Robobuilder

From MMVLWiki
(Difference between revisions)
Jump to: navigation, search
m (Robobuilder)
m (Using the RBC controller)
 
(5 intermediate revisions by one user not shown)
Line 4: Line 4:
 
|-
 
|-
 
|<html>
 
|<html>
   <div class="thumb tright">
+
   <div class="thumb tright"><div style="width:320px;">
    <div style="width:320px;">
+
    <object type="application/x-shockwave-flash" data="http://vision.eng.shu.ac.uk/jan/flv/flvplayer.swf" width="320" height="240">
      <embed style="width:320px; height:240px;" id="VideoPlayback" type="application/x-shockwave-flash"
+
      <param name="flashvars"
        src="http://vision.eng.shu.ac.uk/jan/flv/flvplayer.swf" width="320" height="240"
+
            value="file=http://vision.eng.shu.ac.uk/jan/flv/robobuilder1.flv&amp;image=http://vision.eng.shu.ac.uk/jan/flv/robobuilder1.jpg&amp;searchbar=false&amp;displayheight=240" />
        flashvars="file=http://vision.eng.shu.ac.uk/jan/flv/robobuilder1.flv&image=http://vision.eng.shu.ac.uk/jan/flv/robobuilder1.jpg&displayheight=240"
+
      <param name="movie" value="http://vision.eng.shu.ac.uk/jan/flv/flvplayer.swf" />
        pluginspage="http://www.macromedia.com/go/getflashplayer"/>
+
       <param name="allowfullscreen" value="true" />
       <div class="thumbcaption" >
+
    </object>
        One can control the Robobuilder from within an interactive Ruby session (also available as <a href="http://vision.eng.shu.ac.uk/jan/robobuilder1.avi">15.5 MByte DivX3 video</a> and available on <a href="http://www.youtube.com/watch?v=3w34KPsjQlc">Youtube</a>)
+
    <div class="thumbcaption">One can control the Robobuilder from within an interactive Ruby session (also available as <a href="http://vision.eng.shu.ac.uk/jan/robobuilder1.avi">15.5 MByte DivX3 video</a> and available on <a href="http://www.youtube.com/watch?v=3w34KPsjQlc">Youtube</a>)</div>
      </div>
+
  </div></div>
    </div>
+
  </div>
+
 
</html>
 
</html>
 
|-
 
|-
Line 23: Line 21:
 
Currently all our Robobuilders are in disrepair (plastic gears of multiple servos are broken). We are trying to order [http://robosavvy.com/store/product_info.php/products_id/524 metal gear] replacements. According to [http://groups.csail.mit.edu/lbr/hrg/1995/mattw_ms_thesis.pdf Mark Williamson's thesis] (MIT) ideally one should replace the rigid servos with ''series elastic actuators'' to avoid the large shock loads which result from unexpected collisions which can cause the gear teeth to break. However it may be better to use a sliding clutch since introducing elasticity will limit the dynamics of the system.
 
Currently all our Robobuilders are in disrepair (plastic gears of multiple servos are broken). We are trying to order [http://robosavvy.com/store/product_info.php/products_id/524 metal gear] replacements. According to [http://groups.csail.mit.edu/lbr/hrg/1995/mattw_ms_thesis.pdf Mark Williamson's thesis] (MIT) ideally one should replace the rigid servos with ''series elastic actuators'' to avoid the large shock loads which result from unexpected collisions which can cause the gear teeth to break. However it may be better to use a sliding clutch since introducing elasticity will limit the dynamics of the system.
  
'''Update:''' A temporary solution might be to lower the ''overload'' parameter of the wCK servos.
+
'''Update:''' A temporary solution might be to lower the ''overload'' parameter of the wCK servos. Furthermore it is possible to specify an upper and lower limit for the joint angle.
  
 
[[Image:Working.gif]]
 
[[Image:Working.gif]]
Line 44: Line 42:
 
=Ruby Examples=
 
=Ruby Examples=
 
==Using the RBC controller==
 
==Using the RBC controller==
You can download the Ruby-extension for controlling the Robobuilder using a GNU+Linux PC here:
+
You can get the Ruby-extension for controlling the Robobuilder with a GNU+Linux PC here:
  
'''[http://vision.eng.shu.ac.uk/jan/robobuilder-0.2.2.tar.bz2 robobuilder-0.2.2.tar.bz2]'''
+
'''[https://github.com/wedesoft/robobuilder github.com/wedesoft/robobuilder]'''
  
 
Here is a small example program which makes the robot get up if it's lying on its back or its front.
 
Here is a small example program which makes the robot get up if it's lying on its back or its front.
Line 92: Line 90:
 
** [http://robosavvy.com/store/product_info.php/products_id/517 Robobuilder Bluetooth Communication Module] ([http://robosavvy.com/RoboSavvyPages/Robobuilder/Robobuilder_BluetoothInstallationInstructions.pdf installation instructions])
 
** [http://robosavvy.com/store/product_info.php/products_id/517 Robobuilder Bluetooth Communication Module] ([http://robosavvy.com/RoboSavvyPages/Robobuilder/Robobuilder_BluetoothInstallationInstructions.pdf installation instructions])
 
** [http://robosavvy.com/store/product_info.php/products_id/456 Robobuilder Triaxial Acceleration Sensor Module] ([http://robosavvy.com/RoboSavvyPages/Robobuilder/HowToEquip_AccelerationSensor.pdf installation instructions])
 
** [http://robosavvy.com/store/product_info.php/products_id/456 Robobuilder Triaxial Acceleration Sensor Module] ([http://robosavvy.com/RoboSavvyPages/Robobuilder/HowToEquip_AccelerationSensor.pdf installation instructions])
** [http://robosavvy.com/store/product_info.php/products_id/524 Metal gear replacement for single servo]
+
** [http://robosavvy.com/store/product_info.php/products_id/524 Metal gear replacement (gears 1, 2, and 3)] [http://robosavvy.com/store/product_info.php/products_id/529 (gear 4)]
 +
** [http://robosavvy.com/store/product_info.php/products_id/609 Robobuilder Metal Joints Set]
 
** [http://robosavvy.com/RoboSavvyPages/Robobuilder/robobuilder-creator-users-manual.pdf Robobuilder Creator users manual]
 
** [http://robosavvy.com/RoboSavvyPages/Robobuilder/robobuilder-creator-users-manual.pdf Robobuilder Creator users manual]
 
** [http://robosavvy.com/RoboSavvyPages/Robobuilder/RBC_over_Serial_Protocol_v1.13.pdf Serial protocol to communicate with Robobuilder controller]
 
** [http://robosavvy.com/RoboSavvyPages/Robobuilder/RBC_over_Serial_Protocol_v1.13.pdf Serial protocol to communicate with Robobuilder controller]
Line 103: Line 102:
 
* [http://lasa.epfl.ch/ HOAP at the EPFL Laboratoire d'Algorithmes et Systemes d'Apprentissage]
 
* [http://lasa.epfl.ch/ HOAP at the EPFL Laboratoire d'Algorithmes et Systemes d'Apprentissage]
 
* [http://groups.csail.mit.edu/lbr/hrg/1995/mattw_ms_thesis.pdf Matt Williamson: Masters thesis on series elastic actuators]
 
* [http://groups.csail.mit.edu/lbr/hrg/1995/mattw_ms_thesis.pdf Matt Williamson: Masters thesis on series elastic actuators]
 +
* [http://www.jo-zero.com/ JO-ZERO robot (infrared remote control)]
  
 
{{Addthis}}
 
{{Addthis}}

Latest revision as of 23:05, 16 July 2011

Assembled Robobuilder "Huno"
One can control the Robobuilder from within an interactive Ruby session (also available as 15.5 MByte DivX3 video and available on Youtube)
The Robobuilder Kit contains components for assembling a humanoid robot

Contents

[edit] Robobuilder

Currently all our Robobuilders are in disrepair (plastic gears of multiple servos are broken). We are trying to order metal gear replacements. According to Mark Williamson's thesis (MIT) ideally one should replace the rigid servos with series elastic actuators to avoid the large shock loads which result from unexpected collisions which can cause the gear teeth to break. However it may be better to use a sliding clutch since introducing elasticity will limit the dynamics of the system.

Update: A temporary solution might be to lower the overload parameter of the wCK servos. Furthermore it is possible to specify an upper and lower limit for the joint angle.

Working.gif

[edit] Capabilities

  • main body
    • AVR microcontroller
      • motion programs
      • direct control
    • 16 servo controllers, serial bus
      • self-running mode
      • interpolation + closed-loop control
    • LiPo akku, DC power connector
  • sensors
    • 3-axis accelerometer (add-on)
    • ultrasound distance sensor
  • communication
    • RS232 interface
    • Bluetooth interface (add-on)

[edit] Ruby Examples

[edit] Using the RBC controller

You can get the Ruby-extension for controlling the Robobuilder with a GNU+Linux PC here:

github.com/wedesoft/robobuilder

Here is a small example program which makes the robot get up if it's lying on its back or its front.

#!/usr/bin/env ruby
require 'robobuilder'
require 'matrix'
class Vector
  def norm
    Math.sqrt inner_product( self )
  end
end
robot = Robobuilder.new '/dev/ttyUSB0'
puts "Robobuilder"
puts "Serial number: #{robot.serial_number}"
acceleration = Vector[ *robot.accelerometer ]
if acceleration.inner_product( Vector[ 0, 0, 1 ] ) >
    acceleration.norm * 0.97
  robot.basic
  robot.a
elsif acceleration.inner_product( Vector[ 0, 0, 1 ] ) <
    -acceleration.norm * 0.97
  robot.basic
  robot.b
end
acceleration = Vector[ *robot.accelerometer ]
if acceleration.inner_product( Vector[ 0, 1, 0 ] ) >
    acceleration.norm * 0.97
  robot.run 1
end
robot.close

[edit] Todo

  • Implement various commands of direct mode
  • Implement commands for uploading motion sequences and action sequences
  • Add support for Bluetooth communication
  • Port wired and wireless serial communication to Windows
  • Computer vision feedback using (external) webcam

[edit] External Links

Bookmark and Share

Personal tools
Namespaces
Variants
Actions
Navigation
Toolbox