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Abstract – Of recent, ant foraging has been of great 

interest to the robot swarming community. In this paper 

we implement and study a double pheromone approach 

to ant foraging. In addition, we introduce the A* path 

planning algorithm to improve the efficiency of 

foraging. The Netlogo simulation tool has been used to 

compare the performance of ant foraging with and 

without the invocation of an extra path planning 

ant/agent. With the invocation of path planning, an 

improvement in foraging is observed, especially with 

high rates of pheromone evaporation and low rates of 

diffusion. This could be particularly useful for real 

robots in a dynamic environment where the rate of 

evaporation of pheromones could be very high due to 

various reasons. The introduction of path planning 

helps the ants/agents to converge to an optimal path in 

lesser time. Also the number of effective ants required 

for foraging is fewer. This paper also differs from most 

previous approaches in that the food source and nest 

location changes over time which makes the 

introduction of path planning more effective, since 

without it the success of ants foraging for food is merely 

stochastic.  

Keywords: Robotics, artificial intelligence, path 

planning, ant foraging, swarm intelligence. 

1 Introduction 
 

   Swarm/collective intelligence is categorised in the 

“united we stand divided we fall” paradigm. A single 

ant/agent is hardly of any use by itself. Instead, a swarm 

of ants are capable of solving complex tasks. This 

principle is not new to computing. Grid computing 

makes use of multiple networked computers to perform 

complex tasks which cannot be performed by a single 

computer within a specified time. This functional 

similarity makes swarm engineering very popular for 

various applications.  

 The simplicity of the technique used in swarm 

intelligence makes it suitable for future applications in a 

variety of domains like bioinformatics, homeland 

security, web searching and surveillance. For example, 

NASA has plans to use swarms in space exploration [1]. 

 Other applications include the design of a gripper 

using the pheromone technique [2]. Here, the Ant 

Colony Optimization (ACO) method is used to estimate 

the optimum force with which objects should be held. 

Ants/agents move along the contact points following the 

pheromone gradient until an optimum solution is 

reached. The number of ants on a contact point 

determines the force exerted by a finger on that point.  

1.1 Ant Foraging 
 

 Ants are generally very efficient in finding food 

and building nests by using simple rules. They make use 

of pheromones, a chemical substance to mark a trail. 

They roam randomly until they sense the effect of  

pheromones, at which point of time they will decide to 

either follow the trail or continue to roam randomly. 

Using these techniques, ants are capable of finding the 

shortest possible path to the food source quickly and in a 

finite amount of time. Social insects like ants 

communicate very efficiently with their colony members 

to accomplish complex tasks like finding a path between 

food source and nest spanning over 100 meters. They 

achieve this self organisation based entirely on local 

information [3]. Self-organisation relies mainly on 

positive feedback, negative feedback, amplification of 

fluctuations, and multiple interactions [4].  

  In this paper we propose combining the 

pheromone approach with path planning techniques to 

increase the performance of simple mobile robots. By 

introducing path-planning, the time required to locate the 

food sources can be reduced due to the removal of the 

random exploration stage of the standard ant foraging 

technique. This new hybrid technique can be used in a 

number of environments, e.g. in the case of assembling 

systems with parts located in multiple locations or in the 

case of equipment provision to workers in a dynamic 

industrial environment. In the latter situation, the 

workers will not have a fixed position, and tools will 

have to be allocated to these workers as efficiently as 

possible. In this paper the food source and nest locations 

changes at fixed intervals to simulate a dynamic 

environment.  
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2 Previous Work 
 

 This section first discusses virtual pheromone 

techniques used in real robots and then looks at the 

simulation based approaches on which the present work 

is based on. 

 [5] uses virtual pheromone messaging as a 

communication technique between a group of robots to 

achieve tasks like surveillance, reconnaissance, hazard 

detection and path planning. Each robot is equipped with 

infrared transmitters and receivers which they use to 

relay messages between themselves to perform a task 

collectively. In this way the robots manage to stay 

together at a certain distance from each other and can 

also exhibit behaviours like hiding behind a wall and 

guiding other robots to do the same.  

 In [6] robots make use of colour sensors to 

determine the next action based on colour information of 

the pattern projected on the floor. The authors also 

reason that at this stage, most researchers do not use 

chemical pheromones because of 2 main reasons. Firstly 

it is difficult to manufacture chemical sensors that 

perform the task according to the requirements and 

secondly it is difficult to observe how the invisible gases 

or chemicals spread and affect the robots behaviour.  

 Moorebots equipped with single odour sensor is 

used in [7] to sense water vapour. The odour sensor 

detects the presence of an airborne substance through a 

change in the electrical resistance of a chemically 

sensitive carbon-doped polymer resistor. A water plume 

is generated using a pan of hot water and an array of 

fans. The authors have described a distributed algorithm 

by which a group of agents can solve the full odour 

localisation task more efficiently than a single agent.  

 [8] combines ubiquitous computing methods with 

pheromone techniques for a practical application to track 

everyday objects that may be misplaced. The virtual 

pheromone used here is in the form of postage-stamp 

sized radio RFID transceivers that can be attached to 

objects. Each tag is marked with a unique identifier 

which can be accessed by multiple RFID readers. The 

pheromones are created by means of data-structures 

stored in the RFID tags. This data-structure contains a 

hop count which is analogous to diffusion and a counter 

which is analogous to evaporation in real pheromones.  

 [9] takes a simulation approach presenting an 

application of genetic programming to search for 

foraging behaviours. Their work demonstrates that it is 

possible to have the entire foraging behaviour 

discovered by the learning system. In an accompanying 

paper [10] the same authors have presented a hard-coded 

ant foraging algorithm for more complex environments 

that contain obstacles.  Our present work follows this 

algorithm very closely. 

3   Methodology 
 

In this paper one ant makes use of the A* algorithm to 

find an optimal path from the nest to the food source. 

The path planning ant traverses to and fro between the 

food source and the nest location depositing pheromones 

along the optimal path that has been found. Since the 

task of path planning is computationally intensive only 

one ant is entrusted with this task. Adding more path 

planning ants was found not to improve the efficiency 

since only one set of nest and food source was used in 

all the simulations. In future work we will consider a 

scenario where ants can forage food from multiple food 

sources. Here we would need to assign at least one or 

more path planning ant to each food source.  

 The other ants are entrusted with exploring the 

region for food. They do not drop any pheromones until 

they have found the food source, or have stumbled upon 

the nest, or have sensed a food or nest pheromone. 

When they have sensed a food or nest pheromone they 

add to the pheromone concentration according to the 

procedures outlined in [10]. Since the pheromone 

adding mechanism has been proved to be better than one 

that simply deposits fixed pheromones, we have used the 

pheromone adding mechanism in all our simulations. In 

real life, ants decrease or increase the amount of 

pheromones they lay depending on the availability of 

food at the food source. Other wise they would just drop 

a fixed amount of pheromones. 

 The only function of the path planning ant is to 

find the optimal path and drop the respective 

pheromones. They do not transport food. An ant which 

comes across a pheromone when it is carrying food or is 

located in the food source follows the nest pheromone 

trail to reach the nest location. An ant which comes 

across a pheromone when it is not carrying a food 

source or is located in the nest location follows the food 

pheromone trail to reach the food source.       

4 The Algorithm 
 

 All ants except the path finding ant execute the 

Ant-Forage procedure and the path planning ant 

executes the Find-Path-Lay-Pheromones procedure at 

each time step. The path planning ant is initially located 

at the nest and waits there until it computes the optimal 

path to the food source. This is given as follows: 

 
Ant-Forage-With-Path-Planning 

Ants [Ant-Forage] 
 

Path-Planning-Ant [ Find-Path-Lay-Pheromones] 

 

 The algorithm for ant foraging is similar to the one 

detailed in [10]. The only difference is that we have used 

a conformance factor rather than the stochastic method 

for the ant to explore for food. The lower the 

conformance value the more the probability that the ants 

will explore, and the higher the conformance value the 
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more the ants will conform to the general behaviour of 

moving to the location with maximum food pheromones. 

In general it was observed that a value of 0.9 or 0.95 for 

the conformance value produced an optimal behaviour 

for the ants. In our simulations the ants are initially 

located at random positions within the world.  

 

 Like the conformance factor, we have also used a 

max-time factor for ants to reach the nest after finding 

the food. The max-time factor encourages the ants which 

are carrying food to explore the region to find the nest. A 

counter is set when the ant reaches the food source. The 

counter keeps increasing as the ant goes back to the nest. 

Ants whose counter value exceeds the max-time exhibit 

a random movement once in every 5 timesteps. This 

encourages the ants to explore the region to find the nest.  

 

 The Find-Path-Lay-Pheromones procedure imple-

mented by the path planning ant is as follows: 

Find-Path-Lay-Phermones 

  If Path-Not-Found  
     Path-List = Find-Path 
  Else 
     If Located-At-Nest 
     Move-To-Food-Source 
     If Located-At-Food-Source 
  Move-To-Nest 

Move-to-food-source 

  If path planning ant is located at nest      
    Drop Max-Nest-Pheromones 
  While-not-reached-food 
    Go to next location in the path list (forward) 
    Drop Max-Nest-Pheromone - 1 
  End  

Move-To-Nest 

  If path planning ant is located at food source 
    Drop Max-Food-Pheromone 
  While-not-reached-nest  
    Go to next location in the path list (reverse) 
    Drop Max-Food-Pheromone - 1 
  End   

 

 The path planning ant is always initially placed in 

the nest, where it stays till a path is found. It uses the A* 

algorithm to find the path. The path found starts from the 

nest as the start point, and the food source as the end 

point. This explains why the ant moves forward in the 

Move-To-Food-Source procedure and backward in the 

Move-To-Nest procedure.  

 When the path planning ant finds that the food 

location has changed it goes back to the new nest 

location and recalculates the path to the new food 

source. The previous pheromone trail it had established 

evaporates with time. It finds the optimal path between 

the new food source and nest location and once again 

forms a double pheromone trail to guide the other ants. 

 The A* algorithm is a well-known best-search-first 

graph algorithm, commonly used to find the destination 

position in a map, given an initial position. We have 

previously implemented the A* algorithm in a single 

robot environment [11]. The algorithm used here is the 

same as in the previous work except that we use 

diagonal distances for heuristic calculations rather than 

Manhattan distances. The additional heuristic suggested 

in the previous work has not been used due to the 

complexity of the scenarios used in this work. In future 

work we will consider using better heuristics or use 

more efficient search algorithms like the D* algorithm. 

5 Implementation 

 The Netlogo simulation tool has been used to 

perform the experiments. The parameters used in the 

simulations are detailed in table 1.  

 

Parameters Values 

Number of ants  10 or 20 or 30 

Number of path planning ants 1 

Maximum Ants per location 10 

Minimum amount of 

Pheromone 

0.0 

Maximum amount of 

Pheromone 

1000 

Environment 20x20,non-toroidal 

Evaporation ratio 99% 

Diffusion ratio  1% 

Duration of Simulation 5000 time steps 

Rate of change of food and nest 400 time steps 

Table 1 shows the values of the parameters used in the 

simulations.  

 

 Three different types of obstacles populate the 

world in our simulations. Figure 1 shows an environment 

with blob like obstacles. 

 

 
Figure 1. Ants using path planning to forage in an 

environment filled with blob like obstacles. 

 In our simulation the ants originally appear red. 

They turn brown after finding the food. They turn pink 
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after dropping the food in the nest. The Welch two 

sample test was used to compare the performance of ant 

foraging with path planning and without path planning 

taking 50 independent samples each for different 

scenarios and number of ants.  

Ant Number Mean Standard Deviation 

 10 

 20 

 30 

   33.34 

   91.96 

   151.96 

   12.4566 

   17.8176 

   26.5221 

Table 2. Mean and Standard Deviation of the amount of 

food collected over 50 independent runs without the 

invocationof path planning in the scenario with blob 

obstacles. 

 

Ant Number Mean Standard Deviation 

 10 

 20 

 30 

   123.88 

   249.1 

   367.1 

   12.1649 

   27.7446 

   42.5207 

Table 3. Mean and Standard Deviation of the amount of 

food collected over 50 independent runs with path 

planning invoked in the scenario with blob obstacles. 

 

 Table 2 shows the performance of the ants in the 

blob scenario without path planning. Table 3 shows the 

performance of the ants in the same scenario with path 

planning invoked. The performance of foraging shows a 

vast improvement with path planning invoked especially 

when very few ants are available for foraging. 

 We then carried out the same comparison with a 

random scattering of obstacles as shown in figure 2 

Figure 2. Ant foraging in an environment where 

obstacles are scattered at random. 

 

This scenario provided a more complex area for foraging 

and the effect of path planning has been more prominent 

here than in the previous scenario. Table 4 shows the 

performance of the ants in the randomly scattered 

obstacle scenario without path planning invoked. Table 5 

shows the performance of the ants in the same scenario 

with path planning invoked. The efficiency when using 

path planning is 3 times more than when path planning is 

not used.  

Ant Number Mean Standard Deviation 

 10 

 20 

 30 

 27.4 

 70.22 

 131.14 

 11.7403 

 22.8243 

 28.4088 

Table 4. Mean and Standard Deviation of food collected 

without path planning in the random obstacle scenario. 

 

Ant Number Mean Standard Deviation 

 10 

 20 

 30 

 126.06 

 251.38 

 375.08 

 5.3276 

 12.2888 

 14.3382 

Table 5. Mean and Standard Deviation of food collected 

over 50 independent runs with path planning in the 

random obstacle scenario. 

 The third scenario shown in figure 3 consists of bar 

like obstacles.  

Figure 3. Ant foraging in an environment consisting of 

bar like obstacles. 

Ant Number Mean Standard Deviation 

 10 

 20 

 30 

 20.5 

 56.26 

 111.46 

 5.7008 

 14.2468 

 29.0089 

Table 6 Mean and Standard Deviation of food collected 

over 50 independent runs without the invocation of path 

planning in the bar like obstacle scenario. 

 

  Table 6 shows the performance of the ants in the bar 

like obstacles scenario without the invocation of path 

planning. Table 7 shows the performance of the ants in 

the bar like obstacle scenario with path planning. The 

increase in efficiency has doubled with the introduction 

of path planning. In this scenario the time taken to find 
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the path was higher and as a result the invocation of path 

planning doubles the performance unlike the previous 

scenario where the efficiency tripled.  

 

Ant Number Mean Standard Deviation 

 10 

 20 

 30 

 69.74 

 143.96 

 218.76 

 4.3415 

 5.9520 

 9.9150 

Table 7. Mean and Standard Deviation of food collected  

over 50 independent runs with path planning invoked in 

the bar like obstacle scenario. 

 

  The various timesteps involved in a single example 

simulation are shown in a step by step manner with 

diagrams below. Figure 5 shows ant foraging without 

path planning and the figure 6 shows the same steps with 

path planning. 

 

     
 (a) 500 timesteps     (b) 800 timesteps 

 

     
   (c) 1100 timesteps    (d) 1500 timesteps 

      

Figure 5. Foraging process without the invocation of 

path planning, at various when the food source and nest 

changes locations at 1000 timesteps.  

 

  The food source is initially located at the top right 

hand corner. The food source has been intentionally 

placed at a position that is rather difficult to reach as it is 

surrounded in all directions by obstacles, with only one 

free patch space to access it.  The nest is located at the 

bottom left hand corner. Figure 5(a) shows a snapshot of 

the simulation at 500 timesteps. All ants are red which 

means that the food source has not yet been detected by 

the exploring ants. Figure 5(b) shows the ants 

converging to an optimum path at 800 timesteps after a 

random ant chanced upon the food source. The position 

of the nest and food source change at 1000 timestep. The 

nest is now located at the bottom right hand corner and 

the food source is in the top left hand corner. Figure 5(c) 

shows a snapshot of the simulation at 1100 timesteps. 

The movement of the ants is now indeterminate as they 

go about searching for the new food source and nest. 

The targets are now more easily accessible and the ants 

have converged to an optimal path in 500 timesteps as 

shown in figure 5(d) 

 

 Figure 6 shows snapshots taken at various 

timesteps to show the same procedure with path planning 

introduced. The same scenario is considered and the ants 

and obstacles are placed in the same locations as before. 

The food source and nest locations change at 400 

timesteps in this case because the rate of convergence to 

the optimal path is much faster with path planning 

invoked.  

 

       
 (a) 45 timesteps      (b) 150 timesteps 

 

    
    (c) 450 timesteps      (d) 550 timesteps 

 

Figure 6 shows the foraging process with path planning 

invoked, at different timesteps with the food source and 

nest change locations at 400 timesteps 

   

  Figure 6(a) shows the ants exploring for food after 

45 time steps. The path planning ant has found the food 

source yet. In figure 6(b) the path planning ant has found 

the optimal path and all ants converge to the same 

optimal path in just 150 timesteps as compared to the 

800 timesteps without path planning. A snapshot taken 

just after the target changes and before the path planning 

ant recalculates the new path is shown in figure 6(c). The 

ants then converge to the optimal path as shown in figure 

6(d) taking just 150 timesteps compared to 500 

timesteps without path planning. 

 

Figure 7 shows a graph of food collected versus time for 

ant foraging with and without path planning. Nine sets of 

random ant and obstacle positions have been chosen 

with the same random seed for both methods. Although 

the increase in performance with path planning invoked 

is different for different conditions, from the graphs, 

there is a marked increase in performance in all the nine 

conditions. 
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Figure 7. Graph of food item collected versus time for 

ant foraging with and without the invocation of path 

planning.  

 

6 Conclusion and future work 

 In this paper we have shown that the performance 

of the ant foraging problem can be improved 

dramatically by the introduction of path planning. Three 

different scenarios were considered and the efficiency of 

foraging with and without path planning was compared. 

All three scenarios demonstrate an improvement in 

performance. All the simulations in this work were 

carried out with extreme parameter values, at a very low 

rate of diffusion and a very high rate of evaporation. The 

path planning ant acts as a good balancing factor which 

helps the other ants to work very efficiently even at these 

extreme conditions. This hybridisation of swarm 

intelligence with the A* path planning algorithm may 

provide a very important framework for designing robots 

which have to work under similar situations in a real 

world scenario.  

 The ant foraging process can be made more 

efficient by encouraging the ants to explore more 

effectively than the random exploration techniques used 

in this work. More efficient search algorithms can be 

used to make the search process faster. In is intended 

that the same experiment be implemented in a 3-D 

world. One interesting future work would be to have a 

swarm of map building robots communicating with a 

swarm of path planning robots continuously in order to 

find safe paths dynamically. A swarm of worker robots 

could then communicate with the path planning robots 

and take people to safety in sites of natural or man made 

disasters.  
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