Hypercomplex Wavelets

(Difference between revisions)
Jump to: navigation, search
m (External Links)
(Link to Fauqeur's keypoint detection paper)
Line 31: Line 31:
 
* [http://www-sigproc.eng.cam.ac.uk/~ngk/ Nick Kingsbury's homepage]
 
* [http://www-sigproc.eng.cam.ac.uk/~ngk/ Nick Kingsbury's homepage]
 
** N G Kingsbury: [http://www-sigproc.eng.cam.ac.uk/~ngk/publications/ngk_ACHApap.pdf Complex wavelets for shift invariant analysis and filtering of signals], Journal of Applied and Computational Harmonic Analysis, vol 10, no 3, May 2001
 
** N G Kingsbury: [http://www-sigproc.eng.cam.ac.uk/~ngk/publications/ngk_ACHApap.pdf Complex wavelets for shift invariant analysis and filtering of signals], Journal of Applied and Computational Harmonic Analysis, vol 10, no 3, May 2001
 +
** J Fauqueur, N Kingsbury and R Anderson: [http://www-sigproc.eng.cam.ac.uk/~ngk/publications/fauqueur_icip06.pdf Multiscale keypoint detection using the dual-tree complex wavelet transform], Proc. IEEE Conference on Image Processing, Atlanta, GA, 8-11 Oct 2006
 
* Thomas Bülow: [http://www.ks.informatik.uni-kiel.de/~vision/doc/Dissertationen/Thomas_Buelow/diss.ps.gz Hypercomplex Spectral Signal Representations for Image Processing and Analysis], PhD thesis, 1999
 
* Thomas Bülow: [http://www.ks.informatik.uni-kiel.de/~vision/doc/Dissertationen/Thomas_Buelow/diss.ps.gz Hypercomplex Spectral Signal Representations for Image Processing and Analysis], PhD thesis, 1999
 
* [http://home.comcast.net/~cmdaven/hyprcplx.htm Clyde Davenport's page on commutative hypercomplex mathematics]
 
* [http://home.comcast.net/~cmdaven/hyprcplx.htm Clyde Davenport's page on commutative hypercomplex mathematics]

Revision as of 14:06, 12 December 2007

Contents

Introduction

Complex wavelets are superior to real-valued wavelets because they are nearly shift-invariant. Complex wavelets yield amplitude-phase information in a similar way as the Fourier transform does. In contrast to the Fourier transform, wavelets allow to analyse the signal locally and thus can be applied to signals with a non-stationary statistic (such as images of a natural scene). In the same way as a one-dimensional signal requires complex numbers to represent the local structure of the signal, two-dimensional signals require hypercomplex numbers. Kingsbury has developed the Dual-Tree Complex Wavelet Transform which allows to recursively compute complex wavelet transforms. Analogous to one-dimensional analysis requiring complex values, two-dimensional analysis requires 4-valued complex numbers (hypercomplex values). Bülow, Kingsbury, and others already have successfully used hypercomplex numbers for analysing two-dimensional signals.

Implementation

High- and low-frequency decomposition using the dual-tree complex wavelet transform. The approximate shift-invariance leads to reduced aliasing

HornetsEye now contains an implementation of the Dual-Tree Complex Wavelet Transform. The implementation makes use of Hilbert transform pairs of wavelet bases. The wavelet transform makes use of HornetsEye's MultiArray class. Have a look at the hypercomplex wavelet example for more information.

Wavelet Editor

File:Waveletedit.png
Wavelet editor

An editor for visualising linear combinations of wavelets was implemented. The code requires qt4-qtruby, and HornetsEye. Here is the source code:

You need to compile the design file using rbuic4 like this:

rbuic4 waveletEdit.ui > ui_waveletEdit.rb

See Also

External Links

Personal tools
Namespaces
Variants
Actions
Navigation
Toolbox