Hypercomplex Wavelets

(Difference between revisions)
Jump to: navigation, search
(Added wavelet animation)
m
Line 38: Line 38:
 
** [http://home.comcast.net/~cmdaven/hyprcplx.htm Clyde Davenport's page on commutative hypercomplex mathematics]
 
** [http://home.comcast.net/~cmdaven/hyprcplx.htm Clyde Davenport's page on commutative hypercomplex mathematics]
 
** K. Krajsek, R. Mester: [http://www.vsi.cs.uni-frankfurt.de/download/KrajsekVisapp06.pdf A Unified theory For Steerable And Quadrature Filters], International Conferences VISAPP and GRAPP 2006
 
** K. Krajsek, R. Mester: [http://www.vsi.cs.uni-frankfurt.de/download/KrajsekVisapp06.pdf A Unified theory For Steerable And Quadrature Filters], International Conferences VISAPP and GRAPP 2006
 +
 +
{{Addthis}}
  
 
[[Category:Projects]]
 
[[Category:Projects]]
 
[[Category:Nanorobotics]]
 
[[Category:Nanorobotics]]

Revision as of 19:59, 21 April 2009

Contents

Introduction

Complex wavelets are superior to real-valued wavelets because they are nearly shift-invariant. Complex wavelets yield amplitude-phase information in a similar way as the Fourier transform does. In contrast to the Fourier transform, wavelets allow to analyse the signal locally and thus can be applied to signals with a non-stationary statistic (such as images of a natural scene). In the same way as a one-dimensional signal requires complex numbers to represent the local structure of the signal, two-dimensional signals require hypercomplex numbers. Kingsbury has developed the Dual-Tree Complex Wavelet Transform which allows to recursively compute complex wavelet transforms. Analogous to one-dimensional analysis requiring complex values, two-dimensional analysis requires 4-valued complex numbers (hypercomplex values). Bülow, Kingsbury, and others already have successfully used hypercomplex numbers for analysing two-dimensional signals.

Implementation

High- and low-frequency decomposition using the dual-tree complex wavelet transform. The approximate shift-invariance leads to reduced aliasing

HornetsEye now contains an implementation of the Dual-Tree Complex Wavelet Transform. The implementation makes use of Hilbert transform pairs of wavelet bases. The wavelet transform was implemented with HornetsEye's MultiArray class. Have a look at the hypercomplex wavelet example for more information.

Wavelet Editor

Wavelet editor

An editor for visualising linear combinations of wavelets was implemented. The code requires qt4-qtruby, and HornetsEye. The source code is part of the HornetsEye source package. You may need to compile the user interface design file using rbuic4 like this:

rbuic4 waveletEdit.ui > ui_waveletEdit.rb

You can view the source files in their current state at http://bazaar.launchpad.net/~wedesoft/hornetseye/trunk/files in the subdirectory samples/hypercomplex.

See Also

External Links

Bookmark and Share

Personal tools
Namespaces
Variants
Actions
Navigation
Toolbox