Hypercomplex Wavelets

From MMVLWiki
Revision as of 17:04, 16 February 2008 by Engjw (Talk | contribs)
Jump to: navigation, search

Contents

Introduction

Complex wavelets are superior to real-valued wavelets because they are nearly shift-invariant. Complex wavelets yield amplitude-phase information in a similar way as the Fourier transform does. In contrast to the Fourier transform, wavelets allow to analyse the signal locally and thus can be applied to signals with a non-stationary statistic (such as images of a natural scene). In the same way as a one-dimensional signal requires complex numbers to represent the local structure of the signal, two-dimensional signals require hypercomplex numbers. Kingsbury has developed the Dual-Tree Complex Wavelet Transform which allows to recursively compute complex wavelet transforms. Analogous to one-dimensional analysis requiring complex values, two-dimensional analysis requires 4-valued complex numbers (hypercomplex values). Bülow, Kingsbury, and others already have successfully used hypercomplex numbers for analysing two-dimensional signals.

Implementation

High- and low-frequency decomposition using the dual-tree complex wavelet transform. The approximate shift-invariance leads to reduced aliasing

HornetsEye now contains an implementation of the Dual-Tree Complex Wavelet Transform. The implementation makes use of Hilbert transform pairs of wavelet bases. The wavelet transform was implemented with HornetsEye's MultiArray class. Have a look at the hypercomplex wavelet example for more information.

Wavelet Editor

File:Waveletedit.png
Wavelet editor

An editor for visualising linear combinations of wavelets was implemented. The code requires qt4-qtruby, and HornetsEye. Here is the source code:

You need to compile the design file using rbuic4 like this:

rbuic4 waveletEdit.ui > ui_waveletEdit.rb

Please contact me if you believe that you have any helpful suggestions/references to this problem.

See Also

External Links

Personal tools
Namespaces
Variants
Actions
Navigation
Toolbox