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Abstract

In this article we consider tracking a maneuvering target with a swarm fhoetonomic agents. The target and the agents
move in 2-dimensional space. The tracking agents are required toreagptid enclose the target while moving as a geometric
formation. In order to achieve this cooperative task, we design a ttatieed continuous-time control scheme via constructive
analysis using artificial potentials and sliding mode control techniques.nidie contribution of this paper is the extension of
recent results for the same task assuming simple integrator and fullytesttagent dynamics models to a significantly more
realistic and more difficult setting with non-holonomic unicycle agent dyosmodel. The effectiveness of the proposed control
scheme is established analytically and demonstrated via a set of simulatidts.re

I. INTRODUCTION

In recent years, many research studies have focused onragapilogical principles to control systems in order to elep
systems that are inspired from biology (see, e.g., [1]-[6)ese works range from modelling the behaviors of biolalgic
swarms (bacteria colonies, flocks of birds, schools of fisth laerds of mammals) to mimicking the biological behaviors in
order to build intelligent algorithms that solve multi-ajengineering system problems. The motivation behind tie@guch
biological systems to engineering problems is that thesterys are very well suited to their environments.

A particular class of the studies mentioned above is onibigrd coordination and control of multiple autonomousrag§l]—
[6]. A group of very simple agents can cooperatively perfaasks that are too complex for a single one. Also, if one of the
members of the group fails, others can re-coordinate thesséo complete the task. Working this way, agents increhase
robustness of the system and probability of success. Theggetative systems are implemented in real-life in the fofm
autonomous robot teams, mobile sensor networks, groupsohed or unmanned aerial, ground, space or underwateleghic
etc. [6]-[11].

In this paper, we consider a particular distributed coatiom and control problem: Coordinated tracking of a maeeng
target with a swarm of autonomous agents. The particul&ritadevelopment of a distributed control strategy for matient
systems (swarms) to enclose a moving target while moving spexific geometric formation 2. This problem has been
investigated in [3] for two assumption cases, in one of whith agents are assumed to have simple integrator dynamics

Pi = u; 1)
and in the other they are assumed to have fully-actuatednaigsa
M (pi)ps + fi(pi, D) = wi (2

wherep; andu; denote the position (ifR?) and the control signal of théth agent in the swarm, respectively. Alsd{ (p;)
and f;(p:, p;) denote the relevant mass (inertia) matrix and the cumelatisturbance for agerit respectively.

Both of the models (1) and (2) significantly simplify the aatagent dynamics that would be encountered in practicéisn t
paper, in place of (1) and (2), we assume a significantly meaéistic and more difficult setting with non-holonomic wite
agent dynamics model, which will be described in detail ict®a 1. The main contribution of the paper is the extension
of the results in [3] for the simple integrator and fully sated agent dynamics cases to the non-holonomic unicyclet age
dynamics setting. Note here that this extension is not agstifarward one as the control design approach used in [Bhaa
be directly applied to the non-holonomic unicycle agentaiyits model.

The coordinated tracking task stated above is actuallyistmg of two-subtasks for the swarm: Tracking a moving ¢rg
and maintaining the geometric swarm formation (shape) rtieioto perform these two sub-tasks simultaneously, weidens
a distributed control strategy based on artificial potéritiactions and sliding mode techniques [12], [13].
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In the literature, there exist applications of artificialt@atials and/or sliding mode control to a number of targatking
and/or formation control problems (see, e.g., [2], [3]. [B¥]-[23]). However none of these applications (othemtfd]) is
in the context of the particular tracking task mentionedvabo

Since the control design approach in [3] is not directly agtlle to the non-holonomic unicycle agent dynamics sgttin
of this paper, as a basis, we use the artificial potential didéhg mode control based approach of [24], which is used
there to design distributed control schemes for aggregafaraging, and formation acquisition/maintenance of remgawith
non-holonomic agents.

The paper is organized as follows. In Section Il, the assunmdholonomic agent model is introduced and the particular
coordinated tracking problem is defined. In Section Ill, toatrol design procedure for the solution of the trackingbbem
is explained. In Section 1V, some simulation results ares@néed. Finally, the paper is concluded with some final contsne
in Section V.

Il. SWARM TRACKING PROBLEM WITH UNICYCLE AGENT DYNAMICS

Consider a system a¥ non-holonomic mobile agents, e.g. robots, movingRithat are labelled ad, ..., Ay. Assume
that each agentl; (i = 1,..., N) has the configuration depicted in Figure 1 and the equatibmsotion given by

x; = w;cos(b;),

¥ = v;sin(6;),

0, = w;, 3)
v = W% [FZ + fvm] )

w; = I% [7i + fuw;]

wherez; andy; are the Cartesian coordinat#s,is the steering angle; is the linear speed, and, is the angular speed of;.
The quantitiesn; and I; are positive constants and represent the mass and the mofrieattia of the agentd,, respectively.
The control inputs for the agent; are the force inpuf’; and the torque input;. The functionsf,, and f,,, represent additive
disturbances for each agent. The disturbances are bounded such tiig§ < f,F and|f,,| < f.I for known boundsf,” and

. The exact values of mass; and inertiaZ; are unknown for each agedt; (: = 1,..., N), but bound®) < M < m,; < M
and0 < I < I; < I are known. Note that this model includes both kinematic apdachic equations for each agent, i.e.,
it includes the (linear and angular) velocity dynamics imitidn to the agent kinematics. This is equivalent to addiwg
separate integrators to the kinematic model.

Remark 1: In this article, all the angles including; are assumed to take values from fh&,360°) interval. Because of

this, all addition operations on the angles will be (n@&0°). For exampled; — 6, means(6; — 63)(mod 360°). Similarly
0;(t) will be defined as

0:(t) = lim (0;(t) — 0;(t — At))(mod 360°)
At—0 At
In the case above all the angles are on a circle so there wereing discontinuity.

EY,
Fig. 1. lllustration of agent4; with the non-holonomic unicycle dynamics.
Our aim in this paper is to track a maneuvering target with arswof non-holonomic robots with the dynamics given

in (3). In other words, we would like to design the controlutgu;; = F; andu;s = 7; such that the system a¥ agents
follow the escaping target in a predefined geometrical sifapéormation) and enclose it. Let;(t) = [z;(t),y:(t)] " denote



the position of agent!; for i = 1,... N andpr(t) = [zr(t),yr(t)]" denote the position of the target, at a certain time instant
t. We can formulate the problem as follows.

Problem 1: (Swarm Tracking Problenonsider a swarm ofV agentsA;, i € {1,..., N}, where each agend; of the
swarm has motion dynamics given by (3). Assume that eachta@ien € {1,..., N}, can sense the positign;(¢) of any
agentA; in the swarm including itself and the positigr(t) of the target at any time instahit Assume also that the velocity
and the accelaration of the target are not known; howevey, éne boundedpr(t)| < Br,, ||lpr(t)|| < Br, for known bounds
Br, and S, respectively. Given a set of desired inter-agent distaddegi,j € {1,..., N}, # j}, whered,; denotes the
desired distance between agerisand A;, design the control inputs

U; = [Uilauz?]T = [FiaTi]T

for each agent4;, i = 1,..., N, such that both the following are satisfied.
pr(t) — conv{pi(t),...,pn(t)} as t — oo (4)
Jim [lpi(t) = py(0)]| = dis| <€, Visj € {L,... . N}i# ] (5)
where con{py,...,pn} denotes the convex hull gf;,...,py ande > 0 is a small design constant.

In Problem 1, equation (5) formulates the formation actjoisimaintenance subtask whereas equation (4) formuthtes
subtask of tracking/enclosing the moving target. We apgrd@roblem 1 using artificial potentials and sliding modetiguin
The artificial potential function to be used will be a compiosi of two functions (or two function sub-compositionsyeo
corresponding to the target tracking requirements (4), @l to the formation control requirement (5).

IIl. CONTROL DESIGN

A. Artificial Potential Functions

In our approach to Problem 1, we use artificial potential fioms in order to construct attractive-repulsive relasi@among the
agents and between agents and the target. The potentisibiumeust satisfy both the tracking and the formation speaiibns.
In other words, our design procedure is based on a potentiatibn that is composed of two parts - a formation contrat pa
and a tracking part. In this work, we use a particular clagsodéntial functions of the form considered in [3], [22], [2[26]:

J(p17"'7pN7pT) = JT(p17"7pN7pT)+JF(p17"7pN), (6)
N

JT(p17 L 7pN7pT) = wr E JZT(”pZ 7pTH)7

=1

N—-1 N
Te(pr,-pn) =we Yy Y Tl — psl)-

i=1 j=i+1
where
1
Jir(lpi = prl) = 7 llps —prll". )
1 ) _llpi—p 112
Jij(llpi = pill) = 5 {%‘sz’ —pill” +bijee } (8)

Here J;r(||p; — prl]) is the potential between agedt and the target, and;;(||p; — p;||) is the potential between agent
A; and agentd;. The constantsvr andwy denote the weights (which quantify the relative importgrmfethe tracking and
formation control parts respectively. Note that the pasridetween the agents and that between the agents and gje¢ &ae
functions of the corresponding inter-distances. With sagtotential function, every agent is forced to track the garghile
maintaining the formation.

An issue to note about the formation part of the potentiatfiom is that in [22], [25] it was shown for a certain class of
potential functions/x(p1, .., px) that if the agents move in the spaRé (our case) based on

p7 = *Vp,;']F(plw'apN)a (9)

and if the artificial potential function is chosen with pagmndent inter-agent distances as in (8) the inter-agaactbn-
repulsion forces balance at

bi;

51’]’ é Cij In (]> = dL] (10)

aij
This implies that, as in [24], the potential function will\@aits global minimum (not necessarily unique) at the desire
geometrical formation and provided that the initial ageomfiguration is “close enough” to the desired formation itl wie
achieved. This is basically due to the local minima probleesent in the potential function based approaches.



Another issue to note is about the tracking part of the pakfinction: J;r(|lp; — prl|) in (7) satisfies

VyJir([[yll) = yhir(lyll) (11)

where
hir (yll) = [lylI>. (12)

Here h;r(]ly||) is always greater than zero for allexcept for|y|| = 0. If we achieveV,, J(p1,...,pn,pr) =0 for all 4,
using the summatioﬁjf\’:1 Vo, J(p1,...,pn,pr) = 0 and from the reciprocity of the attraction/repulsion fardmtween the
agents in (8) (which implies thazfil Vo, Jr(p1,...,pn,pr) = 0) one can show that [3]

N N
> Vo dir(lpi = prll) = D (pi = pr)har(Ipi = prll) = 0

1=1 =1
is achieved. Rearranging this equation we obtain
N

N

> pibir(Ipi — prl)) = pr > _ har(llpi — prl)-

i=1 i=1
Given the fact thah;(||p; —pr||) > 0 for all p; andpr and thath,r(||p; —pr||) = 0 only whenp; = pr together with the fact
that due to the inter-agent repulsion forces in (8) the ageahnot simultaneously occupy the same position with tigeta
and always there is at least one agdntsuch thatp; # pr (implying that for that agentl; we haveh;r(||p; — pr||) > 0) we
have the inequalit)zfv:1 hir(|lpi — pr||) # 0 always satisfied. Then, rearranging the above equation wanob

N
_ 2z pihir(llpi — prl)
= ~ .
2 i1 har(|lpi = prl))

Defining
s hir(lpi —prl)

7]i = N
> i=1 hir([lpi — prll)

fori =1,..., N the equation becomes

N
pr = Z NiPi- (13)
i=1

By definition we have} " , 7; = 1. Furthermore, for any € {1,..., N}, sincehr(||y||) > 0, we have0 < 7; < 1. This
implies that ag — oo, if for all i V,,,J(p1,...,p~,pr) — 0 is achieved, thep; — con¥{p,,...,pn} is achieved as well.
In other words, if ag — oo the equalityV,,J(p1,...,p~,pr) = 0 is satisfied for alk, then condition (4) in Problem 1 is
also satisfied.

B. Sliding Mode Control Design

Sliding mode control is a widely used technique in variougligption areas, including multi-agent system coordovatnd
control as mentioned in Section I. This is mainly becausaso$uppressive and robust characteristics against thetaimtiges
and the disturbances in the system dynamics. The shortganiad the raw form of the sliding mode control scheme), on the
other hand, are the so-called chattering effect and pesgiheration of high-magnitude control signals [12], [18dte that
these shortcomings may possibly be avoided or relaxed viadary layer approach, integration, and some filteringriegles.

In a typical sliding mode control design, a switching coliénrowith high enough gain is applied to suppress the effetts
modeling uncertainties and disturbances, and the ageminags are forced to move along a stabilizing manifold, whgchlso
called asliding manifold The value of the gain is computed using the known bounds erutitertainties and disturbances.

Next, we design a sliding mode control scheme to solve ProldeIn [3] it was proved that if the agents are forced to
move according to equation

Di = _vaij(plv s 7PN,PT) - 6Sgn(vpz“](p1» cee ,pN,pT)) (14)

where > fr,, the time derivative of/ becomes smaller than zerb< 0 and potential functior/ converges to a minimum.
However, there is one drawback of this method. The time devie of thesgn(V,,J(p1,...,p~,pr)) function is infinite
at the instances whe¥,, J(p1,...,p~,pr) = 0. In order to overcome this problem similar to [3] we pass tbesmooth
sgn(Vyp, J(p1,...,pN,pr)) signal through a low-pass filter to extract its average orvadent value. Therefore, instead of
using directlysgn(V,,J(p1, - ..,pn~, pr)), we use the output of the second order low-pass filter in émuatl4) . The reason



of using a second order filter instead of the first order filte[3p will be apparent by the end of this section. Let us define
the dynamics of the filter as

,U/Q(h - _MQl —q; + Bsgn(vpi‘](ph cee 7pN7pT))' (15)
Here 1 is a small positive constant which must be properly chosdso A4s mentioned abové must be chosen such that
B8 > Br,. With proper parameter selections the output of the filteaearage satisfies

q; ~ [ﬁSgn(vp«;J(pla v vava))]fiq

where[8sgn(V,, J(p1, ..., DN, DPT))]eq IS the equivalent (avarage) componentsgn(V,,, J(p1, - - -, pn, pr)). The result is that
althoughgsgn(V,, J(p1,...,pn,pr)) is not differentiable its aprroximatiog; is differentiable and can be used in the design
of the sliding mode controller. By using; instead of3sgn(V,,J(p1,-..,p~,pr)), the algorithm becomes implementable.
Now returning to the design of the sliding mode controller $amplicity let us definens = [p],...,p4]" (the concatenated
positions of the swarm members) ape [pl,ps]". Moreover, let

Vo (p) = { o } |

Vodr) = | ) | et = | )

denote the gradient of the potentialgt From (6) we have
vpz‘](p) = qu, Jr (p) + qu, Jr (p)
whereJry,, Jry,, Jrz, andJp,, can be extracted from (6), (7) and (8) as

Jre; = wr|pi = prl*(zi — 2r), (16)
Jry; = wr|pi —prl*(yi — yr), 7
N _lpi—pj12
Jra; = wr Y (¢i—w5) |ay —bge ; (18)
j=1,57
N _llpi—p, 112
Jeye = wr Y (Yi—yy) |ay —bye i |, (19)
J=1,57
In order to achieve satisfaction of motion along the negagjxadient of the potential function (i.e., equation (14§ meed
—0Jy, (P) — Gz, v; cos(6;)
—oV,. J(p) —q = i Pl = . . 20
w0 = o e | =t 20

Let

—Zy.

In other words, we need
vi = | Zill, 0; = £([~Zw;, —Zy;] ") (mod 360°) (21)

where/[z,y] " for an arbitrary vector/[z,y]" € R denotes the counter-clock-wise angle form the cartesiandauatez-axis
to the vector|z, y| .
Note that since the inputs in the agent model (3) @fe= F; andu;, = 7;, i.e. v; and§; cannot be applied directly, the
terms
via 2 | Zill, 0ia 2 Z([~Za,, — 2] )(mod 360°) (22)

need to be considered as desired set-point values;fand 6;, respectively.

Our objective is to force the motion of the agents such thatdifferencegv; — v;4| and|6; — 0,4| converge to zero. With
this objective in mind, similar to [20], [21], [27], let us filee two sliding surfaces as in [24], one for the translatiapeed
v; and one for the orientatiofy;, respectively, as
Vi — Vid (23)

s, = co(0;i —0iq) + (0; — ia), (24)

i

Su,

7

wherecy > 0 is a positive constant, ang andé; are the actual linear and angular speeds, respectivelyeate,; andd;,
are the desired linear and angular speeds as defined in (2R)thlse definitions, our objective becomes to design timérab
inputsu;; andu;e so thats,, — 0 andsy, — 0 asymptotically, since if they are achieved we will haye— v,q andé; — 6,4.



The existence of the additional terea(6; — 6;4) in (24) comes from the double integrator relationship betwéhe terms);
and Ui = Tj.
It is well known from the sliding mode control theory that ilevhave the reaching conditions

Sv; ‘évi < _51|5U1| (25)
Seiéai < _52|591| (26)

satisfied for some constants, s, > 0, thens,, = 0 and sy, = 0 will be achieved in finite time [12], [13].
In order to achieve the satisfaction of (25) we choose the dwatrol inputu;; = F; as

U1 = _KﬂSgn(svi) (27)
with which the time derivative of,, becomes
K; 1 .
§p, = — ! Sgn(Sy, ) + — fo, — Vid
m; my;
and we have
K; 1 .
S'Ui‘é'ui = Sy <_ L Sgn(svi) + 7fvi - Uid)
m; m;
K; )
= - = |S'Ui + 78’07;]0’01’ — Sv;Vid
m; my;
Ky 1 20
< - ( S LR —em) - M) 50 (28)

where(a: (p) > 0) and ( 22 ) form the upper bound foltsal; (|¢ia| < @1(p)+22). The derivation ofv, (p) is shown explicitly
in the sequel. Then by choosirg;; according to

(Mo (p) + Mey + M% + 1) (29)

M

one guarantees that (25) is satisfied and sliding mode o¢cerss,, = 0 is satisfied) in finite time.

The existence and properties @f (p) depend on the properties of the potential function, whicbhissen by the designer.
In other words, one can choose the potential function suahgicha, (p) exists. In [24], the value ofy; (p) was found for a
similar potential function. That derivation can be expahét® the potential function (6) of this work in order to find alue
for a1 (p). The outcome of the derivation is given by

K >

N
ar(p) =2a(p) | _max | D0 NGr@i—p)ll o+ _max (|G (pi = pr)l) (30)
v\ ) Tt |
where
ap) = max  (loVp @)+ 5+ |0 0),
i — pill? 2
Gr(pi — pj) = aizl + bijexp (_Ilpcpjll) <C__(pz' —p;)(Pi —pj)T - I) )
1] 1]
and

Gr(pi — pr) = 2(pi — pr)(pi —pr) " + llpi — prl*1.
Similarly, for the second sliding surface choosing the manhput as
uig = —Kizsgn(sy,) (31)
the time derivative ofy, becomes
Ki2

= —cy
I;

S0,

sgn(sg,) + %fwi — cobig + wi — biq (32)



and we have

coKio

C . .
sgn(sg,) + Tefwi —cobig + w; — 9id>
i

(2

C KZ C . .
< = (52 - Lrt  alfal — ol - o) I

50,50, = 50, <_

I
By choosingK;» as

T (e |
Koo > o (A + calalp) + 0ul + o] 2 @)

whereT's(p) is a computable bound (discussed below) such |t"hgt < T'y(p), one can guarantee that (26) is satisfied and the
second sliding surfacey, = 0 in (24) will as well be reached in finite time.
In order to be able to compute the valuesgf one needs the time derivative &f;, which is given by

. &t \ Zs,
big = ——

2
1+ (72)

(
@)
T R o

Now, in order to write (34) explicitly one needs not only trguations (16), (17), (18) and (19) but also the time denresti
of them. These derivatives can be computed as

& (Jre,) = wr H3(f€z‘ —zr)® + (i — yT)Q} (@i — @7) + 2(xi — 27)(Yi — y7) (P — ?JT)] ;

& (Jry,) = wr H(Ii —7)? +3(y; — yT)Q} (9 —yr) + 2(@i — 27)(yi — yr) (& — iT)] :

Cij Cij

XTi—Tj 2 i Pj 2 . ¥

) =0 S o (1 2255 o (222 2
zi—=%5)(Yi—y; i=p; ; ;

+ [b”%w exp (—%) } (Yi — yg)}

J

PR . 2 ;— ; 2 . .
) =m0 | = [ =y (1= 2508 e (L) [ — )
by 2z o, (lonal?) ], - i,j)} ,

Cij

As mentioned above, the bourfly(p) > |6;4]) on |6:4| is needed in order to determine the controller gaip. Similar to
the case withv;4|, one can compute this bound as

oaz(p) + 25(“;;1)
1 Z|

Ta(p) = +2(I'1(p))?,

uZ

where (26("“)) is the bound onj|g|| andT';(p) is given by

oo (p) +2(2)

(herea; (p) is the bound given by (30)) andy(p) is the bound or*

j—;(vpij(p))H which can be calculated as



N
2a(p) | _max_||Gr(pi —pr)l + _max > ||G'F(pi—pj>||J

d2
<
de“(vmj( ))H @2p) ie{l,..N} ie{l,. >
J=1,j#i

ol ) . ) _gmox 1Gr = pr)]

N
Gr(p: — py)ll
ol ) _mox Y G- )l

J=Lj#i

+ 2 Ka f
ax ie{ql,?.).czv} M M

f’l)

2
+ ie{ql,.?.},(N} < M

The derivativesGT(pi —pr) and Gp(pi — pj;) in the above equation can be computed as

Gr(pi —pr) = 4@ —pr)i —pr)" + 2 —pr) " (i — pr)1,
and
: bij i — pill? . ) 2 ) .
Gr(pi —pj) = —2—Lexp (—W) [2(191- — ;)" (pi = p;) (U(pi —pj)pi—p;)" - I) —2(pi — D) (pi —pj) "
1] 1] ()

One drawback of the algorithm is that for its implementatieach agentl; needs not only the position but also the velocity
of its neighbors (which are all the other agents in the paldicsetting here - but this is not necessarily required tdhige
case in general). Note here that one way of obtaining infionabout the velocity; of another agenti;, in casep; is not
measurable is to estimate this velocity via interpolatibrthe current and past measurements of the posjtion

We would like to emphasize that the procedure based on tieglmode control technique discussed above will guarantee
proper behavior in the presence of uncertainties in the masand the inertial/; of the robots and additive disturbancgs
and f,,, to the linear and angular speed dynamics which constitute nealistic assumptions.

Once the sliding mode occurs on all the surfaces (which happefinite time) and agents start to move according to (14)
and potential function (6) is chosen such that it satisfi€d) @nd (10), then we know that Problem 1 will be solved. One
issue to note, however, is that after occurrence of slidimglenwe reach; = v;4 but not necessarily; = 6,4. In fact, after
occurrence of sliding mode we hade — 6;; exponentially fast and the speed of convergence dependieosldpe of the
sliding surfac&( Therefore, one needs to choageas small as possible in order to achieve faster convergemte\sid
any instabilities. Note also that decreasing the paramgtexill require increasing the controller gaili;s.

IV. SIMULATION RESULTS

In this section we present simulation results that test ffeetiveness of the control scheme proposed in the predeasons.
In implementation of this control scheme, we have used thiternpi@al function (6), (7), (8) withwr = 0.4 andwp = 2.25.
The parameters of the second order filter (15) and for thetmouél4) are chosen as = 0.25, 3 =2 and, . = 0.1.

The target is assumed move k¥ with the dynamics

ar(t)
yr(t)

wherepr(t) = [z7(t),yr(t)]T. The bounds on the unknown mass and inertia of the agentsakee tisM = I = 4 and
M = I =1. The bounded unmodeled dynamics and disturbances are egsasn

fo,(t) = fu, (t) = 1.5sin(1.5¢)

and the corresponding known bounds on them are chosgif as f,; = 1.5.
The desired formation, as shown in Figure 2, is a complétegraph framework with the desired inter-agent distances

dig = dyy = dzg = dzo = dag = 2, dy13 = 2V3 (m).

In order for the potential function to have a minimum at thdesired distances, its parameters are selectég as 20 and
c¢i; = 10 for all 4, and the corresponding; is calculated according to equation (10) as

)2
Q5 = bij exp <—(dCU)) .
Ly

The slope parameter for the, surface is chosen ag = 0.05 and the sliding mode gains are calculated at every step
according to inequalities (29) and (33). Tign function which is used in the calculation of the control itppaeems to work
well in theory. However, in practice it may create numerigaiblems and also cause high frequency chattering becdutse o
discontinuous characteristic. Instead of Ha@ function, we used the functiotanh(~y), where~ is a smoothness parameter

0.25(m),
sin(0.25¢)(m),



Fig. 2. Desired formation.

which determines the slope of the function aroune- 0 and therefore the similarity between then and tanh functions.
The smoothness parameter in our case is chosen-ad0.

Figure 3 shows the paths of the swarm members and the targebbserved that with random initial positions the swarm
members quickly form the desired geometrical shape and tiee target such that the target is surrounded/encloseddy t
agents in the swarm. This implies that the target is withia tonvex hull formed by the positions of the agents and that
pr(t) — conv{pi(t),...,pn(t)} in finite time. It is observed that whemnr = wg the tracking agents try to keep the target
at the center of the diamond but this time it becomes morecdifffor the agents to keep the desired inter-agent distance

14

12+

Fig. 3. Paths of Swarm Members.

Figure 4 illustrates the satisfaction of equation (5) inkffem 1. The simulation last 50 time units and every 0.1 timi¢ an
data point is taken so the figure is formed of 500 data pointshé figuree;(t) represents the error in the desired inter-agent
distances, i.egbs(||pi(t) —p;(t)|| —di;). It is observed that the differences converge to small wafulse to zero) as expected.

The plots in Figures 5 and 6 show the first and the second ddnpots for one of the agents. A single control signal is
composed of nearl$80 thousand points at the end of the simulation but nearly #fefirst2000 samples signals reach steady
state and their magnitude becomes approximately zero. &éghres are plotted for the firs600 samples. High magnitude
control signals phenomenon of sliding mode can be obsemad the figures. It is seen roughly from the figures that the
control signal gains are bounded A%; < 4000 and K;» < 20000. The aim of this paper is to prove that motion control of
non-holonomic robots can be performed using sliding modéarigue so decreasing the magnitude of control signals tis no
in current scope but it may be a subject of future work.
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Fig. 4. Difference between inter-member distances and dkdistances.
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V. CONCLUDING REMARKS

In this paper, tracking, capturing and enclosing of a maasng target with a swarm of non-holonomic agents in a pre-
defined geometrical formation has been discussed. In oodereet this control goal, a decentralized control schemedas
on artificial potential functions and the sliding mode cohtechnique has been designed specifically consideringtageth
non-holonomic unicycle dynamic model, modeling uncettagrand some additive disturbances. It has been shown, bott
theoretically and via simulations, that using the proposexdtrol scheme the swarm would capture the target and endios
while moving in a formation with a certain predefined geoimsatrshape. Future research can focus on the case in which the
agents can sense or communicate with only a subset of thesaigethe swarm. Another topic of future research could be the
examination of the system performance in the existence ridisg errors.
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