points, where a good point, also called “inlier”, means that this 
point can be considered to fit the sensed data to a predefined model image.

 3.2.2 RANSAC behaviour in simple case (fitting 
line)

To appreciate how the algorithm works, it is necessary to definy several concepts, 
such as sample. A sample consists of sets of points drawn in a random and uniform manner 

Recognition of 2D objects using RANSAC  16

Figure 3.1: Overview of 
RANSAC algorithm [6]



Chapter 3.  Design

from the data set. Each sample should contain a minimum number of points necessary to fit 
with the model image, for instance the need of two points if a line is tried fitting. Let 
suppose that n data points need to be drawn and the fraction of these points which are good 
is  p.  The value  expecting  of  number  of  draws necessary  to  get  one  point  will  be the 
following [6]:

However,  it  is  very  usually  to  deal  with  data  where  p is  unknown.  Hence,  each 
matching attempt has information about p. If n sensed points are necessary, then it can be 
assumed that the probability of a good matching is pn. To estimate p, several observations 
have  to  be  taken  into  consideration  the  fitting  attempts.  Therefore,  it  is  suggested 
beginning with a low estimation of  p,  then produce a succession of tested matchs, and 
finally improve this value of p. When there are more fitting attempts than they are needed, 
the process can finish [6].

For example, if it is being looking for fitting a line in a set of points, it is possible to 
start with a probability of 50%, then it is checked if a good sample is found to fit it to a line 
with a fifty per cent of the data points. Later, it could be taken a 70% of probability, and so 
on, until a high probability is found.

Another problem of this algorithm is to determinate when a point can be considered 
as “good”. For this reason, it is needed to establish whether a point lies near to a line fitted 
to a sample or not. The distance between the point and the fitted line is determined. Later, a 
test  is  made between that  distance and a  threshold  t,  which  we defined so that  if  the 
distance is below the threshold, then the point will be considered as an inlier (good point). 
Defining this parameter usually is a part of the modelling process. Overall, getting a value 
for  this  parameter  is  relatively  simple.  The  paremeter  is  frequently  established  by 
attempting a few values and seeing what happens, although there are other approaches to 
estimate it [6].

Currently,  there  are  several  algorithms  based  on  RANSAC and a  huge  literature 
about it, since fitting is a problem that happens in many contexts. This section only tries to 
make you understand the behaviour of RANSAC and in the next section will be explain the 
algorithms of RANSAC as applied to this project and the required steps for improving the 
performace of the algorithm for object recognition in real-time.

Recognition of 2D objects using RANSAC  17

(3.1)E [k ] = 1P good sample doing one draw  2P good sample doing twodraws  ...
= pn  21− pn pn  3 1− pn2 pn = p−n



Chapter 3.  Design

Example of RANSAC algorithm [9]

To better understand it is shown the next example in a simple case of fitting a line. 
Let the following points with different intesities, shown in the Figure 3.2.

1. Objectives

The goals of this sequence of steps in RANSAC are to find the inliers in a section of 
ratio w and fit a pattern, in this case a polynomial, to only the inliers pixels.

2. Variables

Previously, it will be defined the required variables. A pixel is determinated by its 
intesity.  Inliers  are  the  points  whose  distance  to  the  pattern  is  smaller  than  a  given 
threshold  t.  Outliers are  those  points  whose  distance  is  bigger  than the  threshold  (see 
Figure 3.3). In the figure below pixel g and d would be outliers and the others inliers. The 
probability of success of fitting a large amount of pixels is called  tp  and the fraction of 
these points which are inliers is p. The degree of the polynomial will be n-1, where n is the 
number of pixels to choose, particularly for a line  n  = 2 since it is needed to find two 
coefficients in the equation of a line (ax + by = k).

Recognition of 2D objects using RANSAC  18

Figure 3.2: Example RANSAC. Initial pixels



Chapter 3.  Design

3. Method

1. Randomly select n = 2 pixels from the section [-w, w].

2. Fit the polynomial conecting both pixels chosen.

Recognition of 2D objects using RANSAC  19

Figure 3.3: Example RANSAC. Outliers & inliers

outlier

inlier

Figure 3.4: Example RANSAC. Chosen pixels (e, g)



Chapter 3.  Design

3. Count pixels with vertical distance less than threshold, t.

In this situation, only e, f, g would be good points.

Recognition of 2D objects using RANSAC  20

Figure 3.5: Example RANSAC. Fit line (e-g)

Figure 3.6: Example RANSAC. Distances to fitted line (e-g)



Chapter 3.  Design

4. If there are not “enough” inliers, repeat all steps but do not do it more than T 
times.

(3.2)

Thus, 25% of inliers can be said that it is not enough inliers. Therefore, it 
would be necessary to repeat the algorithm.

1. Randomly select n pixels from the section [-w, w].

2. Fit the polynomial conecting both pixels chosen.

Recognition of 2D objects using RANSAC  21

Figure 3.7: Example RANSAC. Chosen pixels (c, h)

Figure 3.8: Example RANSAC. Fit line (c-h)

p = inliers
pixels

= 3
12

= 0.25



Chapter 3.  Design

3. Count pixels with vertical distance less than threshold, t.

As one can see in the Figure 3.9, only two pixels could consider as bad point, 
d and g. Here, there are 10 good points.

4. If there are “enough” pixels,  stop and label these good pixels as inliers and 
calculate the best line to fit all inliers.

(3.3)

83% of inliers could be an enough amount of inliers. Therefore, the algorithm 
could finish here and label these good points. Then, calculate the best line to 
fit these inliers.

Recognition of 2D objects using RANSAC  22

Figure 3.9: Example RANSAC. Distances to fitted line (c-h)

Figure 3.10: Example RANSAC. Final line to fit points

p =
inliers
pixels

=
10
12

= 0.83



Chapter 3.  Design

Therefore, the followed steps in this example of RANSAC are:

         where:

n = necessary pixels
p = fraction of inliers

t = fit threshold
tp = success probability

Thus, this algorithm may be followed to find structures for polynomials.

As it can be observed, there are several complexities in practical situations, such as 
determining distances, ensuring that there will be not too many outliers over inliers and 
deciding what to fit in the first place.

 3.3 Method for object recognition

As one can see above, in the section 3.1, for object recognition this paper will follow 
different steps which are explained in this section. First of all, suppose that there is an 
object and several images of this object in different positions in a video, so that for each 
step two images will be considerred, called the model image and scene image. The former 
is an image whose features to be fitted (original object). The latter is an image of the object 
which has undergone translation and/or rotation in the plane.

Recognition of 2D objects using RANSAC  23

Repeat at most T times:

1. Randomly select n pixels

2. Fit (n-1)-degre polynomial

3. Count pixels whose vertical distance 

from polynomial is < t

4. If p is considered as good amount, 

exit loop and

   - Good points are labeled as inliers

   - Fit polynomial to all inlier pixels



Chapter 3.  Design

At the beginning several feature locations are selected to reduce the amount of data. 
Matching the model  and scene image directly would be inefficient  and execution time 
would be too large for fulfilling real-time constraints. In the following subsection, it will be 
explained how a subset  of data points are  selected as point features.  Then, the feature 
descriptor and the comparison between model features and scene features are presented. In 
the  last  section  of  this  part,  the  two  RANSAC  algorithms  used  in  this  software  are 
explained.

 3.3.1 Features extraction

In digital image processing, the less point features are choosen the better. Moreover, 
to track not all part of a frame contains complete motion information due to this, several 
solutions are proposed by researchers, such as tracking corners or windows with a high 
spatial frequency content [11]. Therefore, the corner-points will be selected as main points 
in this case and these main points will be called “features”. Hence, these features make 
easier and faster the motion detection and object recognition. Currently,  diverse kinds of 
corner detection algorithms can be built. In HornetsEye [4], there are implementations of 
three corner-detection algorithms: The Yang et al., the Harris-Stephens,  and the Kanade-
Lucas-Tomasi corner-detector.

In this report, the Kanade-Lucas-Tomasi algorithm (KLT)1 is used. This algorithm 
locates  good features  by means of  analysing  the  minimum eigenvalue  of  each 2 by 2 
gradient matrix. The features are tracked with a Newton-Raphson technique of minimizing 
the difference between the two windows [5].

An example is shown below, where one can see how the original image, Figure 3.12, 
is reduced to an image, Figure 3.11, where the number of significant pixels is smaller. Note 
that these significant pixels allow to recognise this image.

1 KLT is a method for searching good features in the computer vision. The source code is in the public 
domain, available for both commercial and non-commercial use. 

Recognition of 2D objects using RANSAC  24

Figure 3.11: Image using 
KLT over Model image

Figure 3.12: Initial image. 
Model image



Chapter 3.  Design

After computing the feature image with the KLT algorithm, feature locations to track 
the  object  motion  are  selected  by  Non-Maxima-Suppression (NMS).  Later,  a  better 
efficiency and less execution time will be obtained with NMS.

In this implementation of the NMS algorithm a mask is used in order to select the 
neighbouring pixels which are located around a potential feature location:

The  selected  points  will  be  the  previous  KLT-points  which  fulfill  the  following 
conditions.  First,  the  point  chosen  must  have  the  maximum value  in  the  pixels  of  its 
outline, that is, in the mask. Second, that point has to be equal or bigger than a threshold in 
order to limit the search and reduce execution time.

Regarding the previous example, if to the Figure 3.11 is applied the NMS algorithm, 
it is obtained the Figure 3.13. As one can see, these features let recognise the object as 
well.

Recognition of 2D objects using RANSAC  25

[1 1 1
1 0 1
1 1 1]

Repeat for all image pixels:

1. If pixel[x,y] >= threshold and

   pixel[x,y] > maximum point of its mask:

     - Pixel[x,y] is included as a feature of the image

where:
  pixel[x,y] = intensity of colour in the
                   position[x,y] of the image

  threshold could be half maxPoint.

Figure 3.13: Feature pixels



Chapter 3.  Design

 3.3.2 Feature descriptor

Once, the features of the image have been selected, it is necessary to relate pixels of 
different images. In this work for  describing these features will be used a histogram for 
each feature which shows the amount of each colour.

The pixel's colour is usually represented by a number between 0 and 255, where the 
former is black and the latter is white. A histogram of 256 possible colours would be very 
large and highly sensitive to noise. Therefore, the image is normalised to a colour range 
between 0 and 15, i.e., 16 grey values.

A feature descriptor is introduced made by means of a histogram of the grey values in 
the vicinity of  each feature. Here the histogram has 16 bins. A feature is taken and a 
specific number of pixels around it. For example, if we take 3 pixels around the feature 
pixels we will obtain de following shape:

where X is a colour represented by a number between 0 and 15 and F is a the feature 
represented by a number between 0 and 15 as well.

Then, the pixels of each luminosity are counted (e.g. 8 pixels with colour 0 or black, 
1 pixel with colour 1, and so on until the colour 15).

Recognition of 2D objects using RANSAC  26

Figure 3.14: Template for histograms

Figure 3.15: Example of histogram



Chapter 3.  Design

 3.3.3 Correlation coefficient

For  recognising  an  object,  a  pattern  is  required  in  order  to  find  the  relationship 
between point pairs of both model and scene images. The relationship will depend on the 
scene  motion.  The correlation  coefficient  will  be  used in  order  to  look for  any linear 
relationship between the model features and the scene ones.

This  coefficient  is  a  real  number  which  measures  the  degree  to  which  both 
histograms are related. The result will be any value between -1 and +1, in which the sign 
means a direct relationship when the sign is positive, or an inverse relationship when the 
sign is negative. Moreover, if the value is close to 1, it means a perfect linear relationship, 
but if the value is nearby to 0 means non linear relationship.

The correlation coefficient, rxy, is obtained by means of the covariance of x and y, Sxy , 

the variance of x, Sx, and the variance of y, Sy, using the following formula:

where:

Simplifying the expression, the formula of the coefficient will be:

Recognition of 2D objects using RANSAC  27

(3.4)r xy=
S xy

S x S y

(3.5)S xy=∑ XY −∑ X ∑Y
n

(3.6)
S x=∑ X 2−

∑ X 2

n

(3.7)S y=∑Y 2−
∑Y 2

n



Chapter 3.  Design

In this paper, the correlation coefficient is applied to the histogram of each scene 
feature with the histogram of each model feature. After the coefficient is found, the more 
significant coefficients which may be considered as the bigger ones than 0.5 are stored in 
list in ascending order.

The most significant coefficient, that is the biggest one, for each scene feature with 
the respective model feature will be used subsequently.  However,  this algorithm is not 
sufficient  for  object  recognition,  since  the  most  significant  coefficient  may not  be  the 
matched  pixel  with  the  model,  for  example,  two features  of  scene  might  have  similar 
histograms. Thus, this algorithm is only used for improving the performance of the next 
one, RANSAC algorithm.

 3.3.4 RANSAC for translations

As one  can  see  above,  RANSAC has  different  applications  in  many fields.  This 
project is focused on recognition of rigid objects which are moving with three degrees of 
freedom: translation in x-direction, translation in y-direction, and rotation. Therefore the 
distances  between  features  are  invariant,  i.e. we  are  restricting  ourselves  to  isometric 
transformations. In this section, translations are analyzed, and in the next section, rotations 
will be considered.

When we only have to take translations into account, it is possible to find the points 
of a figure which moved. Two pieces of information are necessary in order to find the 
points of the moved object.  First,  the  coordinates of  the initial  image features,  model  
features, are needed. Secondly, it is necessary a vector which describes the displacement 
for each of these features. As the translation is a displacement along straight line, a single 

Recognition of 2D objects using RANSAC  28

Figure 3.16: Example of correlation coefficients between a Model and a Scene image

rxy=
n∑ XY−∑ X∑ Y

n∑ X²−∑ X ²n∑ Y²−∑ Y ² 
(3.8)

Scene feature Model feature Correlation coefficient



Chapter 3.  Design

vector will describe the motion of all points. This vector will be called displacement vector 
and this vector is given by two coordinates,  [dx, dy], since we are working in 2D space; 
these vector coordinates specify the direction of motion and its magnitude [13].

Affine  transformations  can  be  represented  with  matrices,  for  that  homegeneous 
coordinates are used. This means denoting a vector [x, y] as [x, y, 1]. Using this technique, 
a translation in 2D can be given by [14]:

A translation ∈ ℝ2: [ x , y]  [ xdx , ydy] can be represented as:

[1 0 dx
0 1 dy
0 0 1] [xy1] = [xdx

ydy
1 ]  

that is:

T P1=P2

where column vectors are the homogeneous coordinates of the two points, P1 and P2, and 
the matrix is translation one, T.

For example  :  

Recognition of 2D objects using RANSAC  29

Figure 3.17: Example of translation a figure

(3.9)

(3.10)



Chapter 3.  Design

As one can see in the Figure 3.17 all points of the figure are translated in the same 
direction and with the same magnitude.

In function of the area where we are working, it is used a different pattern to develop 
RANSAC. Therefore, displacement vector is used here in order to match the features of the 
model with the scene features, the latter are those which were shifted.

SHIFT-RANSAC ALGORITHM 

Recognition of 2D objects using RANSAC  30

Given: 

distance = between Point1(modelFeature[x, y]+[dx ,dy]) and Point2(sceneFeature)

pi = probabiliy of finding inliers

T = maximum number of times to execute the algorithm

threshold = possible error in the distance between two points

tp = minimum probability of finding inliers

Repeat at most T times
1. Randomly select a feature of  scene image
2. Calculate displacement vector [dx, dy] using 
correlation coefficient
3. Repeat for all model features (consensus):
  - Calculate the distance between the scene
    features and the points obtaining by means of
    features model and [dx, dy]
  - If distance <= threshold, number of inlier is
    incremented
4.  If  pi  >= tp, exit loop and
   [dx, dy] is fit as the good motion vector



Chapter 3.  Design

 3.3.5 RANSAC for rotations

Rotation also allows to find the points of a figure which moved, since rotation is an 
affine  transformation  as  well  (an  isometry  to  be  more  exact).  Therefore,  the  same as 
translation,  the  rotation  motion  can  be  represented  with  matrices  using  homogeneous 
coordinates. A piece of information is necessary to find the points of the moved object. As 
a rotation is a change in the orientation of its axis, that piece is the rotation angle, θ. It is 
considered the rotation angle as those followed from the initial position, i.e., the origin of 
the axis, to final position. The matrix position respect to the origin can be represented as 
[14]:

that is:

Rθ P1=P2

where column vectors are the homogeneous coordinates of the two points, P1 and P2, θ is 
the rotation angle and the matrix is rotation one, R(θ).

To obtain any point of the final position is only required to apply the formula (3.12). 
In contrast, if it is wanted to find a point of the first position by means of the final position, 
the inverse matrix will be applied (laws of matrices).

On the other hand, several affine transformations can be composed, for example if a 
image suffers two rotations the result of the transformation will be calculated using:

Recognition of 2D objects using RANSAC  31

Rθ 1R θ 2=Rθ 1θ 2

[cosθ −sinθ 0
sinθ cosθ 0

0 0 1 ] [xy1] = [xcosθ−ysinθ
xsinθycosθ

1 ] (3.11)

(3.12)

(3.13)



Chapter 3.  Design

If the rotation is not around the origin, it is in other point, it is necessary the next 
steps:

1. Rotation of the figure in the origin.

A'=R π A
B '=R π B
C '=R π C

                where        Rπ =[cos π  −sin π  0
sin π  cos π  0

0 0 1 ]

Recognition of 2D objects using RANSAC  32

Figure 3.18: Example of rotation not around origin

Figure 3.19: Example. Rotation of the figure around origin



Chapter 3.  Design

2. Translate the figure [t1, t2].

A' ' = TA' = T Rπ  A=TRπ  A
B' ' = TB' = T R π B=TRπ B
C ' ' = TC ' = T Rπ C =TRπ C

          where    T=[1 0 t1
0 1 t2
0 0 1 ]

and it is simplified to a matrix by composing the two matrices TR, 

This  matrix,  TR,  is  applied  to  find  the  pattern  searching  in  RANSAC  but  it  is 
similarly directed to vectors. The next example illustrates performance of the motion with 
matrices.

Recognition of 2D objects using RANSAC  33

T R θ =[cosθ −sinθ t 1

sinθ cosθ t 2

0 0 1 ]

Figure 3.20: Example. Translation of the figure

(3.14)



Chapter 3.  Design

Extended example  :  

Suppose that there are two images which are determined by a vector that joins two 
points (see  Figure  3.21),  the  composition  of  all  operations  is  made  with  the  different 
matrices. For example, to find a feature of the scene matching to a model feature, where it 
is given:

– a model feature, B = [xb, yb],

– a vector CA from the model,  [dxCA, dyCA], which is calculated by means of two 
model features, C and A,

– and a vector C''A'' from the scene, [dxC''A'', dyC''A''], which is calculated by means of 
two scene features, C'' and A''.

These two vectors will allow to obtain the  scene rotation matrix and the  rotation 
matrix of the model.

The steps that it should be followed in this example are:

1. Calculate the rotation matrices of both scene and model.

Recognition of 2D objects using RANSAC  34

Figure 3.21: Example of rotation and translation a figure



Chapter 3.  Design

Pattern for model image:

where:

[tm1

tm2
] = [ xCx A

2
yC y A

2
]

            

θm = arctan dyCA

dxCA


            
dyCA = y A−yC

dx
CA

= x
A
− x

C

Pattern for scene image:

where:

[t s1

t s2
] = [ xC ' 'x A ' '

2
yC ' ' y A' '

2
]

         

θs = arctan dyC ' ' A ' '

dxC ' ' A ' '


          
dyC ' ' A ' ' = yA ' '−yC ' '

dx
C ' ' A ' '

= x
A' '
− x

C ''

Recognition of 2D objects using RANSAC  35

RT mθ m = [cos θ m −sinθ m tm1

sinθ m cosθ m tm2

0 0 1 ]

RT sθ s = [cos θ s −sinθ s t s1

sin θ s cos θ s t s2

0 0 1 ] (3.16)

(3.15)



Chapter 3.  Design

2. Translate the pixel of the model image to the origin, i.e., in opposite direction 
and rotate in opposite way, which is made with the inverse rotation matrix of the 
model.

These operations translate the point  B 
to the origin.

3. Translate and rotate the resulted pixel of the image using the matrix of the 
scene.

All multiplications of matrices allow 
to find the point of the scene, B''.

To apply RANSAC to rotation and translation, the next algorithm is used here. The 
pattern for finding points from a figure to moved another is the rotation matrices seen 
above.

Recognition of 2D objects using RANSAC  36

B '=RT mθ m
−1 B

Figure 3.22: Example. Translation of 
model pixel, B

Figure 3.23: Example. Rotate the 
figure and obtain the final point

B ' '=RT sθ s B'=RT s θ sRT m θ m
−1 B



Chapter 3.  Design

ROTATION-RANSAC ALGORITHM 

Recognition of 2D objects using RANSAC  37

Repeat at most T times
1. Randomly select two different features of  scene image
2. Select the most suitable matched model features which is taken 
from the correlation coefficient
3. Calculate the distance between the two points of each image, dm 
and ds

4. If |dm-ds| >= thresholdDist return to step 1
5. Calculate both β and φ rotation angles and the vector of each pair 
of points, tm and ts
6. Calculate a pattern with the scene rotation matrix, Rs, and model 
one, Rm

7. Repeat for all model features (consensus):
   - Calculate the scene point using rotation matrices, Rs and Rm 
   - Calculate the distance between the scene features and the points
     obtaining by means of matrices
   - If distance <= threshold, number of inlier is incremented
8.  If  pi  >= tp, exit loop and
   Rs and Rm are fitted as the good rotation matrices

Given: 
pi = probabiliy of finding inliers
tp = minimum probability of finding inliers
T = maximum number of times to execute the algorithm
threshold = possible error in the distance between two points
distance = between Point1(calculated with Rs and Rm) and Point2(sceneFeature)

dm = distance between the two model features
ds = distance between the two scene features



Chapter 4.  

Results

Recognition of 2D objects using RANSAC  38



Chapter 4.  Results

 4.1 EXECUTION EXAMPLES IN SIMULATED 
DATA

First of all, the software was tested in simulated data and subsequently, in real data. 
Therefore, this section shows some tests made in translation motion and later, rotation case 
will be illustrated.

Hence in the next examples the image that is wanted to recognise is the one shows in 
Figure 4.1.

 4.1.1 Example 1: Shift-RANSAC

In  this  part,  some results  of  object  recognition  with  two degrees  of  freedom are 
shown. Tests were made over a video where the object ungerwent only translation. The 
software was executed three times for each case. Thus, the next table shows the number of 
detected frames by the program, the amount of frames where the object was recognised 
and finally, the rate of object recognition each time.

Recognition of 2D objects using RANSAC  39

Figure 4.1: Model 
Image



Chapter 4.  Results

Using an algorithm where the maximum number of times is 200 (T = 200) and a 
threshold of probability of finding inliers is 90%, the next results were obtained:

Times Total Frames Good Results % Good Results

1 125 125 100%
2 125 125 100%
3 125 125 100%

As you can observe from the table, results obtained were very good, since every time 
a translation was made in simulated data, the object was well recognised.

Then, the example illustrates how the displacement of the model image is estimated 
in a series of frames (in this case it is shown from frame 100 to frame 107). You can show, 
the model figure is recognised in each frame, although the position is different to the initial 
one. To observe this object recognition, a red frame is drawn by means of the results of 
displacement vector and the model image.

Recognition of 2D objects using RANSAC  40

Figure 4.3: Example of 
translation. Frame 100

Figure 4.4: Example of 
translation. Frame 101

Figure 4.2: Example of translation. Program features in Model 
and Scene Frames [100, 102]



Chapter 4.  Results

As one can see, the major part of the execution time is spent on feature extraction. 
Execution  time  of  RANSAC  algorithm  is  the  smallest  in  comparison  of  the  rest  of 
significant sections.

Recognition of 2D objects using RANSAC  41

Figure 4.6: Example of 
translation. Frame 103

Figure 4.7: Example of 
translation. Frame 105

Figure 4.9: Example of 
translation. Frame 107

Figure 4.5: Example of translation. Program features in Scene 
Frames [103, 105]

Figure 4.8: Example of translation. Program features in Scene 
Frames [106, 107]



Chapter 4.  Results

 4.1.2 Example 2: Rotation-RANSAC

In this part,  some results  of object  recognition with three degrees of freedom are 
shown. Tests were made over a video where the object underwent translation and rotation. 
The software  was executed three  times  for  each case.  The next  table  shows the  same 
variables than the translation one. The results were obtained in a similar example but using 
other different frames.

Using an algorithm where the maximum number of times is 200 (T = 200) and a 
threshold of probability of finding inliers is 80%, the next results were obtained:

Times Total Frames Good Results % Good Results

1 248 114 45.97%
2 248 114 45.97%
3 248 114 45.97%

As you can observe from the table, results obtained were worse than in translation 
case, since only almost a half of frames reached to recognise the object.

In  the  following  example,  the  images  shown  different  frames  in  the  tracking  of 
rotation in a figure  (in this case it is shown from frame 178 to frame 185). The model 
figure is recognised in each frame, although the position is different to the initial one as 
well (as in displacement section).

In these figure, a red frame is also drawn by means of the model features, translation 
and rotation matrices. And the red line joins the two selected randomly features.

Recognition of 2D objects using RANSAC  42



Chapter 4.  Results

Figure 4.10: Example of 
rotation. Frame 178     

Figure 4.15: Example of 
rotation. Frame 183

Recognition of 2D objects using RANSAC  43

Figure 4.11: Example of rotation. Program features in Model and 
Scene Frames [178, 179]

Figure 4.14: Example of rotation. Program features in  Scene 
Frames [180, 182]

Figure 4.12: Example of 
rotation. Frame 179

Figure 4.13: Example of 
rotation. Frame 181



Chapter 4.  Results

Figure 4.17: Example of 
rotation. Frame 184

In rotation case, the execution time of RANSAC algorithm is bigger than RANSAC 
for  translations.  However,  the  major  part  of  the  execution  time  is  used  for  feature 
extraction.

Note that all examples change in each time that the program is run, due to RANSAC 
is a random method. Therefore, the results are not always the same.

 4.2 EXECUTION EXAMPLES IN REAL DATA

In  this  section,  an example  in real  data  will  be  shown.  This  example  consists  in 
recognition of a book, see Figure 4.19. This book has undergone translation and rotation 
motions in a plane. Firstly, several tables about results in this example video will be shown 
where the threshold of the probability was changed. Secondly, some frames of the video in 
motion will be illustrated.

Recognition of 2D objects using RANSAC  44

Figure 4.16: Example of rotation. Program features in Scene 
Frames [183, 185]

Figure 4.18: Example of 
rotation. Frame 185



Chapter 4.  Results

Thus, several executions of the program will be made where some parameters had to 
be  modified.  In  the  following  tables,  it  can  be  seen  the  different  results  which  were 
obtained by modifying the threshold of probability in good points. Note that Good Results 
means  frames  where  the  object  is  recognised  and  %  Good  Results  a  rate  of  object 
recognition in this example.

● Threshold of probability of finding inliers: 40%

Times Total Frames Good Results % Good Results

1 254 163 64.17%
2 254 170 66.93%
3 254 175 68.90%

● Threshold of probability of finding inliers: 60%

Times Total Frames Good Results % Good Results

1 254 65 25.59%
2 254 67 26.38%
3 254 64 25.20%

● Threshold of probability of finding inliers: 70%

Times Total Frames Good Results % Good Results

1 254 13 5.12%
2 254 15 5.91%
3 254 17 6.69%

Recognition of 2D objects using RANSAC  45

Figure 4.19: Example of 
real data. Model Image



Chapter 4.  Results

As one can observe in these results, the better choice is a threshold of 40%. However, 
choose this low probability means that sometimes the recognised object will not be the 
searched one.

A real  data  example  appears  in  the  Figure 4.20.  You can observe  how the  book 
(Figure 4.19) is recognised by means of the corners of the model image. The different 
illustrated frames were obtained using a minimum inliers probability of 40%.

Recognition of 2D objects using RANSAC  46

Figure 4.20: Example of real data. Rotation and Translation



Chapter 5.  

Conclusions and  
Future Works

Recognition of 2D objects using RANSAC  47



Chapter 5.  Conclusions and Future Works

Real-time recognition of rigid object can be applied to various fields, specifically if it 
is applied to microscopic objects, it can analyse particles, for example, in medical field or 
it can be used in industry for automating the process of assembly for small pieces.

To conclude, this project has achieved to recognise 2D rigid object in simulated data. 
Thus, feature extraction algorithm, feature descriptor part and RANSAC algorithm perform 
well  in  the  three  degree  problems (translations  in  X-direction  and in  Y-directions  and 
rotations in 2D). However, when the software was applied to real data, results were worse 
and some parameters of RANSAC had to be modified. Furthermore, it was observed that 
the feature descriptor could be changed in order to improve the software performance.

After evaluating the execution time of different sections of algorithm, it was observed 
that RANSAC speeds up this proccess of recognition.

Possible improvements and future work are:

– Reduce the execution time by changing the feature extraction algorithm.

– Test different parameters, because when the algorithm was applied to real objects, 
the algorithm did not perform well.

– Unify  RANSAC  algorithm  by  using  matrices  in  the  displacement  as  well. 
However, this method may increase the execution time.

– Extend RANSAC implementation to four degrees of freedom problems,  i.e., to 
displacement in 3D.

– Change the feature descriptor by using appereance templates and the normalised 
cross correlation instead of grey-level histograms [12].

– Do not use non-maxima suppression in order to achieve real-time performance 
[12].

Recognition of 2D objects using RANSAC  48



Appendix I. Main code

In this appendix is shown the main source code of the implemented software in this 
project work.

Recognition of 2D objects using RANSAC  49



Appendix I. Main code

Recognition of 2D objects using RANSAC  50



Appendix I. Main code

Recognition of 2D objects using RANSAC  51



Appendix I. Main code

Recognition of 2D objects using RANSAC  52



Appendix I. Main code

Recognition of 2D objects using RANSAC  53



Appendix I. Main code

Recognition of 2D objects using RANSAC  54



Appendix I. Main code

Recognition of 2D objects using RANSAC  55



Appendix I. Main code

Recognition of 2D objects using RANSAC  56



Appendix I. Main code

Recognition of 2D objects using RANSAC  57



Appendix I. Main code

Recognition of 2D objects using RANSAC  58



Appendix II. Matrix Class code

In the program was necessary use a complementary function of the Matrix Class 
because there was a  problem in the execution of  inverse matrix  in ruby. Thus,  it  was 
necessary use 'matrix_fix'. This file has the following code.

Recognition of 2D objects using RANSAC  59



Appendix II. Matrix Class code

Recognition of 2D objects using RANSAC  60



Appendix III. Timer Class Code

A new class were implemented in order to count the amount of time employed in 
each part of an algorithm in a way easier. This new class is Timer and it is shown in the 
next code.

Recognition of 2D objects using RANSAC  61



Bibliography

Websites

[1] Main Page- MMVL Wiki. 
http://vision.eng.shu.ac.uk/mmvlwiki/index.php/Main_Page Last accessed April 2nd, 2008.

[2]  Microsystems  and  Machine  Vision Laboratory  | Sheffield  Hallam University. 
http://www.shu.ac.uk/mmvl/ Last accessed: April 2nd, 2008.

[4] Jan Wedekind. HornetsEye – Computer Vision for the Robotic Age. 
http://www.wedesoft.demon.co.uk/hornetseye-api/ Last accessed: April 3rd, 2008.

[5] Stan Birchfield. KLT: An Implementation of the Kanade-Lucas-Tomasi Feature 
Tracker. Website. http://www.ces.clemson.edu/~stb/klt/ Last accessed: April 4th, 2008.

[9] CSC320S Schedule & Notes. 
http://  www.cs.toronto.edu/~kyros/courses/320/Lectures.s07/lecture.2007s.08.pdf  / Last 
accessed: October 15th, 2007.

[10] Ruby (programming language) – Wikipedia, the free encyclopedia. 
http://en.wikipedia.org/wiki/Ruby_%28programming_language%29 Last accessed: April 
20th, 2008.

[13] Patente: PROCEDIMIENTO DE ESTIMACION DEL MOVIMIENTO ENTRE 
DOS IMAGENES CON GESTION DE LAS INVERSIONES DE MALLAS Y 
PROCEDIMIENTO DE CODIFICACION CORRESPONDIENTE. 
http://www.invenia.es/oepm:e00988902/ Last accessed: January 22nd, 2008.

[14] Transformaciones. Universidad de Navarra. 
http://www.tecnun.es/asignaturas/grafcomp/presentaciones/transformaciones.ppt Last 
accessed: April 14th, 2008.

Recognition of 2D objects using RANSAC  62

https://vision.eng.shu.ac.uk/mmvlwiki/index.php/MMVL
https://www.tecnun.es/asignaturas/grafcomp/presentaciones/transformaciones.ppt
https://www.invenia.es/oepm:e00988902
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://www.cs.toronto.edu/~kyros/courses/320/Lectures.s07/lecture.2007s.08.pdf
https://www.ces.clemson.edu/~stb/klt/
https://www.wedesoft.demon.co.uk/hornetseye-api/L
https://www.shu.ac.uk/mmvl/


Bibliography

Books

[6] D. Forsyth and J. Ponce. Computer Vision – A Modern Approach. Prentice Hall, 
2003.

Articles

[3] Chu-Song Chen, Yi-Ping Hung and Jen-Bo Cheng. RANSAC-Based DARCES: A 
New Approach to Fast Automatic Registration of Partially Overlapping Range Images. In 
IEEE Transactions on pattern analysis and machine intelligence, Nov. 1999, volume 21, 
pages 1229-1234. Acad. Sinica, Taipei, Taiwan.

[7] M. Zuliani, C.S. Kenney, and B.S. Manjunath. The MultiRansac algorithm and its  
application to detect planar homographies. In ICIP 2005: IEEE International Conference 
on Image Processing,  11-14 Sept. 2005, volume 3, pages III - 153-6. California Univ., 
Santa Barbara, CA, USA.

[8] M.A. Fischler and R.C. Bolles.  Random Sample Consensus: A Paradighm for  
Model  Fitting  with  Applications  to  Image  Analysis  and Automated  Cartography.  June 
1981, volume 24, number 6. SRI International.

[11] Jianbo Shi and Carlo Tomasi. Good features to track. In Proceedings of the 1994 
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Jun 21-
23 1994, Proceedings of the IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition, pages 593–600, Seattle,WA, USA, 1994. Cornell Univ,  Ithaca, NY, 
USA, Publ by IEEE, Los Alamitos, CA, USA.

[12] Mark Lloyd Pupilli.  Particle Filtering for Real-time Camera Localisation.PhD 
thesis, University of Bristol, 2006.

Recognition of 2D objects using RANSAC  63


	Chapter 1.  	Introduction
	 1.1 Motivation
	 1.2 State-of-the-art
	 1.3 Context
	 1.3.1 MMVL
	 1.3.2 HornetsEye


	Chapter 2.  	Project Outline
	 2.1 Project definition
	 2.2 Methodology
	 2.3 Equipments
	 2.3.1 Hardware Specifications
	 2.3.2 Software Specifications


	Chapter 3.  	Design
	 3.1 Work objectives
	 3.2 RANSAC
	 3.2.1 Introduction
	 3.2.2 RANSAC behaviour in simple case (fitting line)

	 3.3 Method for object recognition
	 3.3.1 Features extraction
	 3.3.2 Feature descriptor
	 3.3.3 Correlation coefficient
	 3.3.4 RANSAC for translations
	 3.3.5 RANSAC for rotations


	Chapter 4.  	Results
	 4.1 EXECUTION EXAMPLES IN SIMULATED DATA
	 4.1.1 Example 1: Shift-RANSAC
	 4.1.2 Example 2: Rotation-RANSAC

	 4.2 EXECUTION EXAMPLES IN REAL DATA

	Chapter 5.  	Conclusions and	 Future Works
	Appendix I. Main code
	Appendix II. Matrix Class code
	Appendix III. Timer Class Code
	Bibliography

