
Template Reduction of Feature

Point Models for Rigid Objects

and Application to Tracking in

Microscope Images

Manuel Boissenin

A thesis submitted in partial fulfilment of the requirements of

Sheffield Hallam University

for the degree of Doctor of Philosophy

February 2009

Sheffield Hallam University

Microsystems and Machine Vision Laboratory

The undersigned hereby certify that they have read and

recommend to the Faculty of Arts, Computing, Engineering and

Sciences for acceptance a thesis entitled “Template Reduction of

Feature Point Models for Rigid Objects and Application to

Tracking in Microscope Images” by Manuel Boissenin in partial

fulfillment of the requirements for the degree of Doctor of Philosophy.

Dated: February 2009

Research Supervisor:
Dr Balasundram Amavasai

Examining Committee:
Professor Huosheng Hu

Professor Melvyn Smith

Professor Christopher Care

ii

Sheffield Hallam University

Date: February 2009

Author: Manuel Boissenin

Title: Template Reduction of Feature Point Models for Rigid

Objects and Application to Tracking in Microscope Images

Department: Microsystems and Machine Vision Laboratory

Degree: Ph.D. Convocation: February Year: 2008

Permission is herewith granted to Sheffield Hallam University to circulate

and to have copied for non-commercial purposes, at its discretion, the above

title upon the request of individuals or institutions.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED
FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS
THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER
ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND THAT ALL SUCH
USE IS CLEARLY ACKNOWLEDGED.

Signature of Author

Copyright of the thesis remains with the author. All other intellectual rights
embodied in the submission pieces are owned by Sheffield Hallam University. The
physical copies of the thesis submitted become the property of Sheffield Hallam
University, whilst other artefacts remain the personal property of the author.

iii

A mes parents,

à mes grands-parents.

Contents

List of Figures x

List of publications xx

Abstract xxii

1 Introduction 2

1.1 Rationale and motivation . 2

1.1.1 The MINIMAN project . 3

1.1.2 The MiCRoN project . 3

1.2 Research aims and objectives . 4

1.2.1 Choices and discussion . 5

1.3 Research methodologies . 10

1.4 Contributions . 10

1.5 Organisation of the thesis . 11

2 Literature review 13

2.1 Introduction . 13

2.2 Connected techniques to visual tracking 15

2.2.1 Detection and initialisation 15

2.2.2 Background subtraction and movement detection 16

2.2.3 Mathematical Morphology . 16

2.2.4 Techniques to match point sets 17

2.2.5 Image distortion . 21

2.3 Visual tracking . 23

2.3.1 Kalman filter based visual tracking 25

2.3.2 Particle filter based visual tracking 27

v

2.3.3 Other visual tracking algorithms 29

2.4 The Hough transform . 32

2.4.1 Introduction . 32

2.4.2 Hough transform and tracking 33

2.4.3 The randomised Hough transform 34

2.5 Summary . 37

3 Particle filters 38

3.1 Introduction . 38

3.2 A real world example . 39

3.3 Typical encountered issues . 40

3.4 Preliminary approaches to solve these issues 41

3.4.1 Dynamic template updating 43

3.4.2 Taking measures . 44

3.4.3 Improving the matching paradigm 46

3.4.4 Geometric Branch-and-Bound Matching 48

3.5 Clustering particles . 50

3.5.1 Locating the statistical modes 50

3.5.2 Method formalisation . 51

3.5.3 An O(n) algorithm to cluster particles 51

3.5.4 Location of the micro-pipette using further measurements of

the image . 54

3.6 Further improvements . 56

3.6.1 Overcoming the effect of clutter 56

3.6.2 Integrating the kinematics of the object 56

3.6.3 Partial re-initialisation . 57

3.6.4 Modes filtering . 58

3.7 A generic particle filter architecture 59

3.7.1 Description of the architecture 59

3.7.2 Issues related to the initialisation of the class 59

3.7.3 Conception . 60

3.7.4 Extensions . 62

3.8 Summary . 63

3.8.1 Possible improvements . 64

vi

4 Shape information and template reduction 65

4.1 Introduction . 65

4.1.1 Square example . 65

4.1.2 Circle example . 69

4.1.3 Locating a shape on an image 71

4.2 Self similar set of points . 75

4.3 Robustness to noise . 78

4.4 Template reduction, a simple example 79

4.5 Evaluation of the characterising value of a set of points 79

4.6 A generic algorithm for the pose estimation of rigid objects 82

4.7 Summary . 84

4.7.1 Future research . 85

5 The stencil estimator 86

5.1 Introduction . 86

5.2 The stencil estimator . 86

5.3 Robustness . 91

5.4 Implementation of the tracking algorithm 92

5.5 Stencil reduction . 96

5.6 Summary . 98

6 Experiments 100

6.1 Tracking of Microscopic Objects . 100

6.1.1 Context and experimental setting 100

6.1.2 Algorithm . 103

6.1.3 Complexity analysis . 105

6.1.4 Parallelisation . 110

6.1.5 Summary . 111

6.2 Testing of the stencilled Hough transform using synthetic data 112

6.2.1 Experiments and results . 112

6.2.2 Comparison with different similarity methods using an ex-

haustive search . 132

6.2.3 Summary . 142

6.3 Testing the particle filter on the micro-pipette tracking sequence . . . 143

6.4 Testing the stencil Hough transform on the pipette video sequence . . 151

vii

6.4.1 Experiments and results . 151

6.4.2 The motion model . 153

6.4.3 Summary . 156

7 Conclusion 159

7.1 Contributions . 159

7.2 Future research . 160

A Fitting a square to a set of points 162

A.1 3 points case . 162

A.2 4 points case . 163

A.3 5 points . 167

A.4 Perspective transformation . 169

B Dense disparity map using epipolar geometry 171

B.1 Depth maps of 3-D scenes . 171

B.1.1 Stereo vision . 171

B.1.2 Camera calibration . 172

B.1.3 Stereo calibration . 175

B.1.4 Correspondence problem . 175

B.1.5 Discussion . 177

B.1.6 Summary . 178

B.2 Model building alternatives . 179

B.3 Implementation . 180

B.4 Triangulation . 181

B.5 Summary . 183

C Further testing of the particle filter 184

C.1 Table tennis sequence . 184

C.2 Rubik’s cube sequence . 184

D Machine vision and computer vision 191

E Tracking source code 193

F Extended abstract 200

viii

References 203

ix

List of Figures

1.1 An artist impression of the MiCRoN project made for the project pro-

posal: mini robots, 1 cm across, working cooperatively in an assembly

task . 4

1.2 Overview of the MiCRoN set up during the integration stage. The

camera is mounted on a Miniman robot. In the front, an infrared

communication device is mounted on a USB port. 4

1.3 A tethered MiCRoN robot with its gripper under the microscope cam-

era. 5

1.4 The set up at Sheffield Hallam university, the camera support is

mounted on a piezo-electric three degree of freedom translation stage.

Green LEDs are used to illuminate the scene. Green has been cho-

sen to avoid interferences with the infrared communication of the

MiCRoN robots. 1 pixel in the obtained image corresponds to 1 mi-

crometre (µm). 6

1.5 The graphical user interface of the recognition and tracking soft-

ware. The x-y axis frame indicates the position of the recognised

and tracked syringe chip. The image has been taken with a optical

microscope and its quality is better than the images obtained with

the MiCRoN camera. 7

1.6 The MiCRoN robot. 7

2.1 By obtaining the intrinsic parameter it is possible to determine where

each point expressed in the camera frame will be projected onto the

image. 22

2.2 A red parallelepiped and a white line projected on the image using

the image formation model . 24

x

2.3 The right image is the rectified left image. Notice that the power

supply edge highlighted in previous figure appears straight. 24

2.4 The Kalman filter can be divided into 2 stages 25

2.5 Diagram to explain the Hough transform, see text for explanation. . . 33

3.1 Particle filtering stages. 39

3.2 The original pen tip tracking algorithm using particle filters [1]. . . . 40

3.3 The tracking of the pipette tip has failed. The white square is the

tracked location (at the top centre position of the image). Top left

hand corner is the template image. 41

3.4 Problematic frames from the micro-pipette sequence. 42

3.5 Tracking with the template updating mechanism running 43

3.6 Image showing the value of the correlation measure within a region

of interest. The positions with high correlation values are coloured

following the colour code described in page 44. 45

3.7 Frames showing the tracking results using edge template matching.

The top left corner of images shows the edge template of the micro-

pipette tip. 47

3.8 The same image filtered with the Susan and the Canny edge detector. 48

3.9 Frames showing the results of edge correlation with only part of the

scene image processed in order to filter edges. Frame B illustrates

one of the frames where edge correlation fails. 49

3.10 In frame A points represents particles. Frame B shows the thresholded

particles. In frame C, the boundaries show how these particles are

grouped and can be seen as the set bounds . Frame D shows how

the other particles are collated into the corresponding sets. Frame E

shows the resulting peak points, compared with frame B the modes

are shifted from the thresholded particles and the 2 closed thresholded

particles have been integrated in the same mode. 52

3.11 Tracking of the micro-pipette tip. Modes give an indication of the

location of the peaks of the pdf sampled by the particles. 55

3.12 Tracking stages. 58

3.13 UML diagram of the first design of the particle filter 61

3.14 UML diagram of the final implementation of the particle filter 62

xi

4.1 Squares sharing a common point. 66

4.2 The three squares, modulo rotations, having these two points as corners. 67

4.3 Two possible configurations of 3 points and example of squares that

matches these configurations. On the left, 2 points are closer whereas

on the right, points are equidistant. 67

4.4 The points a,b,c and d uniquely define a square. 68

4.5 An impossible configuration and 2 possible configurations of 4 points

that fit more than one square. 69

4.6 A configuration of 5 points that can be fitted by only one square. . . 70

4.7 A template (S), its associated state space (T) and the corresponding

look-up table (L). Colours are used to represent the states referenced

by the look-up table. 80

4.8 Figures A-D show non ambiguous reduced templates. Figures E,F

show ambiguous reduced templates 80

5.1 The stencils of the “star” shape corresponding to the coloured area of

the transformation space have been drawn in the image space. The

coloured regions are the set of points overlapped by the shape when

it is moved according to the transformations of the subset having the

same colour in the transformation space. 87

5.2 Pre-processing stage . 93

5.3 Tracking stage . 95

6.1 Images from the gripper tracking sequence. The grippers in the left

and right images are at different depths. 101

6.2 Diagram of the set-up used for the experiments. A photo of the set-up

can be found figure 1.4, page 6. 101

6.3 A subset of the stack of images that serves as the gripper model . . . 102

6.4 A sample of some of the stencils produced 105

6.5 Key for figure 6.6 . 107

6.6 Tracking using 4 sets of parameters, see figure 6.5 for keys and figure

6.1.3 for the corresponding tracking behaviour 108

6.7 Speed comparison of the tracking of the gripper using different pa-

rameters . 108

6.8 Visual comparison of the asymptotic tracking behaviour 109

xii

6.9 Number of stencil increment versus number of image feature 109

6.10 Comparison of Qt threads and boost threads, both implementation

uses Qt mutexes . 110

6.11 Comparison of the parallelisation on 2 processors using different im-

plementations . 111

6.12 Speed comparison, one thread versus two threads 112

6.13 Templates of the tracked shapes. 114

6.14 Appearance of the first image of the hand shape tracking sequence

for different noise levels. In percentage of image noise: 0, 4, 10, 16,

22, 28, 34, 40, 46 and 50% respectively 115

6.15 Appearance of the first image of the watch tracking sequence for dif-

ferent noise levels. In percentage of image noise: 0, 4, 10, 14, 20, 26,

30, 34, 38, 42, 46 and 50% respectively 116

6.16 The z-axis corresponds to the number of images where the tracking

result differs from the ground truth. The ratio of kept elements of

the stencil is actually the ratio of the number of references listed in

the 2-D array corresponding to the stencil elements kept. The colour

lines outline error levels. This graph corresponds to the hand shape

image sequences. 117

6.17 The same graph as in figure 6.16 viewed from the top and with just

the error line levels. The levels are the number of images out of the

500 images of the hand shape sequences where the tracking fails . . . 118

6.18 The z-axis corresponds to the number of images where the tracking

result differs from the ground truth. The ratio of kept elements of

the stencil is actually the ratio of the number of references listed in

the 2-D array corresponding to the stencil elements kept. The colour

lines outline error levels. This graph corresponds to the watch shape

sequences . 119

6.19 The same graph as in figure 6.18 viewed from the top and with just

the error line levels. The levels are the number of images out of the

800 images of the watch shape sequences where the tracking fails . . . 120

xiii

6.20 Histograms characterising the 2-D array containing stencils generated

off-line for the hand shape. Each row corresponds to a different tuning

of the area size of the stencils. These are 100 %, 56 %, 32 % and 18%

of the references respectively . 123

6.21 Histograms characterising the 2-D array containing stencils generated

off-line for the hand shape. Each row corresponds to a different tuning

of the area size of the stencils. 11 %, 6 %, 3% and 1% of the references

respectively . 124

6.22 Stencils for the hand shape. The z-axis represents the number of over-

lapping stencils. Each row represents a different stencil decimation

level corresponding to those of figure 6.20: 100%, 56%, 32%, 18% . . 125

6.23 Stencils for the hand shape. The z-axis represents the number of

overlapping stencils. Each row represents a different stencil decima-

tion level corresponding to those of figure 6.21 (11%, 6%, 3%, 1%)

and each column a different stencil 126

6.24 Number of votes for each stencil. Each row represents a different

stencil decimation level corresponding to those of figure 6.20. Each

column represents a different image from the hand image sequence . . 127

6.25 Number of votes for each stencil. Each row represents a different

stencil decimation level corresponding to figure 6.21. Each column

represents a different image from the hand image sequence 128

6.26 What has been termed average robustness is, in fact, the average

difference of, the number of elements of a stencil, and, the number of

overlapping elements of its most overlapping stencil 129

6.27 By total robustness we refer to the minimum, for all stencils, of the

robustness such it is explained in figure 6.26 129

6.28 Time taken to track a shape versus the level of noise and the decima-

tion ratio of the stencils for the hand image sequences 130

6.29 The graph of figure 6.28 from a different viewpoint. This shows how

the level of noise affects the tracking time 130

6.30 The graph of figure 6.28 from a different viewpoint. This shows how

the stencil decimation ratio affects the speed performance of the tracking131

xiv

6.31 Histograms characterising the 2-D array containing stencils generated

off-line for the watch shape. Each row corresponds to a different

tuning of the area size of the stencils. These are 100 %, 80 %, 60 %

and 30% of the references respectively 133

6.32 Histograms characterising the 2-D array containing stencils generated

off-line for the watch shape. Each row corresponds to a different

tuning of the area size of the stencils. These are 10 %, 5%, 3% and

1% of the references respectively . 134

6.33 Stencils for the watch shape. The z-axis represents the number of

overlapping stencils. Each row represents a different stencil decima-

tion level corresponding to figure 6.31 135

6.34 Stencils for the watch shape. The z-axis represents the number of

overlapping stencils. Each row represents a different stencil decima-

tion level corresponding to figure 6.32 136

6.35 Number of votes for each stencil. Each row represents a different

stencil decimation level corresponding to figure 6.31 . Each column

represents a different image from the watch image sequence 137

6.36 Number of votes for each stencil. Each row represents a different

stencil decimation level corresponding to figure 6.32 . Each column

represents a different image from the watch image sequence 138

6.37 What has been termed average robustness is, in fact, the average of

the difference of, the number of elements of a stencil, and, the number

of overlapping elements of its most overlapping stencil 139

6.38 By total robustness we refer to the minimum, for all stencils, of the

robustness such it is explained in figure 6.37 139

6.39 Time taken to track a shape versus the level of noise and the decima-

tion ratio of the stencils for the watch image sequences 140

6.40 The same graph as in figure 6.39 but with a different viewpoint. This

shows how the level of noise affects the tracking time 140

6.41 The same graph as in figure 6.39 but with a different viewpoint. This

shows how the stencil decimation ratio affects the speed performance

of the tracking . 141

6.42 The template is shown on the top left corner. The small black dots

are the particles. The centre of the square is the tracked location. . . 145

xv

6.43 The weight measures for this graph and the subsequent graphs rep-

resents edge correlation measure. This is an ideal case where the

measure gives a unimodal pdf. x and y axis are the pixel coordinates

of the image point measured. It can be observed that correlation mea-

sure is well localised which is a disadvantage for particle filters that

are likely to sample the tracked object only on the neighbourhood of

the object. 145

6.44 In spite of the blurred features of the pipette, its location is found.

Big black square dots are the peak points. 146

6.45 The heavy background clutter is illustrated by the existence of mul-

tiple peaks in the graph. In spite of the heavy clutter the pipette tip

is well localised through further evaluation of the peak points. 146

6.46 A rare case where the tracking has failed. The centre of the square is

the tracked location. 147

6.47 The graph illustrates that most of the peak point obtained, though

the correlation of the edge template, are located around the pipette

tip. But subsequent multivariate feature measure picked up the wrong

peak point as the probable location. 147

6.48 Another cluttered image, this one is due to the change of the back-

ground of the pipette and illumination of the scene. The small black

square points are the peak points. Centre of the square is the tracked

location. 148

6.49 The graph illustrates the background clutter which gives rise to mul-

tiple peak points. 148

6.50 Last image of the tracking sequence. Magenta points are previous

tracked locations. 149

6.51 Actual location of pipette (line) and tracked location (crosses). 149

6.52 Number of tracked frames versus distance of actual location and

tracked location. 150

6.53 Actual location of pipette (line) and tracked location (crosses). Only

tracked location of points with high probability is displayed 150

6.54 Two images from the pipette tip sequence. It is the same sequence

that was used to discuss the particle filter algorithm. 151

xvi

6.55 Comparison of the tracked positions and the manually determined

positions of the pipette tip when using our custom edge detector. . . 152

6.56 Comparison of the tracked positions and the manually determined

positions of the pipette tip using the Canny edge detector with the

first set of parameters. 152

6.57 Comparison of the tracked positions and the manually determined

positions of the pipette tip when using using the Canny edge detector

with the second set of parameters. 153

6.58 Comparison of the tracked positions and the manually determined

positions of the pipette tip when using using the Canny edge detector

with the first setting and the motion filter. 154

6.59 Comparison of the tracked positions and the manually determined

positions of the pipette tip when using using the Canny edge detector

with the second setting and the motion filter. 155

6.60 Tracking accuracy . 155

6.61 Tests carried out on an Intel Celeron Northwood 2.7 GHz CPU . . . 155

A.1 An infinite number of squares can fit 3 points. 162

A.2 abcd and abce are 2 four point convex configurations. 164

A.3 For this configuration of four points we consider the 2 points furthest

apart. 164

A.4 The green shaded square was constructed by assuming that the 2

points furthest apart belong to opposite edges and the 2 remaining

points to one of the edge. 165

A.5 It is not always possible to fit a square that intersects the 4 points

using the assumption that the 2 points furthest apart belong to op-

posite edges and the 2 remaining points to one of the edge as shown

with this configuration of four points. 165

A.6 If the longest distance is an edge of the convex quadrilateral and we

assume that the two remaining points belong to different edge of the

square there exists at most two squares that fit the four points. . . . 166

A.7 An example when the four points are fitted by a square assuming that

the two points furthest apart are on opposite edges of the square and

the remaining points belong to different edges. 167

xvii

A.8 By considering the direction of intersection, represented by arrows, of

the plain black lines the four points can be separated into 3 groups:

the point circled in green, the other point on the dashed green line

and the two remaining points. 168

A.9 2 Points are taken randomly, by assuming that they belong to op-

posite edges, for instance, a system of equations can be written and

solved to check if it is possible to construct squares that are intersect-

ing this four points. Curved arrows represent the possible rotations

of the parallel lines. 168

A.10 8 points, any 3 of them not aligned, in a convex configuration can be

fitted by 2 quadrilaterals. 170

B.1 The images seen by each eye are slightly different. Image from the

Optometrists Network website. 173

B.2 By obtaining the intrinsic parameter it is possible to determine where

each point expressed in the camera frame will be projected onto the

image. 173

B.3 A red parallelepiped and a white line projected on the image using

the image formation model . 174

B.4 The right image is the rectified left image. Notice that the power

supply edge highlighted in previous figure appears straight. 175

B.5 Top: pair of images taken by our stereo rig. Bottom: the same pair

after standardisation. Black lines have been drawn to exhibit the

alignment of the corresponding image elements. 176

B.6 Pair of standardised image and their disparity map. Red points are

displayed when uncertainty is too high. 177

B.7 Result of our implementation on a well known pair of standardised

images from the Tsubaka university repository. 181

B.8 Different disparity maps using our calibrated images. 182

B.9 Triangulation of a point. 182

C.1 Tracking of a ping-pong ball. Top left corner, the ball template image.

The large white dots represent the previous tracked positions of the

ball. The large black dot, the current position of the ball and the

small white dots, the particles’ positions. 185

xviii

C.2 The large black square is the probable actual position of the ping-

pong ball. The small white dots indicate the particles’ positions and

the larger white squares represent the earlier tracked positions. 185

C.3 After a few frame the tracking fails completely. 186

C.4 Different stage of the image filtering process 187

C.5 The filtered image with false colours. 187

C.6 Tracking a Rubik’s cube, transparent white doted lines indicates the

hypothesis location. 189

xix

List of publications

1. M. Boissenin, J. Wedekind, A.N. Selvan, B.P. Amavasai, F. Caparrelli and

J.R. Travis. Computer vision methods for optical microscopes. Image and Vision

Computing, vol. 25, no. 7, p. 1107-1116, Elsevier Science Journal, 2007.

2. M. Boissenin, J. Wedekind, B.P. Amavasai, F. Caparrelli and J. Travis. Fast

pose estimation for microscope images using stencils. IEEE Systems, Man and

Cybernetics Society 5th Conference on Advances in Cybernetic Systems, p.

49-54, Septembre 7-8, 2006

3. K. C. Lim, M. Boissenin, B.P. Amavasai and R. Saatchi Development of a

desktop freehand 3-D surface reconstruction system, IEEE SMC UK&RI 6th

Conference on Cybernetic Systems 2008, London, UK.

4. J.Wedekind, B.P. Amavasai, K. Dutton, M. Boissenin A machine vision exten-

sion for the Ruby programming language, proceedings 2008 IEEE, International

Conference on Information and Automation, 2008, Zhangjiajie, China.

5. J. Wedekind, M. Boissenin, B.P. Amavasai, F. Caparrelli and J. Travis. Object

recognition and real-time tracking in microscope images. IMVIP, 2006.

6. B.P. Amavasai, F. Caparrelli, A. Selvan, M. Boissenin, J.R. Travis and S.

Meikle. Machine vision methods for autonomous micro-robotic systems. In Ky-

bernetes Journal, vol. 34 no. 9/10 2005, ISSN 0368-492X.

7. M. Boissenin, B.P. Amavasai, J. Wedekind and R. Saatchi. Shape information:

using state space to select discriminative configuration of points. BMVA sympo-

sium, Shape Representation, Analysis and Perception, November 5, 2007.

8. A. Eisinberg, K. Houston, F. Caparrelli, B.P. Amavasai, M. Boissenin and

xx

P. Dario. Marking techniques for vision recognition of microgrippers for micro-

manipulation. IEEE International Conference on Robotics and Automation

(ICRA2006). Orlando, Florida, May 15-19, 2006.

9. A.N. Selvan, M Boissenin, B.P. Amavasai, F Caparrelli and J.R. Travis. Track-

ing translucent objects in cluttered scenes. IEEE SMC Chapter Conference on

Cybernetics Intelligence–Challenges and Advances, 110-8, 2003.

10. R. Estana, J. Seyfried, M. Thiel, S. Johansson, N. Snis, J.M. Breguet, W.

Driesen, T. Velten, J. Gao, P. Vartholomeos, S.G. Loizou, K.J. Kyriakopou-

los, M. Boissenin, F. Caparrelli, J. Wedekind, A. Eisenberg, K. Houston, J.

Samitier, M. Puig-Vidal, P. Miribel, A. Diéguez and H. Woern. The MiCRoN

Project, IST-2001-33567, March 2002 - February 2005.

xxi

Abstract

This thesis addresses the problem of tracking rigid objects in video sequences.

A novel approach to reducing the template size of shapes is presented. The

reduced shape template can be used to enhance the performance of tracking, de-

tection and recognition algorithms. The main idea consists of pre-calculating all

possible positions and orientations that a shape can undergo for a given state space.

From these states, it is possible to extract a set of points that uniquely and robustly

characterises the shape for the considered state space. An algorithm, based on the

Hough transform, has been developed to achieve this for discrete shapes, i.e. sets

of points, projected in an image when the state space is bounded.

An extended discussion on particle filters, that serves as an introduction to the

topic, is presented, as well as some generic improvements. The introduction of

these improvements allow the data to be better sampled by incorporating additional

measurements and knowledge about the velocity of the tracked object. A partial

re-initialisation scheme is also presented that enables faster recovery of the system

when the object is temporarily occluded.

A stencil estimator is introduced to identify the position of an object in an image.

Some of its properties are discussed and demonstrated. The estimator can be effi-

ciently evaluated using the bounded Hough transform algorithm. The performance

of the stencilled Hough transform can be further enhanced with a methodology that

decimates the stencils while maintaining the robustness of the tracker. Performance

evaluations have demonstrated the relevance of the approach. Although the meth-

ods presented in this thesis could be adapted to full 3-D object motion, motions

that maintain the same view of the object in front of a camera are more specifically

studied.

The work presented in this thesis was funded by the European Union 5th Frame-

work Programme, project No: IST-2001-33567, through the MiCRoN project.

xxii

Acknowledgements

I wish to express my sincere gratitude to all the people that have contributed in

some way or another to this thesis. I would like to first thank Dr Jon R. Travis for

giving me the opportunity and all the facilities to carry out this thesis to a successful

completion.

I greatly appreciated the excellent supervision of Dr Bala Amavasai, his constant

encouragements, his most valuable support and his much appreciated leadership by

example. They have been constant sources of inspiration throughout my project.

It has been a pleasure to work with Mr Arul Nirai Selvan; his commitment to

supporting me and his ongoing advice were of a great help.

I am deeply indebted to Jan Wedekind for his support and for sharing with me

his software expertise. I have learnt a lot from him and the numerous discussions

we had helped to shape the development of this thesis.

I would also like to express my gratitude to Dr Reza Saatchi for his kind support

and his many helpful corrections and suggestions.

Many thanks to the examining committee: professor Huosheng Hu, professor

Melvyn Smith and professor Christopher Care for reviewing my work and pro-

viding me extremely valuable feedback.

Thanks to Amir, Kim, Stephen and all the ERASMUS students that stayed in

the lab as well as all the people I have met in Sheffield who made life taste so much

better and with whom I have spent good and great moments.

Finally, thanks to Susan who made me the marvellous present of touching my heart.

1

Chapter 1

Introduction

1.1 Rationale and motivation

“There is plenty of room at the bottom” Richard P. Feynman (1959)

The field of micro-manipulation and micro-robotics is in its very early stage of

development and there only exist a handful of useful industrial applications within

this area so far. It is predicted that in the near future a wider variety of application

fields, from high-precision and fast assembly of mechanical micro-components in

industry to the handling of cells in medical or biological applications will require ef-

ficient systems for micro-manipulation. Micro-manipulation systems promises many

benefits for society as well as very high returns to the players that will create the

technology. To operate such systems require generic feedback. Currently, there

are six main technologies [2] than can estimate the pose of an object and track its

motion:

• mechanical sensing, generally using electro mechanical transducers.

• inertial sensing usually through MEMS (micro-electronic mechanical systems).

• acoustic sensing with ultrasonic waves.

• magnetic sensing using captors that measures the local magnetic field that can

be altered by using local sources.

• radio and microwave sensing on the time of flight principle.

• optical sensing using charge-coupled devices (CCDs).

2

CHAPTER 1. INTRODUCTION 3

Considering the size of the objects and their environment visual feedback will be a

key component in the realisation of micro-manipulation systems. These are amongst

the major motivations for the work presented in this thesis.

The origin of the work that is presented here is intimately related to and emerges

from the development of two European union funded projects.

1.1.1 The MINIMAN project The main objective of the MINIMAN project

[3] was the development of a smart micro-robot with 5 degrees of freedom and a

size of a few cubic cm, capable of moving around by the use of tube-shaped multi-

layered piezo-actuators. Controlled by visual and force/tactile sensor information,

the micro-robot is able to perform manipulations with a motion resolution down to

a few nano-metres (nm) in either a tele-manipulated or semi-automated mode. The

intention was to free humans from the tedious task of having to handle minuscule ob-

jects directly. Equipped with micro-machined grippers, the robot is able to perform

high-precision grasping, transportation, manipulation and positioning of mechani-

cal or biological micro-objects, under an optical microscope or within the vacuum

chamber of a scanning electron microscope. A powerful computer system using in-

expensive PC-compatible hardware components ensured the robot operation was

carried out in real-time. The key to closed loop control was vision-based feedback.

The vision system was used to locate objects and tools within the workspace. This

project was successfully completed and was then followed by the MiCRoN project.

1.1.2 The MiCRoN project The MiCRoN project [4] was a continuation of

the MINIMAN project. The MiCRoN project involved eight European partners and

its aim was to utilise a co-operative set of micro-robots that could form the basis

of a micro or nanofactory (figure 1.1). The work-packages that the Microsystems

& Machine Vision Laboratory (MMVL) at Sheffield Hallam University (SHU), UK,

was involved in, comprised the design and implementation of the vision control

system, position sensors and support in path planning. Figure 1.2 shows the actual

set up during the integration phase. In figure 1.3 a close up of the work area is

shown. The methods presented in this thesis was used for providing visual feedback

using a camera with a magnifying lens and were developed using the set-up shown

in figure 1.4. The graphical interface is presented in figure 1.5. Some of the robots,

built by the consortium members, are shown in figure 1.6. Powering, actuation and

CHAPTER 1. INTRODUCTION 4

Figure 1.1: An artist impression of the MiCRoN project made for the project pro-
posal: mini robots, 1 cm across, working cooperatively in an assembly task

Figure 1.2: Overview of the MiCRoN set up during the integration stage. The
camera is mounted on a Miniman robot. In the front, an infrared communication
device is mounted on a USB port.

locomotion modules were integrated into a single miniature package.

1.2 Research aims and objectives

One of the main issue of the project was the development and implementation of

a vision system to give 3-D visual feedback for the manipulation tasks carried out

by the micro robots. Since the manipulation task was not pre-determined, the

CHAPTER 1. INTRODUCTION 5

Figure 1.3: A tethered MiCRoN robot with its gripper under the microscope camera.

robot tools needed to be developed and the manipulated objects selected during

the course of the project, the delivered vision system had to be generic enough to

be adapted to the final objects that were used for the demonstration tasks of the

project. Additionally, the pose estimation had to be done in real-time so that it did

not become a bottleneck in the overall system. Moreover, since the system that took

images was constrained in size, the image quality was impaired and the developed

methodology had to be robust to these induced disturbances.

In order to address the real-time issue the focus was first put on tracking. To

address the issue of adaptability the model of the object was built using an image of

the object, the 3-D pose estimation was done with 4 degrees of freedom –2 sideways

translations, orientation and depth of the object– and the robustness issue was dealt

with by using a robust similarity measure.

1.2.1 Choices and discussion One of the main topic of this thesis is tracking,

an important problem, since it has a wide range of applications (e.g. visual feedback,

data compression in videos, scene interpretation, etc), that has been extensively

researched by the computer vision community.

In this thesis, tracking refers to a technique that significantly reduces the search

space on where to look for an object using information that can help predict its

CHAPTER 1. INTRODUCTION 6

Figure 1.4: The set up at Sheffield Hallam university, the camera support is mounted
on a piezo-electric three degree of freedom translation stage. Green LEDs are used to
illuminate the scene. Green has been chosen to avoid interferences with the infrared
communication of the MiCRoN robots. 1 pixel in the obtained image corresponds
to 1 micrometre (µm).

position such as its previous estimated position and speed or the dynamics of the

system. Some researchers advocate the terminology time coherence. Taking these

considerations into account, object tracking is a process that consists in identifying

sets of pixels in an image sequence that correspond to the same object. In contrast,

detection achieves the same feat but without any prior assumption on the location

CHAPTER 1. INTRODUCTION 7

Figure 1.5: The graphical user interface of the recognition and tracking software.
The x-y axis frame indicates the position of the recognised and tracked syringe chip.
The image has been taken with a optical microscope and its quality is better than
the images obtained with the MiCRoN camera.

Figure 1.6: The MiCRoN robot.

of the object. Recent improvements on the characterisation of features have made

detection a viable alternative for locating objects in real-time. This should not

be confused with recognition that intends to assign labels to image regions. These

labels are generally drawn from a large number of labels representing different object

CHAPTER 1. INTRODUCTION 8

classes.

To estimate the position of an object some knowledge about the object and a

way to use this knowledge with the image sequence is required. This leads to two

interlinked issues: how to represent the object and how to match this representation

in the image. As explained above, it was chosen to model this knowledge by using a

sample image of the object, often called a template image, taken in the first frame

of the sequence. One way to locate the object in the scene image is to compare all

parts of the image with the model i.e. to measure the similarity between parts of

the image and the template image. At this stage the following issues need to be

addressed:

• Clutter: due to the limitation of the chosen measurement method, parts of the

image can match well the object model even when the object is not present.

• Occlusion: the tracked object might be partly occluded, extend beyond the

image, or, move beyond the image for a few frames. When it becomes visible

again the algorithm should be able to locate it again.

• Noise: given a scene that does not change, the image acquisition system pro-

duces images that are slightly different. This is often due to limitations in

the sensors or electronics. Comparison algorithms should be able to cope with

these small variations that can often be modelled by Gaussian noise.

• 2-D images of the 3-D world: the image acquisition process is not a bijective

mapping; information about the scene is lost in the process, however supple-

mental information can be used to compensate for this loss.

• The slow evolution of the appearance of the tracked object due to changes in

illumination, orientation and shape for deformable object.

• The search space, often due to its high number of dimensions, can be very

large making the real-time objective challenging.

One way to cope with the problems of partial-occlusion, noisy scene images and

changes of the properties of the object is to define and use a probabilistic framework.

For instance, a probability value for the location of the object can be estimated using

a distance measure between the scene image and the template image. Note that the

CHAPTER 1. INTRODUCTION 9

choice of this distance measure is crucial for reliable, robust and efficient tracking.

If the measure is applied at any point of the image, a probabilistic density functions

for the object location is obtained.

The observation that, in most applications, object motion is tightly bounded, i.e.

the object’s positions do not differ much between following frames, can be used to

achieve the real-time requirement. Moreover knowing the speed of an object or the

characteristics of its movement can help to better predict the future object location.

The usage of statistical methods, namely Monte-Carlo methods, to estimate the

location of an object has proved useful to reduce the search area. Note that since

the matching has to be done in multiple locations, according to the algorithm used,

parallelisation is likely to scale up well the speed of the tracking process.

In a class of algorithm the tracking process can essentially be divided into two

sub-processes:

• A process to decide where to look. This restricts the search area and thus

addresses the real-time objectives

• A process to decide how to look. This measure the probability of presence of

an object.

One such technique that makes this distinction, and that we explore in more

detail in this thesis, is the particle filter. Chapter 3 provides a detailed discussion

based on the implementation of particle filters to track a translucent micro-pipette

tip.

While particle filters are efficient the measurement method that were used were

both inefficient and inaccurate. To remediate to this issue alternative techniques

were explored. One such comparison technique that was considered is very much

related with the Hough transform. It roughly consists of counting the number of

features that match a model at a given position. Not only is the technique robust

and suitable for microscope images that can be noisy, but it can also be implemented

in such an efficient way that an exhaustive search of a bounded region of interest can

be carried out in real-time. This is because for microscope manipulation the motion

of object can generally be constrained to have 4 degrees of freedom: 3 translations

and one rotation around an axis perpendicular to the field of view, resulting in a

state space small enough to be explored in real-time with the presented technique.

CHAPTER 1. INTRODUCTION 10

This led to the main contribution of this thesis: template reduction of point

feature models. A novel framework has been introduced in order to reduce the

number of points a point feature model requires to robustly and efficiently identify a

shape in an image. Since fewer points are required the matching can be done more

efficiently. Recognition, identification and tracking algorithm efficiency can benefit

from this improvement.

In order to perform this template reduction the state space of the object is

considered: sets of points that characterise a unique state of the object across the

whole state space are reduced template candidates. Constraints of robustness to

missing feature points and additional feature points not corresponding to the object

are also examined. A practical algorithm based on a generalised version of the

Hough transform is presented to implement the template reduction.

1.3 Research methodologies

A major part of the work undertaken in this thesis has consisted of developing and

implementing algorithms. Implementations have been made publicly available on-

line as open source so that it may be publicly scrutinised. Much of it can be found

integrated into the Mimas [5] library.

Mimas is a C++ vision system toolkit built in-house, at Sheffield Hallam uni-

versity, with an emphasis on real-time applications. The library provides the in-

frastructure to load images from a wide range of formats due to the integration

with other open source libraries such as the ImageMagick library, video by using

the Xine library and cameras supporting Video for Linux and Firewire. Mimas also

provides a number of low level image processing algorithms, such as edge/corner

detection, disparity map, morphological operators or camera calibration. As well as

higher level algorithms for object recognition and tracking such as geometric hash-

ing and particle filters. Various optimisation schemes, such as POSIX threads, are

implemented in order to achieve the real-time objectives.

1.4 Contributions

The main contributions of this thesis, and its associated chapters are:

• The development of a novel framework to reduce templates that are made-up

CHAPTER 1. INTRODUCTION 11

of point features for rigid objects. The framework considers the state space of

an object in order to determine a subset of features of the original template

that characterises uniquely and robustly the state of the object across all the

state space. An algorithm based on the Hough transform is used to select these

features. An introduction to the problem and its formalisation is presented in

chapter 4. Material presented in chapter 5 is closely related with the issue.

• A new shape estimator:the stencil estimator. It is shown how the estimator can

be evaluated in an efficient manner using a variation of the Hough transform.

This is presented in chapter 5 and an evaluation of the method can be found

in section 6.2.

• Generic improvements to the particle filter algorithm in the imaging context.

An algorithm is introduced to cluster particles. Subsequent analyses follow-

ing the measurement process, that evaluate the posterior probability density

function of the state of the object, is discussed. These analyses can provide

feedback to the particle filter to partially reinitialise the sampling of the par-

ticles. This is found in sections 3.5 and 3.6.

• Application of the the stencil estimator in a microscope environment where

objects are subject to changes in appearance. Microscopes have a narrow

depth of field and the features of an object changes with its distance to the

microscope’s objective. This characteristic can be used to determine the dis-

tance of an object to the microscope’s objective by using a model of the object

that consists of a stack of images of the object taken at different depths. This

contribution is presented in section 6.1.

1.5 Organisation of the thesis

Chapter 2 of this thesis presents a literature review focused on computer vision

techniques related to the efficient identification and tracking of 2-D shapes in images.

The particle filtering algorithm is then presented on a concrete application, the

tracking of a translucent pipette tip, and a few generic improvements are proposed

in chapter 3.

In chapter 4 a novel approach to selecting sets of characterising points of a shape

is presented. When these sets of points are identified in an image, they allow the

CHAPTER 1. INTRODUCTION 12

state of a shape to be uniquely and robustly identified. The novelty consists of

using the state space to select these characterising sets of points. This technique

can be used during a pre-processing stage to obtain a more efficient representation

of tracked objects.

In chapter 5 we present the stencilled Hough transform. The technique is a

modification of the bounded Hough transform [6]. The introduction of the stencil

estimator combined with a methodology to reduce the area of the stencils improves

the speed and memory usage of the algorithm substantially, as shown by the test

results presented in section 2 of chapter 6.

In chapter 6, experimental results are presented where the tracking of micro-

objects under a microscope was performed with 4 degree of freedom using a vari-

ation of the bounded Hough transform. In other experiments the bounded Hough

transform and the the particle filter were compared on the tracking of a translucent

pipette tip. Advantages and limitations of both techniques are discussed.

Chapter 7 concludes this thesis, and future research directions are proposed.

Chapter 2

Literature review

2.1 Introduction

Identifying a shape in an image is one of the fundamental problems in computer and

machine vision. The Hough transform and the wide variety of techniques that are

derived from it are able to tackle this challenge to some extent. Other approaches

include active contours [7] such as snakes [8] or level sets [9], matching techniques

such as the inefficient cross-correlation coefficient [10] or boosted filters [11], and

neural networks [12]. Each of them can outperform the others in specific application

domains. While active contours can handle smooth deformable shapes that change,

neural networks have been used extensively for hand-written character recognition.

Boosted filters have been used for the recognition of object classes such as the human

face whereas Hough transform techniques are well suited for rigid objects. Hough

transform related techniques have been used, for many years now, to recognise 2-D

objects in real-time on standard desktops. Although the shape of an object needs

to be known, Hough transform related techniques do not need to be trained, are

resistant to noise and partial occlusions and can accurately determine a specific

object location.

Choosing the right technique for a given application, although essential, is not

straightforward given the wide choice of techniques currently available. One of the

major concerns, that has to be kept in mind and may help in this choice, is the

real-time constraint. Indeed, the machine vision system should not be a bottleneck

in the application that it is embedded into and, as a consequence, should be as fast

as possible. A general way to speed up object location algorithms is to constrain

13

CHAPTER 2. LITERATURE REVIEW 14

the search area. Computational costs tend to increase dramatically with the size of

the search area. To constrain the search area a number of techniques can be used.

Nevertheless, they share a common trait: to utilise the object’s previous location or,

more accurately, its estimated location and some knowledge of the object motion.

These techniques are commonly referred to as tracking techniques. From a util-

itarian point of view tracking has to deal with a number of issues that have been

presented in section 1.2.1, page 5, and will be further examined on a practical ap-

plication in section 3.3, page 40. A few different approaches to tracking will be

discussed in the visual tracking section of this chapter. One group of approaches

consists in distinguishing a component that selects the locations where to look for

the object from a component that identifies the object. When this distinction is

possible, tracking often refers to the first stage of these approaches.

Nevertheless to be able to track an object its initial position has to be determined,

the review is started by presenting the initialisation stage, this stage can make use of

an approach that is often overlooked: motion detection, and when the background

remains stable background subtraction.

In this thesis, we deal mostly with template matching as the identifying method,

i.e. the usage of an image of the object to identify its characteristics in another image

which is usually larger and that contains other elements. However other methods

exists, for instance, the usage of parameter or generative models [13] could be used.

Moreover, the focus has been put on matching techniques that are feature based.

The underlying assumption being that by reducing the data from colour images to

a set of features, the data may be more efficiently utilised. This is arguable and

discussed in Zitová and Flusser [14], who provide a survey on image registration

techniques. The efficiency of determining the characteristics of an object in an

image depends on:

• how discriminative the features are i.e. how many of them are needed to

determine the characteristics of an object.

• the cost of evaluation of these features.

• how features are compared and used to determine the object characteristics.

Since the solutions to each of these issues are interdependent and also depend on a

variety of parameters on the problem under consideration it is an open and complex

CHAPTER 2. LITERATURE REVIEW 15

topic of research. Some elements that have to be considered will be discussed in

this thesis. More specifically, the issue of reducing an object representation that

consists of feature points while keeping a discriminative object representation will

be tackled.

Another approach that has been the focus of research for the matching of tem-

plates is the hit-or-miss method which emerged from the field of mathematical mor-

phology. A review of this approach is provided in this chapter.

There are many other alternatives to characterise, represent and analyse shapes,

Loncaric [15], in a not so recent survey, presented a number of these techniques.

This survey can serve as an introduction to shape analysis. Walker, Cootes and

Taylor [16] proposed another interesting alternative for 2-D object representation:

the use of salient features to track an object in a video sequence and automatically

build its appearance model [17][18]. As previously mentioned our focus is on feature

points representation, techniques to match point sets are reviewed in the section

justly named: techniques to match point sets.

Distortions can be quite common when working with custom cameras and mi-

croscopes. A few issues related to image distortions as well as how to handle them

are presented.

The main results of this thesis are related to the Hough transform, hence after

an introduction presenting a generalised Hough transform the link with tracking

is established and more advanced topics, which are related to the work, are then

discussed in the last section. They deal with improvements to the original Hough

transform algorithm.

2.2 Connected techniques to visual tracking

2.2.1 Detection and initialisation Tracking essentially makes use of the pre-

vious position of the object to reduce the search space where the object is searched

for in the next frame. However, the object has to be located in the first frame.

Moreover, when the tracking fails, a recovery system needs to be used to locate the

object again. For these two reasons, it is practical to use a tracking algorithm in

combination with a detection algorithm.

As detection techniques become more efficient they supplant tracking methods

in some applications since it is possible to track object in an image without any

CHAPTER 2. LITERATURE REVIEW 16

assumption on its probable location. Detection algorithms may be simpler to imple-

ment, but they come with a cost penalty in terms of efficiency due to the fact that

important informations such as the previous location of the object are discarded.

As usual, the choice depends on the resources available (computational power, time,

etc.) and the application under consideration.

Nevertheless, when multiple instances of the same object are present, such as

cars on a motorway or people in underground transport, tracking cannot be replaced

entirely by detection when the object identity needs to be known.

2.2.2 Background subtraction and movement detection For the problem

of initialisation a very useful cue is the object’s motion. If the background is not

moving or if its appearance is stable (of uniform colour, for instance) then object

features can be selected by subtracting features in the background. A review of

background subtraction techniques is provided by Piccardi [19].

Sugrue and Davies [20] developed an original approach which consists of applying

a 3-D spatio-temporal filter on a stack of sequential images to detect motion. Its

advantages over background modelling techniques are that no information from the

background is needed, which makes it faster. The technique is also inherently robust

to noise.

2.2.3 Mathematical Morphology Ronse, Naegel and Passat [21][22][23] pre-

sented a very impressive and elegant theoretical framework by combining multiple

research strands on template matching using the tools of mathematical morphology

and their generalisation for grey-level images. The algebraic approach has its lim-

itations though, it focuses more on the exactitude of the methodology rather than

performance evaluation and implementation issues.

A characteristic of morphological operators is that they are not forgiving; when a

shape of a binary image differs by a single point from the structuring elements then

the whole “shape” is discarded. Although the hit-or-miss transform for grey level

images provides some tolerance to additive Gaussian noise, it is not very robust

to perturbations. To cope with this issue, rank order filters have been designed

[24]. Also the notion of fuzzy sets has been used to further improve robustness as

discussed by Gasteratos and Andreadis [25]. This idea of a more tolerant framework

using fuzzy morphology is also discussed in [26].

CHAPTER 2. LITERATURE REVIEW 17

The literature is very scarce in algorithm implementation and performance com-

parisons. Using the openCV library a few tests were run. For a colour image of

512 × 512 (∼ 250000) pixels on an Intel Core 2 Duo (T5450) 1.66 GHz (∼ 3300

bogomips) the approximated processing times are given in the following array:

Diameter of the 3 5

structuring element

Opening or closing 180 ms 230ms

operator

Erode or dilate 95 ms 140 ms

operator

It can be seen that morphological operators can be time consuming. To cir-

cumvent this issue different approaches have been taken: using field-programmable

gate arrays (FPGA), using optical processors, but the most promising approach

might be, because of its future availability and sheer processing power, to make use

of GPGPU s (General-Purpose computation on Graphical Processor Unit) such as

CUDA (Compute Unified Device Architecture) enabled GPU s.

One of the main advantage of expressing template matching in terms of morpho-

logical operators is that they can be implemented on hardware like FPGA. Baumann

and Tinembart [27] provide an overview of the tools and insights in the methodology

that could be used to implement morphological operators on a FPGA. A hardware

implementation is also discussed in [25].

The literature also contains references to an optical implementation [28], i.e. by

using an optical processor however this is beyond the scope of this review.

A notable issue with morphological operators is that they are translation in-

variant operators relative to a structuring elements. In [23], which presents an

application for the segmentation of blood vessels from 3-D angiographic1 data, this

issue is circumvented by rotating the structuring elements.

2.2.4 Techniques to match point sets The selection of a measure to identify

an object depends on its properties and its motion. Different techniques may be

more or less suitable and efficient when an object is deformable and moving in a 3-D

1The examination of the blood vessels using X-rays following the injection of a radio-opaque
substance.

CHAPTER 2. LITERATURE REVIEW 18

space, or rigid and undergoing 2-D translations. If practical results are expected,

identifying these characteristics is critical for the selection of an efficient technique.

When distortions, due to an imperfect lens can be neglected, the transforma-

tions that a 2-D plane undergoes can be modelled by projective transformations.

Moreover, when the object is small compared with its distance to the camera and if

it moves by a small distance according to the same criteria, perspective effects can

be neglected and the object features can be put into correspondence using affine

transformations. An affine transformation of the plane consists of a linear transfor-

mation followed by a translation. An affine transformation can be considered as a

composition of a dilation, a rotation, a shear and a translation. Note that lengths

and angles do not remain the same under affine transformations. The affine trans-

formation subset that have these properties is called the similarity group; it consists

of the Euclidean transformations and the mirror transformation.

Gope and Kehtarnavaz [29] provided a review of affine invariant comparison

techniques of point sets. They also described a technique where an image point

set and a template point set are compared relatively to an affine transformation.

In order to do that the parameters of the affine transformation are evaluated by

determining affine invariant points for both sets of points and comparing them. Then

the match is validated using an enhanced Hausdorff distance method. Finally, the

technique is compared, using a dataset, to three popular affine invariant techniques.

The outcome is favourable for the presented technique and dataset in terms of

efficiency, noise and occlusion resistance. The Hausdorff distance between two sets

of points U and V is defined as:

H(U, V) = max(h(U, V), h(V, U)) (2.1)

where

h(U, V) = max
u∈U

min
v∈V

‖u, v‖ (2.2)

In order to cope with occlusions and outliers different schemes have been used in-

stead. For instance instead of using the maximum, the kth ranked distance can be

used. The paper proposes an interesting variation of the Hausdorff distance. For

more details on the Hausdorff distance and its implementation the reader may also

refer to [30].

The techniques above assume that individual features are not distinguishable.

CHAPTER 2. LITERATURE REVIEW 19

However the measure could be adapted by taking into account an additional criteria,

such as colour for instance, conditioning the evaluation of the distance of points

belonging to the two sets U and V . Combining global geometric characteristics

with local appearance characteristics of an object is an idea that can greatly improve

reliability and efficiency of many measures. Many interesting studies examining the

synergy of these two fundamental aspects of object identification could be done.

A useful mathematical structure to represent and manipulate transformations of

the general affine group, GA(2), or the projective transformations in R
2, where P(2),

is the Lie algebra [31][32][33]. It allows the separation of different components of a

transformation in terms of, for instance, translation along the x and y axes, rotation,

dilation, shear and shear at 45 degrees. This is valuable when these information are

needed by a system like a robotic arm [33].

Another useful technique to compute corresponding sets of points is the Chamfer

distance. It consists in evaluating the distance of a pixel to its closest feature

points. Such a distance map can be evaluated efficiently [34]. It allows the usage of

optimisation algorithms using gradient techniques such as Levenberg-Marquardt to

minimise an energy function that characterises the matching of two sets of points.

In Robust Registration of 2-D and 3-D Point Sets [32] Fitzgibbon has compared

the iterative closest point (ICP) algorithm and a Levenberg-Marquardt based al-

gorithm. These techniques require a previous approximation of the location of the

object and are therefore well suited for tracking when the object position does not

change significantly from one frame to another.

Breuel [35][36] presented a technique to match geometric primitives, such as

points, given a transformation space. The techniques based on branch-and-bound

methods finds a global optimal solution to the matching problem. It works by

recursively subdividing the transformation space and computing the upper bound

of the number of points that can be potentially mapped by a transformation of a sub-

transformation space. This is referred to as the matching quality of the sub-region

and denoted by Q(T). The computation of the bound of Q(T) for a transformation

space T is easy, that is why the technique works well, for more details on this point

refer to the paper. The technique is exhaustive and guarantees a globally optimal

solution to the geometric matching problems.

The algorithm works as follows:

CHAPTER 2. LITERATURE REVIEW 20

1. The algorithm maintains a priority queue of search states. When two search

states have the same priority, the state with the higher depth in the search

tree is preferred. The queue is initialised with a state representing all possible

solutions.

2. Each search state Tk is associated with a sub-region of the transformation

space Tk ⊆ Tall. It is further associated with an upper bound such that

∀T ∈ Tk : Q̂k = Q̂(Tk) ≥ Q(T); the upper bound serves as the priority of the

state. For termination and correctness, the upper bound needs to satisfy that

the sub-region is small enough and that its quality still remains above a given

pre-determined threshold.

3. The algorithm removes the state with the highest upper bound from the pri-

ority queue. In case of ties, states with higher depth in the search tree are

preferred. Breuel showed that depth first search is almost as fast as breadth

first and uses only a tiny fraction of memory.

4. The transformation T ∈ Tk; if Q(T) = Q̂(Tk), terminates the search and

returns T as a solution.

5. Otherwise, the region Tk is split into two disjoint sub-regions T2k and T2k+1

such that Tk = T2k ∪ T2k+1 along its largest dimension. Q(T2k) and Q(T2k+1)

are evaluated and these sub-regions are inserted back into the priority queue.

Geometric hashing is another technique to estimate an object position using

feature points. It consists of selecting group points from the template image that

would characterise the location of the object if they could be matched in the image.

For instance, if translation and rotation on the plane of an object are considered,

the correspondence of any group of 2 points between the template and the image

features is sufficient to determine the object position. Each of this group of points

can be characterised by the geometric distribution of the remaining feature points.

For instance, expanding on our example, a group of two points determines an axis

that can be used to position a grid on the template image. By using the number of

features belonging to the respective elements of the grid the group of two points can

be characterised by a signature. In the image, a group of potentially characterising

points is randomly selected, its signature is evaluated and compared with the signa-

ture of the template group of points. When a match is found the potential position

CHAPTER 2. LITERATURE REVIEW 21

of the object is evaluated. The operation is iterated until the time allocated has

expired or enough evidence has been accumulated to estimate the object position

beyond reasonable doubt. Our experiments have shown that, for the example we

mentioned, the first match is sufficient. Details of our implementation is available

in Wedekind et al. [37]. The method has been extended to recognise objects using

focus stacks, allowing the distance of the object from the lens of a microscope to be

estimated.

As mentioned in the introduction there are other alternatives for identifying a

shape. One of these alternatives is the use of moments. Moments [38] can be ef-

ficiently evaluated [39] and can provide a compact representation of a shape by

characterising its global features. For instance, using the moments up to the sec-

ond degree a shape can be approximated by an ellipse. Many applications in image

analysis have been found for them: object classification, pose estimation, pattern

recognition and compression. However, the global characterisation of a shape is not

robust to occlusion which reduces its application domain to specific but neverthe-

less useful environments, for visual servoing for instance. Even though moments can

not be used to characterise the global shape of an object in case of occlusion, by

characterising local patches, for instance by using the orthogonal and rotation in-

variant Zernike moments [40], the global pose of an object can still be efficiently and

robustly determined. Thus moments can be used to characterise features. Having

distinguishable features redefines the problem of matching sets of feature points and

reduces drastically its complexity [41]. In appendix B.2 other feature characterising

methods are mentioned.

2.2.5 Image distortion It is not uncommon that the lens system of microscope

produces image distortions. To correct them, so that the shape of an object remains

the same independently of its position within an image, the image acquisition system

has to be modelled. In most cases, distortions exhibit a central symmetry on the

principal point of the image that can be corrected by an adequate mapping of the

image.

The mapping of the world - the geometry of which can be modelled with a

3-D vector space - to a 2-D discrete space, the image, has already been modelled

successfully through various methods [42]. According to the chosen model, a slightly

different set of parameters have to be found. These parameters depends on the

CHAPTER 2. LITERATURE REVIEW 22

characteristics of each camera. The process of determining these parameters is

known as camera calibration.

Camera calibration is still an active field of research, although the technology is

mature enough so that different implementations are freely available. Such imple-

mentations can be found for instance in the Mimas, OpenCV and Gandalf libraries.

Thus, the camera calibration problem boils down to identifying a suitable model for

our requirements and an implementation to obtain the model’s parameters.

Camera parameters are generally classified into two classes: the intrinsic and

the extrinsic parameters of the camera. The intrinsic parameters are the focal

length, the coordinates of the principal point and a few parameters to model the

geometric distortions characteristic of the lens system. The extrinsic parameters are

the position of the camera, i.e. location and orientation compared to an arbitrary

external frame.

Image frame

Camera frame M

M’

Figure 2.1: By obtaining the intrinsic parameter it is possible to determine where
each point expressed in the camera frame will be projected onto the image.

The process of calibration needs to be performed only once and thus can be

conducted off-line. The calibration process involves taking images of a scene where

3-D points of the scene are known. By finding the correspondence points in the

resulting images, the parameters are found by solving a system of equations. Once

the camera is calibrated it is possible to associate a 3-D ray to each pixel of the

image as illustrated in figure 2.1 or to predict the 2-D location in an image of a 3-D

point of the scene.

We have tested a method that uses a calibration object [42]. This object is a grid

similar to a checker board with known measures. The calibration grid is shown in

figure B.5 on page 176, in the appendix. Once the intrinsic parameters of the camera

CHAPTER 2. LITERATURE REVIEW 23

are known it is possible to project a model of an object in the image as illustrated in

Figure 2.2. Using the intrinsic parameters of the camera we have mapped a cuboid

having the dimensions of the chess board with the chess board in the image. The

mapping was performed manually by trials to estimate the location and rotation of

the chess board.

This process can be automated if there exists a way to estimate the pose of the

object. This is actually the basis of model-based 3-D pose estimation which was one

track that was considered to pose estimate microscope objects. In appendix B.1,

stereo-vision is discussed in more depth, however for microscope manipulation the

physical space available to position the image acquisition system is limited making

it complex to have multiple image acquisition systems. Different systems of mirrors

were also considered but were judged too complex to be implemented. The results

of some experiments made with a Rubik’s cube are presented in section C.2 of this

thesis. For 3-D pose estimation of an object the conclusion that a 3-D representation

of an object is needed was reached, in appendix B.2 a few alternatives are considered

to this purpose.

In figure 2.2, the white line at the top of the image is curved due to lens defor-

mation. The line is mapped on the image to the approximated, manually estimated,

position of an edge of the power supply unit at the top left corner of the image. It

demonstrates that the deformations of the image by the lens system are taken into

account by the model when a model is re-projected onto the image.

Distortion parameters can also be used to rectify an image. A rectified image is

an image such that lines into the image are projections of lines from the real world.

This is illustrated by figure 2.3.

2.3 Visual tracking

Amongst the various visual tracking algorithms, one class of algorithms divides the

tracking problem into two sub-sections: where to look for the object and how to

look for it. Kalman filtering and particle filtering belongs to that class of algo-

rithms. They are first reviewed. Nevertheless, this division is not always possible.

For instance, energy minimising methods are designed to perform both operations

simultaneously. Some examples of this category of algorithms are subsequently re-

viewed.

CHAPTER 2. LITERATURE REVIEW 24

Figure 2.2: A red parallelepiped and a white line projected on the image using the
image formation model

Figure 2.3: The right image is the rectified left image. Notice that the power supply
edge highlighted in previous figure appears straight.

CHAPTER 2. LITERATURE REVIEW 25

Figure 2.4: The Kalman filter can be divided into 2 stages

2.3.1 Kalman filter based visual tracking In the Kalman filter the hypoth-

esised state of the tracked object is described by a random vector assumed to follow

a Gaussian distribution characterised by its most probable state and its covariance

matrix. Additionally, the evolution of the system is assumed to be modelled by

a system of linear difference equations. Kalman filtering integrates the informa-

tion from the previous estimated states of the tracked object, through the motion

model of the system, and the new information provided by the image. The previous

estimated states of the object determines the search area in the image where addi-

tional information is collected to more accurately evaluate the pose of the object.

According to the reliability of the measurements, characterised by its covariance

matrix, the confidence on the new data and the previous collected data is weighted

to obtain a new estimate of the state of the object. The numerical determination

of these weights minimises the expectancy of the error covariance, which could be

interpreted as the uncertainty of the state of the object. Welch and Bishop [43]

provide an introduction with the mathematical derivation of the technique and a

simple example on which the Kalman filter is applied. Figure 2.4 illustrates this pro-

cess on a simple example where the x-y position of a black sphere is being tracked.

The dotted ellipses correspond to the one-σ distance from the expected value of the

variables indicated by the captions.

At implementation time one usual issue is to evaluate the uncertainty of mea-

sures, however different case studies, experiments and simulations have shown that

state estimation tend to remain robust even with an approximative evaluation of the

CHAPTER 2. LITERATURE REVIEW 26

uncertainty of the object state. This robustness leads to the successful estimation

of the state of an object in spite of the imperfect knowledge of the measurement

uncertainty that happens in practice.

The extended Kalman filter was designed in order to deal with systems which

behaviour cannot be modelled by a system of linear stochastic difference equation.

To solve the system of equations, the system is linearised using a Taylor expansion

about the two first moments of the random vector representing the state of the

system. However, when the motion model is not linear, for visual tracking, the

unscented Kalman filter [44] is almost always preferred.

In the unscented Kalman filter [44], by using the previous estimated state of the

object a number of states depending on the size of the random vector representing

the state of the tracked object are determined. This limited number of states,

called sigma points, and that are distributed around the mean of the Gaussian

distribution are used with the motion model to determine the locations where the

measurements are taken in the subsequent image. Compared with the extended

Kalman filter the implementation is facilitated as there is no need to evaluate any

Jacobian matrix; also the unscented Kalman filter deals better with highly non linear

functions since no linearisation is made and the search space is better determined

thus more efficiently capturing the probability distribution of the state of the object.

They are similitudes with particle filtering however there exists two main differences:

the distribution is assumed to be Gaussian and its sampling is structured as opposed

to random.

Many references – news items, papers, source code and applications – about the

Kalman fitler can be found on the webpage [45] maintained by Greg Welch and Gary

Bishop.

Two examples of application are now provided. Stenger et al. [46] performs

hand tracking using quadrics to model a hand and the unscented Kalman filter,

notice that although the hand model has 27 degrees of freedom the tracking is only

demonstrated for 3-D rigid movements of the hand. Youngrock Yoon in his thesis [47]

uses the extended Kalman filter to track in real-time with their 6 degrees of freedom

rigid objects. The object model used corresponds to the edges of the object, the

process to obtain these model from range images is thoroughly described. This work

is quite characteristic of the hidden complexity of practical details: extracting edges

from the image, discretisation issues with lines, self-occlusion of some edges by the

CHAPTER 2. LITERATURE REVIEW 27

object, only partial extraction of all edges which are usually truncated and the list

goes on. Developing schemes to work around these issues is complex, not merely

the case of applying a well described algorithm such as the Kalman filter or its

extensions. This shows an interesting contrast with the neat and clear description

provided in the previously cited paper [46] which also masks completely all practical

issues.

2.3.2 Particle filter based visual tracking Particle filtering is a robust, ver-

satile, real-time2 component of a system for the visual tracking of objects in video

sequences. Particle filters have been very popular in the last few years and a large

number of publications have reported adaptations of particle filters with various

image metrics [48][49].

A number of tutorials [50], reviews and historical accounts on particle filters

[51][52][53] are available. Only a brief summary of the most important points is

given in this thesis. Mathematical derivations [54] are not presented here, however,

some of the current notation and vocabulary associated with particle filters are

introduced. Particle filtering is a sequential Monte Carlo methodology that uses a

Bayesian framework to predict the future probable location of an object and sample

the state space accordingly. This method is sequential or iterative because the

information arrives in sequence, image after image. Monte Carlo methods are used

when the state space is too large to be explored exhaustively, typically due to a high

number of dimensions, the state space is sampled in order to extract meaningful

information and, in the case of tracking, to approximate the probability density

function of the object state. It uses a Bayesian framework because Bayes’ theorem

is used to infer the probability density function of the location of the tracked object

knowing the measures taken on the current image.

As mentioned in the previous section, Kalman filtering [43] as well as other ap-

proaches where probabilistic density functions are assumed to be unimodal Gaussian,

works relatively poorly in the presence of cluttered backgrounds. CONDENSATION

2Particle filters alone cannot track an object or a shape, they have to be associated with
a measure. Since the time consuming process is the measurement process, the realisation of a
real-time implementations depends largely on the choice of this process. The infrastructure to
implement particle filters does not require a huge amount of space or computation compared with
the capabilities of a standard computer and the requirement in number of particles of efficient
measurement methods.

CHAPTER 2. LITERATURE REVIEW 28

(CONDitional DENSity propagATION) [54], which is a particular instance of parti-

cle filtering, is an algorithm developed to solve the above problem. The condensation

algorithm is capable of supporting multi-modal distributions. It is based on sam-

pling the posterior distribution estimated in the previous frame and propagating

these samples or particles to form the prior distribution for the current frame. How-

ever, it requires a relatively large number of samples to ensure a fair maximum

likelihood estimate of the current state and can be computationally more expensive

than the unscented Kalman filter for instance.

The different properties (e.g. position, shape, size, configuration) of a tracked

object are described in the time-stamped state vector Xt while the vector Zt de-

notes all the observations, which are images, {z1 . . . zt} up to time t. Using the data

obtained by a sensor device, Xt can only be known to a certain degree that is why

probability density functions (pdf) are used to model the tracked object character-

istics. Compared with Kalman filters which assume Gaussianity and unimodality

of the pdf, particle filters do not make any functional assumption on the shape of

the pdf. This is a major advantage since in practice, due to the presence of clutter,

posterior density p(Xt|Zt) is often a multi-modal pdf. However, when the posterior

density is unimodal there is an unnecessary computational cost due to unnecessary

additional measurements.

The key idea of particle filtering is to approximate the probability distribution

of the current state by a weighted sample set: S = {(s(n), π(n))|n = 1 . . . N}. Each

sample consists of an element s which represents the hypothetical state of an object

and a corresponding discrete sampling probability π where
∑N

n=1 π(n) = 1. The

evolution of the sample set is described by propagating each sample according to a

motion model as follows: each element of the set is weighted by applying a measure

to the last captured image, π̂(n) = p(zt|Xt = s
(n)
t), and normalising the weights

π(n) = π̂(n)
P

i π̂(i) ; p(zt|Xt) is known as the observation or measurement density. The

prior for the next frame, also referred to as the prediction density, p(Xt+1|Zt) is

then evaluated by randomly drawing the samples {(s(i), π(i))}i, with replacement,

according to their weight and by applying to them the motion model p(Xt+1|Xt).

Moments, such as the mean of the samples, might then be evaluated to estimate the

state of the object:

E[S] =
N

∑

n=1

π(n)s(n) (2.3)

CHAPTER 2. LITERATURE REVIEW 29

Thus particle filters are able to consider multiple state hypotheses simultaneously.

Moreover, since less likely object states have a chance to temporarily remain in the

tracking process, particle filters can deal with short-lived occlusions.

Particle filtering can be used for tracking people, cars or faces in cluttered envi-

ronment where multiple instances of a class of objects can be present. In Nummiaro

et al. [48] particle filters are combined with colour histograms. The Battacharyya

distance measure, which is described in the section below, was used to evaluate the

validity of the hypothesised locations. A methodology to adapt the object represen-

tation, i.e. the colour histogram of the template, to cope with the slow variation

of the appearance of the object has also been proposed by the authors: a mixture

of the previous model and the current model is used as an updated template when

the probability of tracking the correct model is high enough. This avoids updating

the model when the target is occluded or when the image is too noisy. Using the

previous notations, with an additional time index in superscript this process is given

by: p̂t
i = (1 − α)q̂t

i + αp̂t−1
i , α ∈ [0, 1] where q̂ represents the colour distribution of

the estimated object position and p̂ the colour distribution of the tracked model.

Moreover, the performance of the colour-based particle filter is compared with the

mean shift tracker [55] based on the Battacharyya coefficient and the mean shift

tracker associated with a Kalman filter that predicts the likely position of the ob-

ject in order to reduce the number of iterations needed by the mean shift algorithm

when motion is fast. Computational performances are comparable and suitable for

real-time tracking. Particle filtering is more consistent in the time needed to evalu-

ate the position of an object. This is because the number of operations depends on

the number of particles used to locate the object which remains constant whereas,

for the mean shift algorithm, the amount of operations to be carried out can vary

depending on how fast the algorithm converges. Particle and Kalman filtering have

the additional advantage of taking scale changes into account. Particle filtering is

more robust than the two other methods but locates the object less precisely. This

work could be extended by combining the tracking of different parts of an object. For

instance, a face tracker could be designed by combining the tracking of the mouth

and the eyes and checking the coherence of the results of the different trackers.

2.3.3 Other visual tracking algorithms Comaniciu et al. [56] presents a gra-

dient optimisation approach to track objects. The method uses a metric derived from

CHAPTER 2. LITERATURE REVIEW 30

the Bhattacharyya coefficient as the similarity measure which allows the tracking of

deformable objects; as a result it behaves well during perspective transformations.

For the given examples the method coped well with noise, partial occlusions and

clutter. The emphasis is put on the target representation. The distance between 2

discrete distributions is defined as:

d(p̂, q̂) =
√

1 − ρ(p̂, q̂) (2.4)

where

p̂ = {p̂i}m
i=0

m
∑

i=0

p̂i = 1

q̂ = {q̂i}m
i=0

m
∑

i=0

q̂i = 1 (2.5)

are the m-binned colour distributions of the model and the target. And

ρ(p̂, q̂) =
m

∑

i=0

√
piqi (2.6)

is the sample estimate of the Battacharyya coefficient. The usage of an isotropic

kernel on the spatial domain allows the distance measure to be differentiable in the

neighbourhood of the object position and gradient based optimisation to be used to

determine the best match instead of an expensive exhaustive search.

Collins [57] presented a technique using blobs and the mean shift algorithm [55]

to track a human body. A BLOB (Binary Large OBject) is an area of connected

pixels with the same logical state, for instance, a group of contiguous pixels having

a colour compatible with human skin and being large enough. Lindeberg’s theory

of feature scale selection [58][59] has been used to adapt the area size of the kernel

where a measure to evaluate the blob shift is taken into account. Changes of the

blob area size are thus taken into account. Collins also explains how to adapt the

mean shift algorithm to take into account negative weights which is useful when the

measure, which is used to determine whether a pixel belongs to the foreground (the

blob) or the background, can be negative. The mean shift algorithm evaluates the

position of an object by iteratively computing an offset ∆x from the current location

CHAPTER 2. LITERATURE REVIEW 31

to the next location using the following formula:

∆x =

∑

a K(a − x)w(a)(a − x)
∑

a |K(a − x)w(a)|

where x is the current location, K is a kernel function and w a function that evaluates

the likelihood of the pixel to belong to the object.

An overview of different techniques to track rigid objects using a single camera is

given in [60]. Amongst these techniques the Kanade-Lucas-Tomasi [61][62] tracker

is of special interest as it allows tracking to be performed in real-time. It also uses

a minimisation technique based on the Newton-Raphson optimisation algorithm

where the sum of squared intensity differences, also referred as SSD matching, over

a small window, typically 15 to 30 pixels, is used as the measurement method. The

selection of features is also discussed. In this case features are square patches of

images. The gradient over an image patch is evaluated and if its 2 eigenvalues are

large enough, the image patch is considered to be a good feature. This leads to a well

conditioned matrix for solving the feature tracking equations. Not only does it avoid

the aperture problem3 but it also makes the feature patch robust to noise. While

tracking the features for an extended period of time, their appearance changes due

to perspective deformation and non Lambertian surfaces of objects. Moreover some

“good” features may not correspond to any physical point on an object: the patch

may contain a foreground and a background object at the same time, and, occlusion

should be detected for the tracking to be meaningful. Shi and Tomasi [63] proposed

the use of an affine transformation model that allows these features to be detected

and marked as outliers. This could be beneficial for a subsequent processing stage,

e.g. shape from motion. Jin et al. [64] extended this work to be able to cope with

illumination changes. A fast (20 frames per second, 1000 features on 1024 × 768

video) GPU-based implementation was developed by Sinha et al. [65].

There exists a wide variety of tracking techniques adapted for specific environ-

ments, and due to their inherent differences no comparative study has been estab-

lished. Since there is no dominant technique, no steadfast rules exist to select an

adequate tracker. Nevertheless, a literature review presenting the best trackers with

their specificity would be useful as it would provide some guidance in selecting a

3The aperture problem occurs when the feature patch cannot be used to characterise completely
its movement. For instance, along an edge, when the feature patch is small enough, displacement
in the edge direction cannot be detected .

CHAPTER 2. LITERATURE REVIEW 32

tracker according to the requirement of an application.

Moreover tracking cannot be considered independently of a certain number of

connected problems: as we have seen, the choice of a tracking technique is tightly

related to the choice of representation of an object. Object matching, object recog-

nition and detection, object representation and pose estimation are other related

issues to tracking. Some aspects of these issues are discussed in the remainder of

this chapter.

2.4 The Hough transform

2.4.1 Introduction The Hough transform is a technique that has been used

extensively to detect and recognise geometric patterns in images. Its advantages

include robustness to noise and partial occlusion, the capacity to handle multiple

occurrences as well as the possibility to be parallelised. However the method suffers

from excessive storage requirement and computational complexity [66][67].

Many descriptions of the Hough transform in its basic form are available. It

has been extensively used for the detection of lines, for which it even has an FPGA

implementation [68].

Using figure 2.5 a generalised Hough transform is described. As will be appar-

ent in the next section, there are many variations of the Hough transform. This

version is said to be generalised because it works for any kind of shape and not

only parametrised shapes such as lines or circles. In figure 2.5 the location of the

“ bust” shape that can be translated in the image space is considered. Therefore

the parameter space consists of the x and y location of a preliminary chosen and

arbitrary point of the “bust” shape. To locate the shape a point on the image space

is selected and assumed to belong to the shape. Using this assumption the possible

positions of the shape are calculated and voted for. This is illustrated in the figure

by colours: the green point votes for the positions in the parameter space that are

in the same colour. The dashed light green arrow symbolises this process. After

repeating this process a certain number of times, the parameter that is most voted

for in the parameter space is considered to describe the object position. In figure 2.5

only 6 points voted and the parameter that has been most voted for at that stage,

circled in red, happens to represent the position of the shape. Note that another

parameter is voted for 3 times, at another intersection of the violet, yellow and black

CHAPTER 2. LITERATURE REVIEW 33

Figure 2.5: Diagram to explain the Hough transform, see text for explanation.

shapes, it would therefore be premature to conclude the position of the shape at

that stage. As can be seen all sorts of variations can and have been adopted to

make the Hough transform more robust, efficient and general; some of them will be

discussed in more detail in the next section.

2.4.2 Hough transform and tracking Most recognition and detection algo-

rithms can be adapted to become tracking algorithms by focusing on a region of

interest determined by the previous object locations. Within the context of this

approach, the implementation of the Hough transform can be reorganised to be yet

more efficient.

Except for the work by Greenspan et al. [6], we are unable to identify any other

work where the Hough transform has been used for tracking in a similar way to the

method presented in this thesis, possibly, because tracking involves a slight change

of perspective. When using the Hough transform, the algorithm is implicitly set

to be in a “writing” paradigm [69], i.e. for each image feature (say edge point)

the accumulators of a parameter space are increased according to a reference table

[70]. When performing recognition this factor is important because the parameter

space is generally too vast to be handled rapidly whereas it is possible to consider

relatively fewer image features. However, if the parameter space is kept small, which

is possible when performing tracking, the unknown parameters can be determined

in a different way: each possible transformation can be considered and the feature

locations according to the transformation can be pre-calculated. This is equivalent

CHAPTER 2. LITERATURE REVIEW 34

to a “reading” paradigm, which might not be a sensible approach for detection when

the parameter space is large.

These two paradigms are presented in [69] where it is shown how the Hough

transform is related to the Radon transform, a different formalisation that generalises

the Hough transform and allows it to be applied to a wider variety of mathematical

objects such as continuous functions. This dual aspect of the Hough transform has

been presented by many researchers [71][72] but did not seem to have been linked

with tracking.

The essence of the tracking technique introduced in chapter 5 resides in the fact

that the transformation space can be limited and that the feature positions can

be pre-calculated and stored for all transformations. The transformation space is

limited to the relative moves an object can make between two frames (say small

translations or rotations).

In this thesis the object is modelled by a set of feature points. This approach

is simpler than the more widespread Ballard’s general Hough transform approach

[70] since we do not take into account edge orientations. As such it relates more to

Merlin and Farber’s work [73]. We also think this is a more generic approach, since

by not taking into account the edge orientation, the technique can be used for 3-D

tracking. The algorithm can be extended to take into account different cues related

to the edge features, like edge orientation or colour [74], and even different types of

features simultaneously.

2.4.3 The randomised Hough transform Our review of the randomised Hough

transform is begun with a reference to Fung et al. [75] that clearly illustrates the

main ideas of the randomised Hough transform. The image is first filtered to obtain

edge features. The edge orientation is used like in the generalised Hough transform

presented by Ballard [70].

One of the major differences consists in using a many-to-one mapping: two points

are randomly selected and, using a reference table indexed on the direction of the

edge underlying the point, a previously selected anchor point of the object can be

determined. The operation is iterated until the level of confidence on the solution

is above a fixed threshold. Compared with the traditional Hough transform, that

votes for many transformations compatible with a point, this technique is much

faster since only one transformation is voted for in the transformation space. The

CHAPTER 2. LITERATURE REVIEW 35

transformation space is often referred to as the parameter space or, in relation with

its implementation, an accumulator space. Usually a multi-array is used to store the

votes that each transformation obtains which leads to a problem of storage when

the number of dimensions of the transformation space increases. But since fewer

transformations, or subsets of transformations to be precise, obtain votes when using

the randomised Hough transform, another type of data structure can be used. For

instance a hash-table can drastically improve storage requirements.

The transformation space that is being considered consists of translations com-

bined with scale on the x-axis and y-axis, and thus has 4 dimensions. An extension is

proposed to take into account rotations. However, it does not seem that shear trans-

formations can be accounted for by using this technique since angles are modified

by these transformations.

Another issue is that lines cannot be located since the technique uses a reference

table indexed on the orientation of the edge point which is the same for all points

of a line.

We mentioned that a many-to-one mapping has been used. The article does not

specify what was done when, in the reference table, one orientation correspond to

a few points. One possible solution is to calculate the corresponding anchor point

for any points that have the same orientation, and it would thus be a many-to-few

mapping. Alternatively it could be implemented by selecting randomly one point

that has the same orientation. Except for this imprecision, the description in pseudo

programming language of the algorithm is particularly clear and straightforward.

To sum-up, the key characteristics of the randomised Hough transform are: (1)

only part of the image point features are used; they are selected randomly; (2) a

many-to-one mapping is performed and (3) a list structure is used for the transfor-

mation space instead of an accumulator array.

Kälviäinen’s thesis [76] provides more details and discussions on the randomised

Hough transform (RHT). The literature review is of special interest. It completes

the survey done by Leavers [67]. It is argued that the selection of an optimal and

efficient resolution of the accumulator space are issues of the Hough transform (HT)

and it presents several new extensions that have been proposed to overcome these

issues. The literature review divides the presented techniques into two categories,

non-probabilistic Hough transform and probabilistic Hough transform (PHT).

Gerig [77][78] presents a technique called back-transform in the first paper and

CHAPTER 2. LITERATURE REVIEW 36

back-mapping in the second. It consists of first performing a classical Hough trans-

form and storing results in a first accumulator A. As for the standard Hough trans-

form (SHT), each feature point is associated to a hyper-surface in the transformation

space and the cells of the accumulator A that are intersected by the hyper-surface

receive a vote. Once this has been done for all feature points, a second accumulator

B is used, the hyper-surface associated with a feature point is evaluated again. Us-

ing A which stores the vote of the previous stage, only the cell(s) that intersect(s)

this hyper-surface and having the maximum number of vote is/are considered. The

corresponding cell(s) in B get(s) a vote and a reference to the feature point. Thus

B becomes a one to many mapping of the transformation space to the image space.

It is claimed in this paper that the number of false maxima is reduced and the

interpretation of the accumulator space is considerably simplified. In addition, the

feedback from cells in accumulator space to contributing feature points offers the

possibility to apply more complex strategies to better identify shapes. Although the

method may evoke the stencil approach that is presented in this thesis, the tech-

nique is different. The stencil approach consists in pre-evaluating the mapping of a

shape given a reduced bounded transformation space such that an inverse map of

the transformation space to the image space is obtained.

Li et al. [79] also refer to back-mapping but uses a different definition: the as-

sociation to a hypercube of the transformation space to the image points that have

triggered a vote for this hypercube. They present a hierarchical implementation of

the Hough transform to detect lines in images or planes in range images. The imple-

mentation uses the k-d tree structure and the complexity of the fast Hough transform

(FHT) algorithm is discussed in details. However efficient the implementation is,

the application domain of the technique is limited since it requires the hyper-surface

corresponding to a feature point in the transformation space to be hyper-planes.

Consequently, the article concludes by highlighting the need to extend the FHT to

higher order surfaces and/or to consider approaches that allow non-planar, possibly

higher dimensional, problems to be recast as planar problems. The stencil approach

described in this thesis allows a hierarchical approach of the Hough transform to be

implemented for any templates we are looking for, parametrised or not.

Kiryati et al. [80] presented a theoretical and experimental comparison of the

randomised and probabilistic Hough transform to detect lines. The PHT works like

the SHT developed by Duda and Hart in 1972 [81]. Thus, it is a 1 to n mapping

CHAPTER 2. LITERATURE REVIEW 37

of the image space to the transformation space where only part of the points of

the image space are considered. It is shown that, when the algorithms are used to

detect lines, the RHT is better suited for high quality low noise edge images since it

is considerably faster than the PHT. However, for the analysis of noisy low quality

images the PHT is significantly more robust and the RHT can no longer be used.

In terms of speed the PHT performs significantly better than the SHT.

2.5 Summary

Different approaches to track and identify object states have been presented. In this

work, a model consisting of feature points of an object has been chosen. The object

position is therefore characterised by the relative position of the features belonging

to the object. This last point is further developed in chapter 4.

After initialisation, that can be helped by motion detection and/or background

subtraction the object can be tracked, using a particle filter for instance as developed

in chapter 3, to limit the region of interest where to look for the object. If distortions

are not significant or corrected the set of feature points can be identified with the

model using various matching techniques.

Variations of the Hough transform like the bounded Hough transform, that is

called here the stencil estimator and that is presented and developed in chapter 5,

allows to match, in real-time when the number of degrees of freedom of the motion

can be limited, two sets of points in a bounded region that can be situated around

the previous object state.

Chapter 3

Particle filters: a class of statistical

methods for real-time tracking

3.1 Introduction

Particle filters are one of the main track that was followed to solve the real-time

pose estimation problem that was faced. This chapter expands on the abstract

review of particle filters as previously presented in section 2.3.2.A slightly different

interpretation is proposed and discussed with a concrete example. In spite of being

incomplete, since no Bayesian framework is taken into account, this interpretation

does provide an intuitive explanation on how particle filters work, upon which a

more precise understanding can be built.

Particles can be viewed as hypothetical states of the object being tracked. The

validity of these hypotheses are quantified by measuring the image (say using a cor-

relation measure, an edge-based matching measure etc.). These measures are then

integrated as the weight of the particles and represent the validity of the hypothe-

ses. The higher the weight, the more likely the hypothesis describes the state of the

tracked object or at least a state close to the object position. This assumes that

the measure has a certain degree of continuity which is preferable to obtain better

results and which could allow, for the best hypotheses, gradient descent optimisation

to be used to locate the object. This is a common improvement in particle filters

that is sometimes referred to as smart particle filters [82].

To predict the hypotheses for the next frame, hypotheses are selected according

to their likelihood, i.e. an hypothesis that is very likely to characterise the object

38

CHAPTER 3. PARTICLE FILTERS 39

state is selected multiple times while an unlikely hypothesis might not be selected,

and are propagated according to the system model. The system model could consist

of simply shifting the hypothesis by an amount proportional to the previous speed

of the object, or by a more acurate albeit more complex model if the kinematics of

the objects can be determined more precisely.

In the micro-pipette tip tracking scenario described later, the two features of

a particle are the x and y location of the tracked object. The validity of each

hypothesis was first evaluated by correlating a template image of the pipette tip

with the part of the image centered on the hypothesised location. However, in the

tracking of the pipette, pure correlation of the grey scale template image gave very

poor results. The results were improved by filtering the image with an edge filter

and correlating with an edge template. Figure 3.1 is a simplified flow chart that

sums up the steps involved in the particle filtering algorithm.

First frame, all hypotheses are localised

at the given position of the object

Hypothesis validity is evaluated using the

data of the current image

The object position is estimated by averaging

hypothesis positions according to their

validity or by using more sophisticated methods

Hypotheses are filtered and propagated

according to their validity

Next frame

Figure 3.1: Particle filtering stages.

3.2 A real world example

In this study an existing implementation of particle filters has been used [1]. The

measure used is the correlation between a template image that represents the object

to track, here a pen tip, and the part of the image around a particle. Here, particles

CHAPTER 3. PARTICLE FILTERS 40

are 2-D points indicating the position of the image part that has to be correlated.

The estimation of the pen tip position for a given image is evaluated by averaging

the particles positions weighted by the correlation measure. Figure 3.2 shows the

program at the end of its execution. Green dots represents the tracked location in

previous images. They are located on the trajectory of the pen tip that appears due

to the line that was drawn by the pen. Black dots in the surrounding of the pen tip

represent the particles positions for the last frame. It can be seen that they are not

spread uniformly around the pen tip. This is due to the hand shadow that correlates

well with the image template. Nevertheless, the pen tip is successfully tracked.

Figure 3.2: The original pen tip tracking algorithm using particle filters [1].

3.3 Typical encountered issues

The above mentioned implementation was adapted to track a micro-pipette tip for

biological cell manipulation. The tracking of the pipette tip failed quickly as shown

in figure 3.3. The image sequence has been captuered using an optical microscope.

The white objects are cell holders that use electo-static charges to trap cells at the

circular locations.

Before explaining the reason for the failure of the tracking a few images of the

pipette sequence are presented. A short historical account of the investigations is

then reported. Figure 3.4 shows a few images from the pipette sequence that il-

lustrates common issues related with tracking. Frame A is the first frame of the

sequence where the template image of the pipette tip is captured. Frame B demon-

CHAPTER 3. PARTICLE FILTERS 41

Figure 3.3: The tracking of the pipette tip has failed. The white square is the
tracked location (at the top centre position of the image). Top left hand corner is
the template image.

strates the first problem encountered: motion blur. In frame C, a problem quite spe-

cific to our video sequence appears: the pipette tip is transparent and its appearance

changes with the background which likely results in poor similarity measures with

the initial template image. In frame D the illumination of the scene has changed i.e.

the scene progressively gets darker. Finally, in frame E the whole scene is blurred.

3.4 Preliminary approaches to solve these issues

The different approaches that have been considered in solving the problems above

are as follows:

• updating the template image. This led to the following problems

– the periodicity of the update needs to be decided.

– when an update is performed parts of the background is incorporated

into the template. Also, due to the transparency of the pipette, the

backgroung can alter the look of the pipette.

• accounting for the orientation of the pipette.

• enhancing the particle filter.

• improving the matching method as well as integrating new matching methods.

CHAPTER 3. PARTICLE FILTERS 42

Frame A: the initial position Frame B: motion blurred micro-pipette tip

Frame C: the changing background behind Frame D: the illumination level
the micro-pipette tip modifies of the scene has changed

its appearance

Frame E: the whole scene is blurred
due to defocussing

Figure 3.4: Problematic frames from the micro-pipette sequence.

CHAPTER 3. PARTICLE FILTERS 43

In hindsight, the problems were not correctly identified, and so relatively complex

methods were initially developed. This is a trap that is easy to fall into, especially in

computer vision. This was due to the fact that the issue was not directly apparent,

like the change of illumination of the scene was. We will proceed with the account

of the steps we undertook to try to solve this issue.

Frame A: Updating the template Frame B: Pen tip tracking with
image without storing the update of the template images.
previous template images. The previous template images are

displayed at the top of the image.

Figure 3.5: Tracking with the template updating mechanism running

3.4.1 Dynamic template updating The tracker was improved by firstly im-

plementing a template update scheme. It was tested on the pen tip sequence as

shown in figure 3.5. Nevertheless, when applied to the pipette sequence, tracking

continued to fail after a few frames. The major issue is that we do not have any cri-

teria to decide when the update has to be performed. Thus there is a possibility for

the update to be performed on a part of the image where the object is not present.

It was later realised that by combining different measuring methods, sensitive to

different variation of the pipette tip appearance, it may be possible to update the

template. If measures start to give low values while others continue to give a high

confidence value, it indicates that it is time to update the model associated with the

measure giving low values. However, since this continued to prove inconsistent, the

idea was discontinued.

CHAPTER 3. PARTICLE FILTERS 44

3.4.2 Taking measures A few other improvements were experimented with un-

til it was decided to systematically take measures of the image sequence in order to

better understand why the tracking was failing. Thus, the correlation of the tem-

plate image with the scene image, over a predefined region of interest, was measured.

In other words, the template image was convolved with an image region.

Figure 3.4.2 shows the scene images on which the correlation measure has been

displayed with grey shades. In order to improve the visibility, we used the follow-

ing colour code: black was used to mark the points when the correlation measure

is higher than 0.95 times the value of the best correlation measure in the region

surrounded by the large rectangle. White was used to mark the points with a cor-

relation measure in the range 0.9, 0.95 times the the best correlation value. Next

ranges were coloured in grey then white again and then transparent colour was used

to see the underlying image. Therefore, a small set of black points surrounded by

white indicates a good candidate location for the pipette tip. We focused on a

few images where the tracking of the pipette was systematically failing. From the

pseudo-coloured frames of figure 3.4.2 the following observations can be made.

Frame A shows that the cell holder on the background is highly correlated with

the micro-pipette tip template. The left boundary of the micro-pipette has a good

correlation value relative to the rest of the region. Note that the micro-pipette tip is

not yet present in the large rectangular region. However within this region, the top

of the cell holder correlates quite well with the micro-pipette tip. This is confirmed

by frame B.

In frame B it can also be seen that even though the tip of the micro-pipette is

correctly located, the correlation values along the body of the micro-pipette are high

as well.

Frame C and D again illustrates the fact that the body of the micro-pipette has

got a high correlation value and in Frame D the micro-pipette failed to be detected

because of this phenomenon. It appears that according to the correlation measure

the micro-pipette tip could be located at three different positions. Although the

particle filter copes well with multimodality, the evaluation of the micro-pipette

location, that is made by averaging the location of the particles with their weight,

lead to an incorrect result.

Frames E and F present two other examples where the tracking is lost. Because

of the background, the best correlation is no longer found on the micro-pipette

CHAPTER 3. PARTICLE FILTERS 45

Frame A Frame B

Frame C Frame D

Frame E Frame F

Figure 3.6: Image showing the value of the correlation measure within a region of
interest. The positions with high correlation values are coloured following the colour
code described in page 44.

CHAPTER 3. PARTICLE FILTERS 46

tip. Although the particle filter can cope with occlusions the particle filter cannot

recover because the micro-pipette tip is occluded for too many frames and when the

micro-pipette tip appears again, in a region further down, because clutter prevented

particles spreading, no particles were present in that region that could have made

the recovery possible.

3.4.3 Improving the matching paradigm Once the problem was clearly iden-

tified as being the presence of clutter, a simple solution to deal with it was quickly

found. To improve the quality of the tracker a measure that better discriminates the

micro-pipette from the background clutter was required. We found that correlating

edges, instead of grey scale images, greatly improves the matching. Indeed, edges of

the pipette is a good characteristic to identify the micro-pipette since the body of

the pipette changes due to its transparency. Frames A,B,C,D of figure 3.7 illustrate

that the tracking of edge filtered images has been greatly improved.

Comparison of some edge detectors.

When it was observed that edge correlation was superior than the grey level template

matching, different edge detection algorithms were evaluated.

We tested a variety of edge detector methods including the Laplacian of a Gaus-

sian LoG [83], Canny[84] and Susan[85]. Canny with the appropriate parameters is

more consistent and faster than LoG and because of its thinning edge step, edges

are better located and thinner than LoG. The Susan edge detector method is even

faster than Canny (by a factor of 10) and allows the particle filter to better locate

the micro-pipette. Although software patents are not currently legal in Europe,

Susan’s major drawback is that it is a patented technique. Figure 3.4.3 illustrates

results obtained with the Susan and Canny edge detector.

Optimisation and pitfalls

Edge template matching using correlation, because it involves an additional step,

is slower than direct grey-level correlation. Since real-time performance is a pre-

requisite for us we explored the possibilities of optimising the edge detection process.

Therefore the whole image was first filtered. To improve even more this scheme the

egdes were extracted where measures were taken. Figure 3.4.3 shows the results

CHAPTER 3. PARTICLE FILTERS 47

frame A frame B

frame C frame D

Figure 3.7: Frames showing the tracking results using edge template matching. The
top left corner of images shows the edge template of the micro-pipette tip.

CHAPTER 3. PARTICLE FILTERS 48

frame A: one image filtered with frame B: the same image filtered
the Susan edge detector. with the Canny edge detector.

Figure 3.8: The same image filtered with the Susan and the Canny edge detector.

of this operation. The speed improvement due to this last optimisation is not sig-

nificant because the reduction of the filtered area is not huge. This illustrate the

classical mistake of attempting to optimise too much, too early on without profiling

a program.

3.4.4 Geometric Branch-and-Bound Matching The edge correlation method

to match the model template with the image was still not completely satisfactory:

the tracking was still failing towards the end of the video sequence and the recovering

time, when the track was lost, appeared to be too long. To improve the tracking we

decided to further improve the matching measure. The geometric branch-and-bound

matching method was selected for that purpose. For a description of the branch and

bound (BB) algorithm please refer to the literature review on page 19.

Implementation

A Java implementation of the BB algorithm was provided by Breuel [35] but for

compatibility reasons it was re-implemented in C++. The original Java code takes

into account the change of orientation of the object as well. But our implementation

excludes this feature.

CHAPTER 3. PARTICLE FILTERS 49

frame A: the particles are widely frame B: the tracking fails.
spread on the image.

frame C: but is able to recover thanks frame D: end of the tracking sequence
to the particle located near to the tip.

Figure 3.9: Frames showing the results of edge correlation with only part of the
scene image processed in order to filter edges. Frame B illustrates one of the frames
where edge correlation fails.

CHAPTER 3. PARTICLE FILTERS 50

Testing

One of the major issues of the BB algorithm is its speed. Determining theoretically

the average and worst case complexity of these kinds of matching algorithms remains

an open problem[35]. However, BB was found to be more time consuming than

performing an exhaustive search on an area of the same size using a correlation

measure. This supposedly depends on the area size selected. Nevertheless, adding

other cues such as edge orientation, or colour can speed up BB.

In order to incorporate BB with the particle filter, a measure to quantify the

goodness of match of the template image and the scene image had to be provided.

The ratio defined by the number of edge points matching the image by the total

edge points of the template image was used.

The usage of BB led to good tracking results but the tracking was too slow for

real-time applications. Enhancements by incorporating the orientation and scale of

the template can be taken into account by the BB algorithm. Also, the BB algorithm

can be extended to take into account different kinds of features simultaneously, e.g.

colour points along with corner and edge features. BB is thus a good candidate if

different measures need to be combined and it was used as a complementary measure

as explained further down.

3.5 Clustering particles

3.5.1 Locating the statistical modes In particle filtering based methods, the

predicted location of the object being tracked can be obtained by using a weighted

mean of the particles’ positions (equation 2.3). When working in a cluttered envi-

ronment, the pdf is bound to be multi-modal. This is because similar objects in

the background gives a probability measure which is very similar to the probability

measure at the actual location of the object. As a consequence the weighted mean of

the particles position is not relevant anymore to identify the position of the tracked

object (figure 6.44 and 6.45). What needs to be done is to isolate the different

modes of the pdf. Once the modes are isolated, they will provide a much reduced

set of relevant probable locations of the object. On these probable locations, more

accurate, albeit more time consuming, measures can be applied to decide which of

the modes is the actual location of the object. To isolate the different modes we

defined the following methodology.

CHAPTER 3. PARTICLE FILTERS 51

3.5.2 Method formalisation Let

• S = {s(1), . . . , s(n)} be the set of n particles obtained using particle filtering.

s ∈ R
n the state space.

• T = {s ∈ S|ev(S) > threshold value} the subset of most relevant particles

(samples, hypotheses). ev : R
n 7→ R is the function that evaluates the validity

of the sample. ev(s(i)) = π̂(i), where π̂(i) was defined in page 28.

• t ∈ T one of the thresholded particles

• M (i) a subset of T

• ‖.‖ the Euclidean distance in R
n

T is partitioned as follows

∀t ∈ T : ∃!i ∈ N : t ∈ M (i) (3.1)

∀(t(j), t(k)) ∈ T 2 :
(

‖t(j) − t(k)‖ ≤ d ⇒ ∃!i ∈ N : {t(j), t(k)} ⊆ M (i)
)

(3.2)

The partition of T depends on the distance d and the threshold value. Since

multiple partitions satisfy these two conditions we consider the one that has the

maximum number of elements.

M (i) are sets of relevant hypotheses belonging to the same neighbourhood. As

such, they are characteristic of the presence of the tracked object, we call them mode

sets. To optimise the use of the measurements the non-thresholded samples h are

integrated within a mode set M (i) iff mins∈M(i)(‖s − t‖ ≤ d). Note that samples

bordering mode sets might belong to more than one set and that some particles are

discarded from the process.

Ultimately, the weighted average of the elements belonging to a mode is evaluated

∀M (i), m(i) =

∑

s∈M(i) s.ev(s)
∑

s∈M(i) ev(s)
=

∑

s(j)∈M(i)

s(j).π(j) (3.3)

A graphical representation of the process is shown in figure 3.10.

3.5.3 An O(n) algorithm to cluster particles A practical algorithm, with

linear complexity, to cluster samples is now introduced. The underlying idea of the

CHAPTER 3. PARTICLE FILTERS 53

following heuristic method is to collate particles, starting with one located in the

neighbourhood of a mode and then to recursively cluster particles located near to

it.

Let:

• a mode be a particle associated with a weight and as such an element of R
n×R.

• the weighted mean function of two hypotheses associated with their validity

measure be

wm : (Rn × R) × (Rn × R) 7→ R
n × R

((h1, w1), (h2, w2)) → (w1h1+w2h2

w1+w2
, w1 + w2)

(3.4)

• ‖.‖a be the Euclidean distance between a particle and the n first elements of

a mode.

We define recursively the set M of modes on the set of samples S as follows:

M := Mcard(S)

M0 := ∅

Mk := {wm((s(k), π̂(k)), m) | ‖(s(k), m)‖a ≤ d, m ∈ Mk−1}
∪ {m ∈ Mk−1 | ‖(s(k), m)‖a > d}
∪ {(s(k), π̂(k))) |

(∀m ∈ Mk−1, ‖(s(k), m)‖a > d)∧(π̂(k) ≥ threshold value)}

(3.5)

At step k of the construction of M , the kth sample is considered. It is merged

with an existing mode as described by the first set of formula 3.5. Otherwise, if

this is not possible, due to the distance constraint, and if its measure is high, it is

considered as a new mode as described by the third set in formula 3.5. The second

set in formula 3.5 retains unchanged modes for the next recursion stage.

The resulting modes depend on the particle selection order and thus are dif-

ferent from the modes m(i) as previously defined. An improvement can be made

by ordering particles according to their reliability, so that hypotheses located near

to an undiscovered mode are not discarded and that the drift of a mode due to

the subsequent incorporation of particles is minimised. The best complexity for a

sorting algorithm is O(n log(n)) which in practice is not an issue since n is small

CHAPTER 3. PARTICLE FILTERS 54

for particle filters. Sorting particles provides deterministic results for the resulting

modes, however, in practice, it remains to be shown that this is an advantage.

Figure 3.5.3 shows the test of an implementation of the above algorithm. In

frame A, there are some modes in the body of the micro-pipette. This indicates

that the body of the micro-pipette is very similar to its tip. Frame B shows the

tracking just before the program looses the micro-pipette tip. Frame C, shows the

tracking of the micro-pipette having recovered after a long period of time where the

tracking was indicating the pipette body instead of the tip. Again, the modes in the

pipette body indicate that the body is very similar to the pipette tip. The tracking

of the micro-pipette eventually fails as shown in frame D.

3.5.4 Location of the micro-pipette using further measurements of the

image Summing up the processing steps thus far:

• The scene image is filtered using an edge filter.

• Particles giving the probable locations of the object are generated using the

particle filter. A correlation measure of the edge template with the edge filtered

image is used to weight particles’ importance.

• The modes of the underlying pdf are located by collating, the weighted parti-

cles into groups.

At this stage two scenarios are possible:

• If the object is not occluded and if the scene image is not cluttered, it is likely

that the mode having the largest weight indicates a position close to the object

position.

• However, if the object is being tracked in a noisy environment, it is probable

that multiple modes with very similar weight are found.

In the second case, illustrated by figures 6.44 and 6.45, further processing is needed

to decide which of the modes gives the most probable location of the object.

For that purpose, the branch-and-bound algorithm was performed in a region

surrounding the detected modes. BB was performed using edge filtered images, the

ratio of matched points over the total number of edge point of the template was the

associated measure. To further discriminate the modes the surrounding region was

CHAPTER 3. PARTICLE FILTERS 55

Frame A: Large black squares Frame B: Large white dots are the
are the modes. tracked locations.

Frame C: A large number of particles are Frame D: Tracking is lost, particles
very far from the micro-pipette tip. are on the bottom right corner.

Figure 3.11: Tracking of the micro-pipette tip. Modes give an indication of the
location of the peaks of the pdf sampled by the particles.

CHAPTER 3. PARTICLE FILTERS 56

correlated with a grey level template image of the object. A combination of the two

measures was used to select the appropriate mode: we attributed a weight to each

of the measure and took the barycentre of the measures.

3.6 Further improvements

3.6.1 Overcoming the effect of clutter Reducing the spatial range of particles

helps to avoid the effect of background clutter. When particles are bunched around

the object position, the evaluation of the pdf sampled around the likely object

position has a better chance to be unimodal (figure 6.43). The following method

has to be performed cautiously in order to maintain the robustness of the particle

filter. The improvements discussed cannot always be applied but when conditions

are favourable they improve the reliability of the filter.

3.6.2 Integrating the kinematics of the object Based on the previous tracked

location of the object its current speed and direction can be evaluated. An additional

weight is given to particles describing object positions compatible with previous es-

timated kinematics. The additional weight augments the actual measure calculated

from the image boosting up the weights of the particles compatible with the previous

object kinematic and reducing the effect of the background clutter.

For the pipette problem, first attempts in integrating the velocity (speed and

direction) failed because the pipette movement is too random. However, the speed

of the pipette tip is more or less constant and integrating this data to the particle

weights helped discard high value measures due to background clutter.

Integrating the speed of the pipette tip using this method has the additional ad-

vantage that more particles are better situated. This better localisation of particles

can be explained by the fact that since particle weights around the predicted object

location are augmented the corresponding particle are more likely to be selected and

propagated to the next frame. Consequently, those particles which are further away

from the predicted location are more likely to be left out. It avoids processing those

locations where background clutter may play a disruptive role.

In order to avoid affecting the robustness of the particle filter these additional

weights must be modulated by the degree of confidence that we have in the tracking.

After a few frames, when tracking is lost, no additional weight should be used and in

CHAPTER 3. PARTICLE FILTERS 57

cases of uncertainty in the tracked location the additional weights should be reduced

and given relatively to the last previous location that can be trusted.

3.6.3 Partial re-initialisation Partial re-initialisation of the particles is an-

other proposed scheme that could be adopted to have a better sampling of the pdf

of the object position. Partial re-initialisation assists the particle filter to better

sample those regions of the state space that are highly likely to contain the tracked

object position. The sampling of the remaining of the state space becomes sparser,

but to a minor extent, ensuring that alternative possible states are still taken into

account. Partial re-initialisation is particularly useful when the tracking fails due

to occlusion. Indeed, when the tracking fails particles tend to spread across the

state space which is the adequate behaviour to be able to recover the tracking of

the object when these one reappears. However, when the object reappears because

the number of particles is small around the object, it is possible that, even if a few

particles are able to correctly locate the object, their number is not high enough

to be propagated correctly to the next frame. In order to help the particle filter

recover more quickly and surely, the propagation of the particles can be modified

by relocating more particles to the supposed recovered location. This also reduces

the likelihood of mislocation due to clutter in subsequent frames.

When particles indicate that the object location has been recovered, the partial

re-initialisation is done as follows. Amongst the current set of particles, a percentage

of particles having lower weights, and hence more likely further away from the

current probable tracked location, are randomly chosen and are re-located to the

current probable tracked location of the object.

These two methods, weight addition and partial re-initialisation, help to integrate

the additional information brought by measures made on the modes of the pdf.

The main issue is that they have to be fine tuned, the additional weight has to

be determined as well as the percentage of particles to be relocated in order not

to affect the robustness of the particle filter. Relatively small changes suffice to

affect the particle filter behaviour since a better sampling of the pdf has the positive

consequence of a better sampling of the pdf in the next frame and so on iteratively.

Figure 3.12 is a simplified flow chart that sums up the stages of the tracking

procedure.

CHAPTER 3. PARTICLE FILTERS 58

Initialisation, particles are localised

to the initial given position.

Particle weights are evaluated using the current image

data. When the probable object position can be infered

from its previous tracking an additional weight is given

to the compatible particles.

Modes are identified.

Additional mesures are made around the modes

to discriminate the actual position of the object.

When the degree of confidence that the object

has been correctly located is high, a percentage

of the particles is relocated to the probable

object location.

Particles are selected according

to their weight and propagated.

Next frame.

Figure 3.12: Tracking stages.

3.6.4 Modes filtering Tests indicate that the method described above per-

formed well. The tracked position sometimes jumped to a far off location from

the micro-pipette tip. To avoid this, another scheme was added to the tracking

algorithm as described by the figure 3.12. The idea was to consider only the modes

close to the previous tracked location. This has a second advantage of avoiding

the need to perform measurements around modes far off from the pipette tip, thus

speeding up the application. Since the tracking of the pipette can fail, to be able to

recover, far off modes of the previous location have to be taken into account. The

following procedure has been used:

• only the modes at a distance d from the previous tracked location were con-

sidered.

CHAPTER 3. PARTICLE FILTERS 59

• if the measures are high, indicating that the pipette tip is currently being

correctly tracked, then the distance d is reset to its initial value.

• otherwise it is assumed that the tracking is lost and the distance d is increased.

This further improves the tracking of the pipette tip and illustrates an additional

way to incorporate high level information such as the tracked location of the pipette,

as opposed to its pdf, to a higher filter stage, i.e. the modes stage, as opposed to

the particles stage.

3.7 A generic particle filter architecture

We re-implemented the CONDENSATION filter from scratch. The CONDENSA-

TION algorithm is described in [54] and is a particular type of particle filter. Using

the template mechanism provided by C++ we developed a generic implementation

that can be adapted to track objects in different scenarios.

3.7.1 Description of the architecture The underlying design principle that

has been retained was flexibility. Therefore no arbitrary choices were taken and

whenever a choice has to be made the implementation takes it into account in

order for users to make their choices without modification of the core architecture.

Implementation wise these choices appear in functions, template parameters and

policy idioms. The negative consequence is that it introduces a higher degree of

complexity to the architecture. However, this degree of complexity can be made

transparent by subsequent software layers.

3.7.2 Issues related to the initialisation of the class A brief description

of the architecture choices and their rationale is provided here. The Doxygen1-

commented implementation has been released in the Mimas C++ open source com-

puter vision library. Examples of usage of the particle filter implementation, re-

named hypothesis filter, are provided in the examples of the version 2 of the library.

An architecture based on the policy idiom has been adopted. One of our motiva-

tions, albeit controversial in justifying its choice, was to try to implement the policy

idiom, a design pattern described in [86]. For more on design patterns one may refer

1A tool to document source code

CHAPTER 3. PARTICLE FILTERS 60

to the famous, at least amongst the software designer community, “Gang-of-Four”

book[87].

More reading on aspect oriented programming [88] and meta programming [89]

[90] is useful to understand the ideas behind the policy idiom. Compared with

the inheritance mechanism, because classes are assembled at compile time, more

flexibility is provided; it is possible to define optional functions in the so-called

host class that can be instantiated only if the policy classes implements a certain

interface. For instance, in the hypothesis_filter class the track() method is

instantiated only if the image_loader policy is providing a next() method and the

analyse_result policy an analyse() method.

Nevertheless, although critical sections, such as correlation measuring algorithms

and image filtering, still have to be written, due to performance issues, in a low-level

language such as C++; it is preferable to use higher level languages having meta-

language facilities, such as Python or Ruby, to implement generic logic for combining

sub-systems. One may have a look at the required complexity of the code needed to

implement meta programming in a language not conceived for this purposes, namely

C++[89][90]. This being said, Koethe [91][92] provides matter to think about re-

usability of code in C++. Koethe specifically discussed implementations relating to

image datastructures for computer vision.

Adoption of a policy idiom based architecture brought to our attention the fol-

lowing issue: policies, such as the observer policy, can be quite different and need

different initialisation parameters. However, the policy architecture requires the

constructor prototype of policies to remain the same. In order, to solve this issue

an embedded class, called set, is provided within each of the policies. For each of

the policies this class has to be instantiated and given to the host constructor. This

methodology has also the advantage of guaranteeing that policies are instantiated

before the host class. Another advantage is that the order of call of the different

policies constructors is done at the level of the host constructor, therefore the user

does not have to worry about this. To our knowledge this method has not been

previously documented.

3.7.3 Conception The tracking algorithm has been divided into five, mostly in-

dependent, components. The picking policy which ensures the propagation of the

CHAPTER 3. PARTICLE FILTERS 61

particles (hypotheses). The observer policy which has the responsibility for mea-

suring the validity of an hypothesis (the weight of a particle). And which depends on

the type of hypothesis selected, e.g. a 3-D location, a 2-D location associated with

scale. The hypothesis type can be considered as a component, even if it not a policy.

The analyse_result policy which is used to evaluate the position of the tracked

object using the observation made on the image. The compensation policy that has

been used to implement partial re-initialisation of the particle filter. image_loader

policy which just facilitates the loading of images.

A previous implementation had fewer components that we called hypothesis

filter, observer and custom hypothesis. The role of the particle filter was to propagate

particles according to the system knowledge. The role of the observer is to update

the knowledge of the system by taking measures on the image. The determination

of the kind of hypothesis allows the filter to be adapted to the state space with

which we want to operate: 2-D translation, 3-D moves, n-dimensional contours, etc.

Figure 3.14 presents a UML diagram of the system.

The particle filter implementation was tested on the micro-pipette sequence, the

pen sequence, 3 ping-pong sequences and a Rubik’s cube sequence. These tests

allowed us to refine the architecture and the implementation of the hypothesis filter,

they are presented in section 6.3 page 143.

Figure 3.13: UML diagram of the first design of the particle filter

C
H

A
P

T
E

R
3
.

P
A

R
T

IC
L
E

F
IL

T
E

R
S

62

hypothesis_f i l ter_data

+image

+hypotheses

hypothesis_fi l ter

+filter()

+max_weight()

+track()

+reset()

image_loader

+next()

Observer

analyse_result

picking_policy

compensate_pol icy

hypothesis

+weight

hypothesis2D

+x

+y

+sigmaSpan

+drift()

+mean()

+distance()

1

n

hypothesis3D

+x,y,z,Rx,Ry,Rz

+transX,transY,transZ

+rotX,rotY,rotZ

+drift()

+mean()

+distance()

the mean and distance methods

are used by the analyse mean

policy

no_compensat ion

p_condensation

+partial_reset(position,proportion,weight_discrimination,
 weight_initialisation)

condensat ion

#pick_base_hypothesis()

analyse_result_blob

+analyse()

analyse_result_mean

+analyse()

correlat ion_observer_2D

openGL_observer

The track method instanciation

depends on the existence of an

analyse method provided by the

analyse_result policy, the

compiler will tell you whether

you can use it or not.

F
igu

re
3.14:

U
M

L
d
iagram

of
th

e
fi
n
al

im
p
lem

en
tation

of
th

e
p
article

fi
lter

3
.7

.4
E
x
te

n
sio

n
s

P
a
r
a
lle

lisa
tio

n

P
article

fi
lter

algorith
m

s
are

w
ell

su
ited

for
p
arallelisation

.
T

h
e

critical
p
art

of

th
e

co
d
e

con
sists

in
evalu

atin
g

th
e

p
article

w
eigh

ts,
th

is
load

can
easily

b
e

sh
ared

CHAPTER 3. PARTICLE FILTERS 63

amongst different processors by assigning to each one the evaluation of a number

of particles. Therefore, the generalisation of multi-core processors provides another

incentive to the usage of particle filters. Multi-threading can be used to implement

this facility[93].

Detection based on particle filter

Adapting the particle filter for detection can be done easily. Inspired directly by

Isard and Blake’s paper on the ICONDENSATION[94] algorithm, the following two-

stage-methodology is proposed. Using a coarse and fast measure the sampling of the

image can be determined. From this sampling, refined measurements can be made

to evaluate an object configuration. The main issue that remains is to determine a

fast measure, which is a problem since conditions vary widely from one application

to another. However, a relatively generic solution may involve the usage of colours.

3.8 Summary

In this chapter we have presented different methodologies, namely particle clustering,

partial re-initialisation, integration of the dynamic of the system by over-weighting

compatible particle weights, to track a translucent micro-pipette in a cluttered scene

environment. The formulated procedures can be used to cope with problems arising

from object occlusion and background clutter. Furthermore, by greatly reducing

the number of measures that have to be taken after the first filtering stage, the

particle clustering procedure allows the usage of more complex and precise matching

method on a second filtering stage without significantly penalising the speed of the

application.

The presented tracking algorithm, the particle filter, is robust, however the real-

time objective remains an issue. This is due to the fact that the measuring methods

to localise the object are time consuming. The tracking method per se is very

efficient and allows tracking objects in high dimensional space. Future work can be

carried out to determine some fast, highly discriminant measures. However, these

measures are very dependent on the tracking scenario and ad-hoc solutions need to

be provided for each case.

CHAPTER 3. PARTICLE FILTERS 64

3.8.1 Possible improvements By first using a coarse filtering stage to deter-

mine the sampling of the state space, particle filters can be adapted for detection.

One of the major issues in tracking moving objects using template matching is

that the original template becomes invalid due to the change in lighting conditions

or due to the changes of the detected object features. To handle this situation, the

model template could be updated. The simultaneous usage of different measures

may give an indication when to update the template.

Depending on the number of processors available, parallelisation of the particle

filters can be undertaken if the speed of the tracking algorithm only needs to be

improved by a small multiplicative factor.

Chapter 4

State space, shape information

and template reduction

4.1 Introduction

Objects or shapes are commonly represented by feature points. This chapter dis-

cusses how a subset of feature points representing a shape can still be robustly used

for shape identification in an environment containing alternative shapes and in the

presence of noise.

Two simple theoretical cases are discussed to introduce some of the issues that

arise when trying to formalise and understand the nature of the problem of putting

a shape into correspondence with another set of points. This issue arose in the

field of computer vision while examining a broad range of variations of the Hough

transform algorithm.

4.1.1 Square example Given a square, consider the number of points that are

necessary to determine its characteristics, e.g. its position and size, without am-

biguity. One point is insufficient since many squares have potentially this point in

common as can be seen in figure 4.1.

Consider 2 points. Although it can be argued that 2 points provide more infor-

mation, they are still insufficient to uniquely determine a square: if it is assumed

that these 2 points belong to an edge of a square then there are many different

squares of various sizes to which these 2 points can belong to. However, if we have

the additional information that these two points are corners, then the number of

65

CHAPTER 4. SHAPE INFORMATION AND TEMPLATE REDUCTION 66

possible squares intersecting these 2 points is finite and equal to 3, as the 2 points

are either adjacent or on opposite corners. If they are adjacent there are 2 possi-

bilities (see figure 4.2) and if they are opposite there is only one. It appears that

knowing the characteristic of the points conveys some information of the location of

the square. Note that, in this example, corners are not distinguishable so the four

squares rotated by 90 degrees around their centre are considered to be the same.

Knowing the dimension of the square provides further information: if the square

edge size measures a and if the distance between the 2 points is
√

2a then there is

only one possible square that fits these points, whereas there are still 2 possibilities

when the distance between the 2 points is a.

Now, we shall assume that 3 points belonging to a square are known. What then

can be inferred about the position of the square? If the 3 points are aligned they

must belong to the same edge of the square. But there is insufficient information

to determine the characteristics of the square since many squares of different sizes

have these 3 points in common. We now consider the case when 3 points are not

aligned. In appendix A.1 it is shown that for 3 unaligned points there exists an

infinite number of squares that intersect these points. Figure 4.3 illustrates this for

two specific three point configurations, that multiple squares can have 3 points in

common.

Restating the problem, the objective is to identify the minimum number of points

belonging to a square that uniquely identifies that square. In other words, we are

looking for a set of points that intersects only one square, modulo the four 90-degree-

rotations around its centre, the parameters of a square being its size and position.

Note that the fact that we are looking for a square provides implicit information.

This quantity of information varies with the shape that is being considered. The

Figure 4.1: Squares sharing a common point.

CHAPTER 4. SHAPE INFORMATION AND TEMPLATE REDUCTION 67

Figure 4.2: The three squares, modulo rotations, having these two points as corners.

Figure 4.3: Two possible configurations of 3 points and example of squares that
matches these configurations. On the left, 2 points are closer whereas on the right,
points are equidistant.

CHAPTER 4. SHAPE INFORMATION AND TEMPLATE REDUCTION 68

more general problem of fitting any given shape to a set of points will be considered

later. The previous cases demonstrate that some configuration of points will not

provide sufficient information. For instance, n aligned points are not sufficient to

uniquely determine the position of a square. However, configurations of 4 points exist

that allow a square to be uniquely determined by these points. This is illustrated

by figure 4.4. The 3 aligned points a,b and c must belong to the same edge of a

Figure 4.4: The points a,b,c and d uniquely define a square.

square, this edge is labelled A in the figure. The last point d must belong to the

opposite edge of the square since its perpendicular projection on A belongs to the

segment defined by the 3 other points, the edge of the square intersecting this point

is labelled C in the figure. Moreover, the distance from d to A determines the size

of the square. This distance must be bigger or equal to the distance between a and

c in order for a square that passes through these four points to exist. Note that if a

point belongs to the shaded area, like the point f , no square can fit the configuration

of points a,b,c and f . However, if the distance between a point and the edge A is

larger than the distance between a and c (|ac|), as illustrated by the point e, the

configuration of points can be fitted by squares translated along the line passing

through a and c, denoted (ac).

In general, it appears that some configurations of points intrinsically provide

more information than others, even if the point configurations have the same number

of points. In appendix A.2 we consider the problem of determining if there is a

CHAPTER 4. SHAPE INFORMATION AND TEMPLATE REDUCTION 69

configuration of 4 points, when any 3 points extracted from the configuration are

not aligned, that uniquely characterises a square. We do not solve the problem

completely, however some ideas are provided to explore the problem in more depth.

Note that many configurations of 4 points do not have any squares intersecting them.

Another example is given in figure 4.5 (a). Figure 4.5 (b) and (c) illustrates that 4

points can belongs to different squares.

(a) (b) (c)

Figure 4.5: An impossible configuration and 2 possible configurations of 4 points
that fit more than one square.

Figure 4.6 presents a configuration of five points that uniquely determines a

square. In general, for a five point configuration, 2 points must belong to the same

edge, therefore if no three points of the configuration are aligned, there exists at most

a finite number of squares that have these five points in common; see appendix A.3

for further details. It appears that the more points are considered, the more likely the

point configurations will not correspond to any square. More precisely, if a random

number of n points are taken the probability that they do not to correspond to a

square increases with the number of points. This can be understood by considering

n−1 points of a configuration of n points. Only certain squares, if any, fit these n−1

points. The nth point has to belong to one of these squares for the configuration of

n points to be compatible with any square at all. Therefore, any additional points

make the configuration more unlikely to be compatible with a square shape.

4.1.2 Circle example The case of a circle is now briefly discussed. One may

consider that any group of 3 points contributes the same quantity of information

since they specify the characteristic of a circle. The quantity of information is

maximal since the position and size of the circle is completely known. If the diameter

CHAPTER 4. SHAPE INFORMATION AND TEMPLATE REDUCTION 70

is known, 2 points at this given distance suffice to completely characterise a circle.

If edge orientations of points are known, any 2 points are also sufficient to construct

a circle. For an ellipse, 5 points are required.

Comparing the circle example and the square example, it appears that shapes

convey implicit information about their position. This information vary according

to the shape of the object and might be characterised or defined according to the

point configurations that are needed to determine the state of a shape.

To sum up, when fitting a shape to a set of points some information is contributed

by:

• the shape of the object.

• the transformation space, also referred to as the state space, associated with

it. For instance, are only translations considered, or are rotations and scale

required as well?

• the characteristics of the specified points, e.g. their colour, gradient direction,

surrounding patch.

In this thesis we focus on a method that does not take into account the dis-

tinguishability of points. The methods, we are going to deal with, focus only on

extracting the information from the relative position of points.

Nevertheless, these methods could be greatly optimised by taking advantage

Figure 4.6: A configuration of 5 points that can be fitted by only one square.

CHAPTER 4. SHAPE INFORMATION AND TEMPLATE REDUCTION 71

of supplemental local information of points, such as their surrounding patch, that

would considerably reduce the number of possible correspondences between points.

From the above discussion, it appears that the more points extracted from a

given shape are considered, the more precisely this shape can be identified. Can

this observation be quantified and in the case of a positive answer, can this be

used to design more efficient algorithms? Also, how can configuration of points

contributing more information than others be identified? For the last question two

different perspectives can be adopted: points extracted directly from a shape and

points extracted from a set of points to be fitted by a shape.

4.1.3 Locating a shape on an image Now consider an image that contains

points that belong to a shape, for instance, a square, and points not associated to

this shape. Since it is known that a square can be fitted in this set of points, if a set

of n points, where n does not need to be very high, e.g. 10 points, are compatible

with a square shape, it is very likely that the n points belong to the square and that

its location is determined from these points. Of course if these points are aligned

then multiple partially overlapping squares are compatible. To avoid this problem,

the configuration of n points should be such that the points belong to different

edges. A condition on the distance of the points, for instance, would ensure that

the points belong to different edges. Similarly a condition of no more than p aligned

points would ensure that the points belong to different edges too. Additionally, the

number of points of the image should not be too high and densly positioned else

the probability of configuration of points not belonging to the shape but compatible

with it rises. This is usually not the case in real world applications.

What are the properties of a shape that can be used to characterise them? For

the square we have been using the fact that edges are perpendicular and of the same

size. If a shape is not a square, what criteria can be used to determine a set of

points that uniquely characterises the shape? Given a set of points, is it possible

to quantify the likelihood of the position of the shape that matches the points? In

other words, given a set of points, is it possible to evaluate the probability density

function (pdf) of the characteristics (e.g. its position) of the shape? Can points be

determined to be part of the random set of points or of the shape? Is it possible

to quantify the information contributed by an individual point? Is it possible to

evaluate the additional information an additional point can contribute to a set of

CHAPTER 4. SHAPE INFORMATION AND TEMPLATE REDUCTION 72

points?

Given a few conditions, all these questions can be answered for any shape and

any 2-D transformations. In order to answer these questions the following abstract

objects are defined:

• the shape S consists of a set of points,

• the transformation space T is another set representing the possible transfor-

mation that the shape can undergo.

• pi ∈ I, i = 1 . . . n, is a set of n points belonging to the image I ⊂ R
2

• other prior knowledge (colour, edge orientation, moment of the surrounding

patch etc.) can be represented by a mapping of the set of points S into a

property space. However we consider that all points are identical and thus

this possibility is not considered here.

Here, a shape is considered to be a set of points, but the previous examples used

shapes that can be defined by their geometric properties. To define a shape as a set

of points allows the matching algorithm to work with a wider variety of objects of

which the shape may not be easily described in term of geometric properties. This

allows the shape position to be parameterised independently of its nature. Another

common approach used to describe a shape is by continuous contours; however,

the discrete approach has many advantages over this approach, one of its major

advantages is being able to take into account interior points, which bring significant

information about the object, when it is partially occluded.

Considering a set of points in the image space we would like to, somehow, quan-

tify the number of transformations that relate points of the shape with this set of

points. The smaller the number of compatible transformations, the more informa-

tion the set of points is contributing. Formally, we consider the set {t|∀pi ∈ I,∃sj ∈
s ⊂ S, t(sj) = pi, t ∈ T}.

So consider that the transformation space is the set of translations of R
2 and

the shape S to be a square of a given size. Then for a given point p of I, the set of

transformations that correspond a point of S to p, if the space of translations were

represented on an orthonormal plane, would look like the square S. Similarly for

when another point q of I is considered.

CHAPTER 4. SHAPE INFORMATION AND TEMPLATE REDUCTION 73

Now if we consider both points at the same time we have to consider the trans-

formations that put two points of S in correspondence with p and q. These trans-

formations are the intersection of the set of transformations that put a point of S

in correspondence with p and the set of transformations that put a point of S in

correspondence with q. This set may:

• be the empty set (∅), when the two points are too far apart.

• contain exactly one solution if the two points correspond to opposite corners

of the square.

• contain 2 solutions when the 2 squares of the transformation space intersect

in 2 points.

• contain an infinite number of solutions, when the 2 squares of the transfor-

mation space have their edges intersecting. This happens if the 2 points are

horizontally or vertically aligned and are close enough.

This shift in perspective, in which the transformation space is considered, is

the classical one that is used by Hough transform related algorithms. A point

on the image space is selected and according to the transformation space and the

shape under consideration all possible transformations that are compatible with

corresponding a point of the shape with the image point will get one vote. After

considering a certain number of points in the image space the transformations that

obtain a similar number of votes are transformations that bring the points of S in

correspondence with almost all the points of the image that were considered.

According to the nature of the shape and the transformation space, the set of

transformations that are compatible with placing points of a shape in correspondence

with a set of points of R
2 might be discrete points or manifolds of the transforma-

tion space. Explicitly, if we consider the topology of this set it might consist of

isolated point, surfaces or volumes of different dimensions, lower than, or equal to

the dimensions of the transformation space.

Knowing the shape we are looking for, and the space of the transformations that

describes the modifications by which the shape can be affected, we would like to

evaluate the quantity of information that is contributed by a set of points of the

image. However, the set of transformations that are compatible with the points

CHAPTER 4. SHAPE INFORMATION AND TEMPLATE REDUCTION 74

of the image under consideration might have different topological elements. For

instance, a set may consist of a few isolated points and a line of points of length

l. Assuming that the transformation space is of dimension 2 and that the quantity

of information is given by info(l), info() being a decreasing function of the number

of compatible transformations with the image points, then isolated points would

possibly not be taken into account since the length of an isolated point is null.

This is problematic since these points may contain the position of the shape and

contribute a significant amount of information.

To avoid this issue balls of radius δ are considered. Where δ corresponds to

the accuracy with which the transformation is known. The dimensions of the balls

(hyperballs) correspond to those of the the transformation space. By considering

the minimal number of balls that can cover the set of transformations we obtain

a number. The smaller this number, the better the shape state is known. If this

number is equal to 1, one may consider that the shape transformation is known with

sufficient accuracy.

Definition 1 Let T be the transformation space, Bδ(p) an open ball of the same

dimension than T , of radius δ and of centre p. P a set of points of the image, S

the set of points of the shape, C(P) the set of transformations compatible with the

points of the image. We define the quantity of transformations QT,S
δ (P) contained

in C(P) as:

C(P) := {t ∈ T |card(t(S) ∩ P) = card(P)}

QT,S
δ (P) := min card({Bδ(p)|p ∈ T, δ ∈ R, Bδ(p) ∩ C(P) 6= ∅}) (4.1)

A set of points P is said to uniquely characterise a shape transformation relative

to a transformation space T and with an error δ if QT,S
δ (P) is equal to 1.

In practice, when using images, a discrete bounded 2-D plane is considered. This

plane is divided into cells or pixels (picture elements) so the position of a point in

this space is approximated by the pixel encompassing it. Therefore, we deal with

a small 2-D surface instead of a single point. Similarly a template is, in practice,

given as a set of pixels. Considering that pixels are a set of points, in order not

to miss any possible compatible transformation, one should take into account all

transformations where the projection of a template pixel intersects an image pixel

CHAPTER 4. SHAPE INFORMATION AND TEMPLATE REDUCTION 75

that is a feature point. As a consequence, if we consider that T is the translation

space, the template is a pixel and the image contains one pixel as a feature, the set

of transformations compatible is a 2-D surface of the translation space.

We now consider a set of points S ′ extracted from a shape and we consider that T

is bounded. The following quantifies the information contributed by a set of points

of a shape relative to a transformation space T and an accuracy of δ.

IT,S
δ (S ′) := max

t∈T
QT,S

δ (t(S ′)) (4.2)

We call IT,S
δ (S ′) the characterising value of a set of points relative to a shape and

a transformation space. When the characterising value is equal to 1 it means that

for any transformation of the transformation space of this set of points the position

of the shape is characterised uniquely and completely, in that sense the information

brought by the subset of points is maximal. If the value is n it means that for a

given position of the transformation space the set of points is compatible with n

positions that are distant enough to be distinguished. Note that finding a set of

points in an image, that characterises uniquely the position of a shape relatively to

a transformation space, does not mean that the shape is necessarily present since

the points may have taken this shape by coincidence therefore a verification stage

is needed, however if the size of a characterising set of points for a shape is chosen

appropriately the number of verifications should be small.

When selecting a subset of points from a shape, the number of configurations

to consider quickly becomes large: for k point configurations out of n points of the

shape the number of cases to consider is
(

n

k

)

. Arguably, only small sets of points are

of interest in representing the object and therefore k should be small, e.g. 10 to 40

points, but the possible number of configuration that could represent the object may

be quite large. Monte Carlo methods and genetic algorithms are good candidates to

find configurations that are close to optimal. Details as to how to to evaluate I(S ′)

are given in section 4.5.

4.2 Self similar set of points

Thus far, the state of a shape has been characterised with a limited set of its points

extracted from an image. Another fecund perspective to examine this question is to

CHAPTER 4. SHAPE INFORMATION AND TEMPLATE REDUCTION 76

consider a group of p points from the shape and to consider where else these points

can fit the shape relative to a set of transformations. When the only transformation

that allows the points to fit the shape is the identity, then the configuration is

considered to be characteristic of the shape and will be qualified as such. If there

exists transformations that map the set of points to another set of points of the

shape then this set of points is said to be self similar. Two examples are given here:

1. We consider the problem of identifying a template image in a larger image.

If points can be uniquely identified, for instance using their surrounding pixel

values, and if only translations are considered, it suffices to match a point in

the larger image with the template image to determine the position of the

template image. Once a point of the template image is located, all other point

positions are known.

Nevertheless this is a different problem to the one we have been exploring up

to now since we have been considering shapes consisting of indistinguishable

points. Using distinguishable points requires less points to characterise an

object but, as a trade-off, more computation is needed to compare them.

However, the techniques discussed can be adapted to the case of distinguishable

points. Their advantages in terms of reducing the template size might be less

dramatic since templates using distinguishable points tend to be significantly

smaller. A balance has to be found between the degree of distinguishability of

points, its computational cost and the size of the set of characterising points

needed to identify the state of a shape.

2. Considering again points with unknown associations; one point cannot char-

acterise a shape since it could be any point of the shape. However, if there

is a set of two points having a unique configuration in the shape, i.e. if the

vector from one point to the other is different from any other vector between

2 points of the shape, then finding 2 points with the same configuration on an

image that uniquely contains the shape allows its position to be characterised.

Note that when the transformation space consists of translations, any shape

made of more than 2 points does have such a unique configuration of 2 points.

Consider 2 points of the shape that are furthest apart. Assuming that these 2

points have a self similar configuration of points relative to a translation then

CHAPTER 4. SHAPE INFORMATION AND TEMPLATE REDUCTION 77

there would exist 2 points that are further apart than these 2 points. Indeed,

the 2 points on a diagonal of the quadrilateral which corners would be the

4 above mentioned points would be further apart than the 2 points furthest

apart. This would be absurd and proves the existence of such a configuration.

For instance, a circle has a infinite number of such configuration of points:

points diametrically opposed. None are self similar relative to translations

and all of the are characteristic of the circle.

This also leads to an algorithm to identify the translation of an object: First of

all, the shape, a set of points extracted from a template image is considered. Since

we want the algorithm to be robust to noise, matching points should be redundant.

This avoids false matching when background points are present or feature points

of the object are not detected. As a consequence the template is not reduced to 2

points furthest apart but to a few pairs of points characterising the shape. The data

structures that are used to store the point associations and the image feature points

affect the speed of the algorithm. Then each feature of the image is alternatively

considered to be a point of the reduced shape, the point associations are probed and

the points that account for most of the association are considered as good candidates

to be points of the reduced shape. While checking for the associations the process

can be stopped earlier in case of an apparent mismatch. Other optimisation schemes

could be devised here. To guarantee that the obtained match is correct a verification

stage can be added.

The number of feature points in the image is critical. As a consequence the

choice of the feature detector is also critical. Indeed it should not be much slower

than the shape locator and it should also be selective enough to have as few points as

possible so that the location of the shape can be done efficiently. This remark might

seem trivial but it comes out of experience in trying to deal with a large amount of

features because a feature detector with poor discrimination was used (in our case

a Canny edge detector). This yielded tens of thousands of features for an image.

If the image is filtered with a selective feature detector and has fewer points it

leads to an efficient recognition algorithm.

Note that points that are far apart relative to the size of the object are more

likely not to be in a self similar configuration since there are fewer equivalent config-

urations in the object. Any other criteria that would reduce the number of possible

CHAPTER 4. SHAPE INFORMATION AND TEMPLATE REDUCTION 78

configuration of points from the whole set of points might have this beneficial prop-

erty. It is possible to find counter shape examples where points far apart have self

similar configurations, but since the number of such point configurations is limited

compared with all possible configurations, the likelihood of having self similar con-

figurations relative to a translation is smaller than taking any point configuration

from the shape.

Finding a criteria to determine a set of points for transformation spaces that

are different from the translation space does not seem trivial. Moreover since any

transformation space has its own characteristic, such a criteria should be sufficiently

generic. This is the problem that we tackle in the next section.

Note that the shapes that are considered should have many more than a few

features, e.g. hundreds or more rather than say tens.

4.3 Robustness to noise

We reiterate our objective: to reduce a shape template to a few points that char-

acterise the shape and to identify it in a larger image more efficiently. One issue

with real images is that some points belonging to the shape will be missing while

many other points from the background might disrupt the detection of the shape

by creating false positives. Also, additional points from the object underlying the

shape might appear due to illumination changes or even sensor noise.

To cope with this issue a minimal set of points characterising the shape is not

sufficient. Indeed, if a point of the configuration does not appear or, less probably, if

a set of points, not all belonging to the object characterised by the shape, matches

a minimal characteristic configuration of the shape, the shape position will not be

detected correctly.

One way to work around this issue is to consider characterising point sets that

remain characterising point sets even if one of their points is removed. Thus a margin

of error of one missing point is obtained. Similarly, characterising sets of points

might be built with a larger margin of error. Note that to construct a characterising

set of points with a margin of error of one missing point, it may be necessary to add

multiple points to a minimal characterising set of points. Also, each point added to

a characterising set of points decreases the possibility of a match with a random set

of points. It should also be noted that the more points are used to represent the

CHAPTER 4. SHAPE INFORMATION AND TEMPLATE REDUCTION 79

object, the more likely it is that some of them may be missing.

4.4 Template reduction, a simple example

Let us consider the shape S that consists of 7 pixels with its associated transforma-

tion space T that consists of horizontal translations in the range -2 pixels 2 pixels

that are represented in figure 4.7. L represents the look-up table where colours con-

respond to one or multiple transformations. There are 2 possible reduced templates

that consists of 1 pixel. They are shown in figures 4.8 A and B. There are multiple

possible reduced templates of 2 pixels, figures C and D are two examples. As for

figure 4.8 E and F they show two ambiguous templates that do not systematically

refer to a unique transformation. By observing the look-up table (L) in figure 4.7 it

can be seen that if one of these reduced templates was chosen, in the case where the

blue and black shaded pixel and the purple and black shaded pixel of the look-up

table were selected, it would not be possible to know if the transformation was a

translation by 1 or -2 pixels. Note that these 2 reduced templates are the only one

that are self similar relative to the transformation space (state space). Any reduced

templates with 3 pixels or more uniquely characterises the shape. Indeed none are

self similar; a systematical way to verifying this consists of using the look-up ta-

ble and for each transformation of the state space to check that the look-up table

provides a unique transformation; which is necessarily the correct one.

4.5 Evaluation of the characterising value of a set of points

A methodology to evaluate the characterising value of a set of points P from an

image is hereby discussed. Some experimental data is presented in section 6.2.

A bounded transformation space T is divided into small hypercubes h ∈ H such

that H is a partition of T . The reason why we consider hypercubes is because they

are easy to implement. However, the term “hyper-parallelepiped” would be more

appropriate since the size for different dimensions may differ.

Take S as being the set of points of the shape that undergoes a transformation

given by: t(S) := {t(s)|s ∈ S}. li,j are the elements of L, which is a 2-D array of

the size of the image, that correspond to the points overlapped by the pixel on line

i and column j noted Ii,j.

CHAPTER 4. SHAPE INFORMATION AND TEMPLATE REDUCTION 81

For each set of points h ∈ H and for each t ∈ h, t(S) is evaluated and a reference

to h is stored in li,j whenever Ii,j ∩ t(S) 6= ∅. This operation is not completely trivial

to implement and needs some approximation to be done in a reasonable amount

of time, but time is not critical since these operations can be performed offline.

However, the amount of computation can be huge, especially when working with

high-dimensional spaces in order, for instance, to take into account translations,

rotations, change of scale, shearing and perspective transformations. Once this is

completed, li,j contains the references to the hypercubes that contain a transforma-

tion that projects a point of the shape to the pixel Ii,j. We note hk
i,j, k = 1..nref the

hypercubes referenced in li,j.

It is now shown that the number of references nref that is contained by li,j is

equal to fQT,S
δ (Ii,j) with a ≤ f ≤ b where (a, b, f) ∈ R

3, a and b are two constants

that depends on the size of the hypercubes and the error ball.

All hypercubes are assumed to have the same size but the demonstration holds

with hypercubes of different size. In order to demonstrate it, one just has to consider

the extreme cases. If the minimal number of balls needed to cover one hypercube

is m then at worst the minimal number of balls to cover all hypercubes would be

m · nref thus QT,S
δ (Ii,j) ≤ m · nref . If a ball can intersect at most p hypercubes then

we need at least nref

p
balls to cover all transformations that are in the hypercubes

and thus nref

p
≤ QT,S

δ (Ii,j).

Lemma 1 ∃(a, b) ∈ R
∗2
+ , such that a · QT,S

δ (Ii,j) ≤ nref ≤ b · QT,S
δ (Ii,j)

The most unfavourable case being when a set of transformations, that can be

covered by a unique ball, lie on the boundary of multiple hypercubes. If the dimen-

sion of the transformation space is n, the number of hypercubes that cover the set

of transformations can be as high as 2n. As a consequence, in practice, not only

must nref be considered but also whether the hypercubes are contiguous or not.

Therefore, it is possible to have an evaluation of the quantity of the transforma-

tions compatible with a set of points P by considering:

QT,S
δ (P) ∼ card(

⋂

i,j|Ii,j∈P

⋃

k

hk
i,j) (4.3)

and as a consequence, it is also possible to evaluate the characterising value of a

CHAPTER 4. SHAPE INFORMATION AND TEMPLATE REDUCTION 82

subset of points S ′ of the shape by considering:

IT,S
δ (S ′) ∼ max

t∈T
card(

⋂

i,j|Ii,j∩t(S′) 6=∅

⋃

k

hk
i,j) (4.4)

which is much more computationally expensive to evaluate. In order to reduce

computation time it is recommended that the transformation space is sampled. For

instance by selecting a few transformations for each hypercubes, this may result in

a good approximation. Proofs, experiments and more theoretical studies remain a

future topic of research.

4.6 A generic algorithm for the pose estimation of rigid ob-

jects

Decimating the template shape and using it with a Hough transformation algorithm

is equivalent to reducing the number of transformations that a point in the image

space can vote for. Thus a 1 to n mapping is obtained with n being significantly

smaller than it would have been before the template reduction. Additionally, the

idea of the probabilistic Hough transform (PHT), which determines the state of

an object by randomly selecting a subset of the points in the image space, can be

used. On top of which, using the idea from the randomised Hough transform (RHT)

which consists of a n to 1 mapping from the image space to the parameter space,

the simultaneous selection of a few points P in the image space reduces further the

number of transformations compatible with these points (QT,S
δ (P)) resulting in a

few to few mapping. Algorithm 1 combines these three ideas. These three ideas aim

at reducing the number of computation to determine the pose of an object. The

decimation of the template does this by studying the shape of the object, the PHT

by considering only part of the points from the image space, which, for tracking

purposes, as most of the points considered in a region of interest belong to the

tracked object, should perform well, and the RHT by limiting the number of votes

to cast in the parameter space. In the next chapter, it will be shown that the usage of

a lookup table provides yet another way to reduce the amount of operations needed

to find the position of an object.

Examples of criteria that can be used in stage 2 are: when the transformation

space is distant invariant, are the distances between the selected points compatible

CHAPTER 4. SHAPE INFORMATION AND TEMPLATE REDUCTION 83

Algorithm 1: Outline of the proposed methodology to locate a shape in an
image using features.

Stage 1: Select p feature points from the image space.
Stage 2: Use different criteria to check if the feature points are compatible
with the object underlying the shape. If it is compatible go to stage 3 else go
back to stage 1.
Stage 3: Evaluate the transformations that are compatible with these
features and vote for them. The smaller the number of transformations the
more discriminative is this stage.
Stage 4: If one of the transformation that just get a vote on the previous
stage received enough vote go to stage 5 else continue with stage 1.
Stage 5: Verification stage. If the shape has not been identified correctly
remove the votes for this transformation and go back to stage 1. Else return
the object state.

with the distances of the points of the decimated template? When the transforma-

tion space is not distant invariant because scale, skew or projective transformations

have to be taken into account, a non geometric criteria such as the colour of the

features can be used. When scale is the only non distant invariant transformation

that is taken into account, the curvature of connected features may also be used.

Stage 2 is critical since it can reduce considerably the computation of the algorithm.

Moreover, the number of irrelevant transformations of the object location are thus

reduced significantly, which results in a more robust algorithm. Alternatively, stage

1 and 2 can be merged by selecting features according to one or more criteria.

The number of randomly selected features in stage 1 depends on the proportion

of features belonging to the object relative to the total number of features, how

much the template shape has been decimated and the transformation space under

consideration. Currently, this number has to be determined experimentally for each

given application. When the previous location of the shape is known features can be

selected in a constrained area and are more likely to belong to the shape, which sub-

sequently can greatly reduce the number of operations needed for the determination

of the shape position.

Similarly, the number of votes in stage 4, that is judged to be large enough to

determine that a transformation is good enough to be verified, has to be determined

experimentally since it depends on the proportion of feature points that does not

belong to the shape and that could be compatible with a transformation of the

shape. However this number should not be greater than
(

n

p

)

, n being the number of

CHAPTER 4. SHAPE INFORMATION AND TEMPLATE REDUCTION 84

object features and p being the number of randomly selected feature points at stage

1, otherwise it would mean that the same configuration of points belonging to the

shape have to be selected more than once. In practice, this number is much smaller.

Often stage 5 is omitted as the result from stage 4 is considered to be good

enough. This allows a simpler algorithm implementation and arguably a more robust

one, however the last stage may allow a better guarantee of the result than it would

be possible with the technique used in stage 4. Moreover, it allows more flexibility,

and depending upon the efficiency of the technique chosen for the verification stage,

a speed up might result with the right balance between the two stages. Indeed,

the number of votes necessary to decide on a transformation verification may be

decreased in such a way that the object transformation is found earlier.

The next chapter explains how stage 3 can be performed efficiently when an

approximation of the position of the object is known, for instance, when the motion

of the object is bounded and its previous position is known.

4.7 Summary

Considering a set of points characterising a shape and a transformation space, the

issue of selecting a subset of the points that can still characterises the original shape

has been discussed and developed.

Given a set of points, a shape and a transformation space the size of the set

of transformations compatible with matching the shape to the set of points was

considered and used to define the characterising value of a subset of points.

The relationship between self similarity between a set of points relative to a

transformation space and a characterising set of points of a shape was then explored.

The issue of the robustness of a characterising set of points to randomly positioned

points was mentioned and a definition for the margin of error of a characterising set

of point was proposed.

A practical algorithm based on the Hough transform was then developed to

measure the characterising value of a subset of points of a shape for a given bounded

transformation space. The equivalence of the result provided by the modified Hough

transform and our definition of the quantity of compatible transformations was

derived. This algorithm can be used to reduce the number of points of a template

such that recognition and tracking algorithms’ speed performances can be improved

CHAPTER 4. SHAPE INFORMATION AND TEMPLATE REDUCTION 85

without significantly impairing the robustness of the template.

Finally a methodology to estimate the pose of a rigid object was proposed and

discussed. The focus of the discussion was on different optimisation technique to

reduce the number of operations needed to determine the position of an object.

4.7.1 Future research It is possible to evaluate the reduced template for some

unbounded transformation spaces such as rotations and translations. It is sufficient

to consider a shape covered by all its possible translations and rotations. Since far

away translations does not intersect the shape and the set of rotations is limited the

same methods used for the bounded case can be employed.

For recognition, future work could include the development of a characteristic

set of points relative to a set of shapes and not a unique shape. The outcome of

defining, if possible, a scalable methodology to iteratively construct characteristic

sets of points of a shape when an additional shape is added to a set of shapes will

have significant consequences.

Finally, it should be explored if the concept of entropy which is linked with the

concept of information could be used to determine the size of the minimum number

of points needed to characterise a shape relative to a state space.

Chapter 5

The stencil estimator

5.1 Introduction

Inspired by [6] [95] [96], the use of stencils is proposed to estimate the position

of a shape, i.e. a set of points, in an image. It is shown that this estimator can

be efficiently evaluated using a variation of the Hough transform. In this chapter

italicised capital letters shall be used to represent sets.

5.2 The stencil estimator

The bounded transformation space T , which is the set of transformations a shape

can undergo, is partitioned into n subsets of possibly different sizes. In practice, to

ease the implementation, the subsets are “hyper-rectangles” that partition T . Each

subset U ⊂ T is associated with what we refer to as a stencil SU,O which is the set

of positions of the model features O (also referred to as the template or the shape)

occupied when the shape is moved according to the elements of the transformation

subset U .

SU,O = {t(p) : t ∈ U, p ∈ O}

In the remainder of this chapter, when there is no ambiguity, SU shall be used in

place of SU,O. These notations are illustrated by figure 5.1.

We define:
ΨO : P(T) → P(R2)

U 7→ SU,O

(5.1)

86

CHAPTER 5. THE STENCIL ESTIMATOR 88

which is the function that associates a transformation subset to its corresponding

stencil. P(E) is the set of all subset of E.

Given a set of n points P = {(xi, yi)}n
i=1 ∈ R

2 the stencil estimator is defined to

identify the set of the stencils that intersect the maximum number of points of P .

Definition 2 Let M be a partition of T , U ∈ M , O the object points and P a set

of points of R
2 . The Stencil Estimator (SE) is defined as:

SEM,O(P) := arg max
U∈M

card(p ∈ SU,O : p ∈ P) (5.2)

SEM,O(·) is the estimator used to determine the position of the shape. The remainder

of this section expands on a few properties of this estimator.

For a given point p, the span of a transformation set is defined as the maximum

distance between the resulting transformed points.

spanp(U) := max
s,t∈U

dist(s(p), t(p)) (5.3)

where dist(·, ·) is the Euclidean distance. The subscript p is omitted when the span

is independent of the object points; this is the case for translations. For a set of

points O, we denote spanO(U) as the maximum span over O:

spanO(U) := max
p∈O

spanp(U) (5.4)

We also use the following notations:

• ∀U ∈ M, Up := {t(p) : t ∈ U} = Ψ{p}(U)

• ∀t ∈ T, t(O) := {t(p) : p ∈ O}

Note that with these notations SU =
⋃

p∈O Up

Lemma 2 If ∀p, q ∈ O and ∀U, V ∈ M we have Up ∩ Vq = ∅ with U 6= V then

card(p ∈ SU : p ∈ t(O)) =

{

card(O) if t ∈ U

0 otherwise

Demonstration: t ∈ U , thus t(O) ∈ ⋃

p∈O Up = SU it follows that card(p ∈ SU : p ∈
t(O)) = card(O) if t ∈ U .

CHAPTER 5. THE STENCIL ESTIMATOR 89

If V 6= U, SV ∩ SU = (
⋃

p∈O Vp)
⋂

(
⋃

p∈O Up) thus SV ∩ SU =
⋃

p,q∈O(Vp ∩Uq) = ∅

and therefore card(p ∈ SV : p ∈ t(O)) = 0 if t ∈ U �

According to this lemma, a necessary condition for a stencil SV to receive votes

from t(O) with t ∈ U 6= V is that Up∩Vq 6= ∅. This specific case may occur when the

object’s points are “sparse” enough and the partition of the bounded transformation

space thin enough so that the stencil of a point does not overlap the stencil of any

other point. Moreover, for a given point p, the condition Up ∩ Vp = ∅ is true only

if translations are considered but becomes false when additional degrees of freedom

like scale transformations or rotations are considered.

Lemma 3 If t ∈ T , a set of transformations that is distance invariant, and if

∀U ∈ M, spanO(U) < minp,q∈O,p6=q dist(p, q)

then ∀U ∈ M,∀p ∈ O, card(t(O) ∩ Up) ≤ 1

Demonstration: If ∃q ∈ O such that t(q) ∈ Up then ∀r 6= q ∈ O we have:

spanp(U) ≤ spanO(U) < dist(q, r) = dist(t(q), t(r))

Thus, t(r) /∈ Up �

In other words, under these conditions the stencil of a point can receive at most

one vote from t(O).

Theorem 1 If T is a set of translations of R
2, if t ∈ U and

if ∀V ∈ M, spanO(V) < minp,q∈O,p6=q dist(p, q)

then SEM,O(t(O)) is unique and equal to U

Demonstration: U ∈ SEM,O(t(O)) is trivial since card(t(O) ∩ SU) = card(O)

which is the maximum number of votes a stencil can get.

It will now be shown that all other stencils will obtain fewer votes. First consider

the case card(O) = 1 then if t ∈ U, t(p) ∈ Up by definition and t(p) /∈ Vp because we

are in the case of a translation and Up ∩ Vp = ∅

We now consider the case card(O) = 2, O = {p, q}. We assume that ∃V 6= U ∈
M such that SV ∩ t(O) = 2 because Up ∩ Vp = ∅ it means that t(p) ∈ Vq and

t(q) ∈ Vp which means that ∃t1, t2 ∈ V such that

{

t1(p) = t(q)

t2(q) = t(p)
Since we are only

considering translations this can be written:

{

t1 + p = t + q

t2 + q = t + p

CHAPTER 5. THE STENCIL ESTIMATOR 90

⇒ 2(p − q) = t2 − t1 ⇒ 2‖p − q‖ = ‖t1 − t2‖ < span(V) which is absurd since

‖p − q‖ > span(V).

Now consider the general case: card(O) = n, n > 2 ∈ N, O = {pi}n
i=1. We

are going to show that it is inconsistent to assume that ∃V 6= U ∈ M such that

card(SV ∩ t(O)) = card(O) with the previous hypotheses. According to lemma 3,

card(Vp∩t(O)) ≤ 1 thus it follows that ∀p ∈ O, card(Vp∩t(O)) = 1. Since Up∩Vp = ∅

∀pi, pj ∈ O, i 6= j,∃tij ∈ V, tij(pi) = t(pj) in other words, this hypothesis implies that

there is a set of translations belonging to V that generates a permutation without

fixed points between O and t(O). Thus, there exists a cycle of size m comprised

between 2 and card(O) such that:

tij(pi) = t(pj) (1)

tki(pk) = t(pi) (2)

. . .

tjα(pj) = t(pα) (m)

By multiplying the first equality by m − 1 and subtracting all other equalities we

obtain: tij − tki + · · · + tij − tαj = m(pj − pi) ⇒ m‖pj − pi‖ ≤ (m − 1) span(V).

Which is absurd since m‖pj − pi‖ > m span(V) and thus proves the uniqueness of

the solution �

The practical results of this theorem are limited since, in reality the accuracy

with which the features are located depends on the selected feature detector and

there are a number of false positives and false negatives due to various reasons

(e.g. discretisation, background objects, occlusion, accuracy of the feature detector).

Moreover, more complex transformations than translations are often of interest.

Note that if transformation spaces with more degrees of freedom are considered,

in order to take into account rotations or scale changes for instance, the property

Up ∩ Vp does not hold any longer and the stencil estimator might indicate multiple

sets. However, for rotations, as tests have indicated, this does not seem to be a big

problem. The choice of partitioning T into hypercubes, which seemed easier to im-

plement, might have beneficial properties regarding the robustness of the estimator.

This result reinforces the intuition that having sparse features reduces the feature

sets compatible with a stencil as mentioned in [6]. Also, the estimator can be used

to give a first approximation of the position of the object. Having multiple answers

is thus not a big issue.

CHAPTER 5. THE STENCIL ESTIMATOR 91

5.3 Robustness

Some aspects of robustness have already been discussed in section 4.3. In order to

quantify robustness and characterise how well the stencil tracking can cope with

disturbances, a few definitions are proposed. The ideal case, where only object fea-

tures are present, differs from real image data. These differences are often classified

into two categories:

• false positives, the set of features that appear and that could not have been

predicted knowing the position of the object. We denote them as P .

• false negatives, the set of features that would have been predicted knowing the

position of the object and that are missing in the filtered image. We denote

them as N .

Imperfections of the feature detector, which may be tuned to influence its rate of false

positives and negatives, are not the only cause of false positives and false negatives.

Indeed, since the object is not alone in the scene, background elements provide

false positive features. The tracked object may also be occluded thus generating

additional false positive and negative features.

Definition 3 The margin of error (ME) of a stencil relative to a set of stencils is:

MEM(SU,O) := min
P,N,t∈U

(card(P) + card(N)) :

∃V 6= U ∈ M, V ∈ SEM,O((t(O) − N) ∪ P) (5.5)

with M being a partition of the transformation T , U and V elements of M and P

and N sets of points of N
2

For a given stencil, SU,O, its margin of error is defined such that, for any trans-

formation t ∈ U , the margin of error represents the minimum number of feature to

remove from t(O) and to add to the image such that another stencil obtains the

same number of votes. In other words, this defines the minimum number of errors

that might trigger a different stencil than the desired one.

Definition 4 The overall margin of error ME of a stencil estimator is:

ME(SEM,O) := min
U∈M

MEM(SU) (5.6)

CHAPTER 5. THE STENCIL ESTIMATOR 92

This represents the minimum margin of error of all stencils of the stencil estimator.

In other words, this defines the minimum number of errors that might trigger an

undesirable answer from the stencil estimator. A number of questions arise:

1. Is it possible to increase the margin of error as defined?

2. Does the margin of error accurately characterises robustness?

3. Is it possible to keep the same robustness while increasing the speed of the

algorithm?

4. How does decimating the template influence the margin of error?

To analyse these questions we have undertaken a few tests, but before presenting

the results, the implementation of the stencil estimator is first discussed.

5.4 Implementation of the tracking algorithm

The algorithm implementation to track an object using stencils is described here.

Due to the constraints of the digital domain, only integer pairs are considered. So,

instead of computing SU , only SU := SU ∩ N
2 is evaluated.

First, the pre-computing stage is described, and since it is conducted off-line, time

is not an issue as long as computation times are acceptable. Figure 5.2 presents a

flow chart of this stage. The set O of feature point coordinates that describe the

shape is first extracted from an image that shows the object to be tracked. A Canny

edge detector was used but any other feature detectors could also have been used.

A trade-off between the number of features resulting from the filtering stage and the

time it takes to extract these features has to be found when selecting and tuning

the feature extractor. The same feature detector is used to filter images during

live tracking and thus it has to be fast. Moreover, it is generally faster to identify

an object if a few reliable features characterise it. This is true for the presented

algorithm. A list data structure can be used to store this set of features.

The transformation space is then chosen to characterise the set of possible trans-

formations the shape can undergo between 2 frames. According to the precision

required to locate the shape, the transformation space is divided into a number of

subsets such that the maximum distance between two transformations in a subset

CHAPTER 5. THE STENCIL ESTIMATOR 93

Figure 5.2: Pre-processing stage

does not exceed the precision needed. To implement this a multidimensional ar-

ray, where each dimension corresponds to a transformation dimension, can be used.

Each element corresponds to a sub-transformation set.

Then, the most computationally expensive stage of the pre-tracking stage is

performed, the stencils are computed and a 2-D array containing list of references

can be used to store them. These references point to the multidimensional array of

sub-transformations. To obtain this 2-D array, the list of feature points is used and

these feature points are transformed according to the set of sub-transformations

that an element of the multi-array represents. For each coordinate obtained, a

reference to the sub-transformation element is added to the corresponding elements

of the 2-D array. Once this stage has been performed the 2-D array contains all

the information necessary to identify a stencil. This 2-D array can be considered as

the one-to-multiple element mapping that associates to each point p ∈ N
2 the set of

transformation sets of M that transforms a feature point of O to the point p:

array : N
2 → P(M)

p 7→ {U : SU ∩ p 6= ∅}
(5.7)

CHAPTER 5. THE STENCIL ESTIMATOR 94

Indeed, for each element of the 2-D array that can be considered as a 2-D coor-

dinate, a list of the references of the sub-transformations that transform a point

of O to this coordinate is available. Given this 2-D array and a reference of the

sub-transformation, the coordinates of the points of the corresponding stencil can

be extracted by examining the 2-D array. This is the representation of (SU)U∈M .

Figure 5.3 presents a flow chart of the tracking stage, it is performed as follows.

The initial position of the object has to be determined. This can be done manually

or using a detection algorithm. The detection algorithm is crucial in practice since,

due to occlusion for instance, the tracking of the object can fail. The detection

algorithm will then serve to re-initialise the tracking. Since detection algorithms

are usually slower, because they are searching for the object in the whole image, it

is not usually possible to use them directly for tracking. However, this distinction

has become increasingly blurred over time due to the advancement of detection

algorithms that are able to track objects under certain conditions.

The feature points, P , of the following image are extracted and their coordinates

are expressed relative to the previous location of the shape. In practice, only feature

points in the surrounding of the previous location of the object are needed. The

coordinates are then used to look up the 2-D array of references. For each feature

point, counters, cU , where U ∈ M , corresponding to the references listed by the

element of the 2-D array, are incremented. This is equivalent to voting for each of

the stencils covering a feature point. At the end of this process

cU =
∑

p∈P

{

1 if U ∈ array(p)

0 else

The reference that has the highest count is then considered to correspond to the

subset of transformations that contains the transformations the shape has under-

gone. A transformation from this subset is taken, for instance, one that minimises

a distance with the other transformations of the subset, and, the new estimated po-

sition of the shape is evaluated by combining this transformation with the previous

estimated position of the shape.

For more details, the reader is invited to refer to appendix E where a minimal

C++ implementation for tracking objects that translate in the 2-D plane is provided.

For the EU FP6 MiCRoN project a more complex implementation was developed.

CHAPTER 5. THE STENCIL ESTIMATOR 95

Figure 5.3: Tracking stage

CHAPTER 5. THE STENCIL ESTIMATOR 96

To be able to track objects depth-wise a stack of images was used. Indeed, because

of the narrow depth of field of microscopes when objects are moving relative to the

microscope lens their appearance changes. More details on how to take advantage of

the focus effect for microscope images is provided in section 6.1 page 100. Rotations

were also taken into account and it is shown how the algorithm can be parallelised.

An analysis of the time and space complexity of the algorithm is also discussed.

The implementation was tested and combined with a detection stage as part of

the MiCRoN project. The final software is available on the web and can be found in

the MMVL wiki page1. Other implementations are available in the Mimas library

[97].

5.5 Stencil reduction

When profiling the tracking algorithm, most of the time is spent incrementing votes.

This suggests that reducing the number of stencils covering each feature point would

improve the speed of the algorithm. Moreover, most of the memory space is used

to store the look-up table containing the stencils. Reducing the size of each stencil

will reduce the memory footprint. Note that the algorithm speed and memory usage

was not an issue for our tracking application. However, there are three reasons to

do this:

• In embedded systems, memory and processing power are limited.

• The number of degrees of freedom of the tracking algorithm can be increased.

• Tracking is often only one component of a larger system. So if fewer resources

are used by this stage then more can be used by other stages, either by lower

level, or higher level algorithms.

The 2-D array structure that has been used to store the stencils can be used to

achieve this aim. In the previous chapter we mentioned reducing shapes, however

this idea emerged chronologically after we tackled this issue and with hindsight,

the issue would have been tackled slightly differently. In other words, instead of

directly reducing the template of the object to a characteristic set of points and

then create stencils from it, the stencils were first generated and then reduced. The

1http://vision.eng.shu.ac.uk/mmvlwiki, October 2007

CHAPTER 5. THE STENCIL ESTIMATOR 97

reduction has to be done in such a way that a set of feature points that correspond

approximately to the searched shape would still trigger the same stencil, even after

the area reduction of the stencils.

Considering the 2-D array mapping that associates a list of references to a fea-

tures point p, the time to increase all references is proportional to the size of the

list, i.e. |array(p)| := card(f(p)). However, when the list of references is long, not

only does the point not contribute much information, since any of the references

might contain the transformation that is being looked for, but it also takes more

time to account for these features than a feature that would contribute more relevant

information.

This led to the idea of decimating the points of the stencils that are overlapped

by many other stencils. In order to retain robustness to occlusions that may happen

on localised area, i.e. on one part of an object, the decimation should be done

across the whole stencil. Moreover, the area of a stencil should remain large enough

to receive a significantly larger amount of votes when it covers the shape than the

number of votes received by other stencils. To implement this we proposed algorithm

2.

Algorithm 2: Stencil decimation

foreach stencil S do

while the stencil area is too large do

foreach point p of S do
calculate |array(p)|
evaluate

∑

p∈S |array(p)|
randomly eliminate a point according to its weight g(|array(p)|

P

p∈S |array(p)|
)

Where g is a monotonically increasing function.

This algorithm was tested in various ways using the identity function for g. The

results are presented and discussed in section 6.2 page 112. We mentioned the g

function because it is unlikely that the identity function provides the best results.

The random elimination of a point according to its weight was directly inspired

from the propagation stage of particle filters. The higher the weight of a point, the

more likely it is to be removed. As tests show in section 6.2, the method works fine

but much more investigation is needed to understand why and to explore how to

CHAPTER 5. THE STENCIL ESTIMATOR 98

improve it. The previous chapter had presented such an attempt.

The presented algorithm is just one of many ways to decimate the stencils. Al-

though no direct (algebraic) link can be established with the margin of error2, as

has been defined in this chapter, it seems logical to think that the more a stencil is

overlapping another stencil the more likely it might be responsible for an incorrect

estimation of the shape state. Hence, a policy that favours the reduction of the area

of a stencil in its area that are overlapped by its most overlapping stencils3 may

decimate the stencil in a way that does not alter the robustness significantly.

The random picking of the stencil points help remove points from the whole

area resulting in a possibility for points having a high weight to remain. The tests

that have been conducted show that by using this approach, the remaining points

are spreaded over the whole stencil area. We propose another scheme to maintain a

uniform point repartition over the stencils in order to ensure that the stencil is robust

to occlusion: a map of the stencil could be used to decrease the probability of a stencil

point to be selected when a previously discarded point lies in its neighbourhood. In

other words, the weight associated with each point of a stencil could be altered

to decrease the probability of a point to be removed if a neighbouring point was

previously removed.

Lastly, the minimum area size of a stencil has to be carefully considered. It

should be as small as possible to optimise speed and memory but large enough

to resist features that are not generated by the tracked shape. The next section

provides some guidance on parameter tuning.

5.6 Summary

It has been demonstrated that in ideal conditions the stencil estimator can be used

to uniquely determine the location of a shape when the transformation space consists

of translations. In general this property does not hold when a transformation space

has a higher number of dimensions, for instance, when scale changes or rotations

are considered, however, in practice, and especially if the set of points of the shape

are sparse, the stencil estimator yields almost always the expected result. This will

2Because the transformation that defines the margin of error might not be covered or only
partially covered by the stencil that most covers the stencil under consideration.

3Determining the most overlapping stencils is easy to implement using the tracking algorithm:
the set of points of the stencil can be fed into the tracking algorithm. The number of votes obtained
by a transformation space correspond to the size of the overlapped area

CHAPTER 5. THE STENCIL ESTIMATOR 99

be visible from the experiments presented in section 6.2, page 112

A few definitions were proposed to characterise the robustness of the stencil

estimator. Then the implementation of the stencil estimator using the bounded

Hough transform, that is sometimes referred to as the stencilled Hough transform,

was discussed. Finally an algorithm to decimate stencils in order to increase perfor-

mances without altering significantly the robustness of the tracking is proposed and

discussed. Testing of the stencilled Hough transform algorithm and the decimation

algorithm on synthetic data are provided in section 6.2 page 112.

Chapter 6

Experiments

6.1 Tracking of Microscopic Objects

6.1.1 Context and experimental setting Microscope images have a very nar-

row depth of field. Consequently part of the object can be in focus while the rest is

out of focus as shown in figure 6.1. In these images, 1 pixel translates to approxi-

mately 1 µm and the field of view is about 1 mm2. The stencilled Hough transform

has been modified to make use of the fact that the global appearance of the object

changes with its distance to the camera. Figure 6.2 shows a diagram of the set-up

used for the experiments.

In order to estimate the depth position of the object, a stack of images of the

object, taken at different distances from the lens of the microscope, is used. The

model of the object consists of the features extracted from this stack of images.

Figure 6.3 illustrates the model of the micro-gripper that can be seen in figure 6.1.

The vertical distance between each pair of images is approximately 10 µm. Thus a

better resolution is achieved for the horizontal translations than for the translation

along the axis of the microscope. The top left corner image is at the bottom of the

stack and the stack is sorted left to right and top to bottom. Since edges are blurred

when the gripper goes out of focus, there are fewer features at the beginning and

the end of the stack. The maximum number of features is obtained when most parts

of the gripper are in focus. So as to obtain these features, as speed is critical during

tracking, a simple feature detector that is fast was used.

Let L be the look-up table of the stencils that are created by moving the model

image according to all sub-transformations. This look-up table is a 2-D array and,

100

CHAPTER 6. EXPERIMENTS 101

Figure 6.1: Images from the gripper tracking sequence. The grippers in the left and
right images are at different depths.

Figure 6.2: Diagram of the set-up used for the experiments. A photo of the set-up
can be found figure 1.4, page 6.

CHAPTER 6. EXPERIMENTS 102

Figure 6.3: A subset of the stack of images that serves as the gripper model

CHAPTER 6. EXPERIMENTS 103

in the gripper case, its size was about 20 % larger than the model image. This value

depends on the selected transformation space which depends on how the object

motion can be bounded. Conceptually, during the tracking phase, the look-up table

is positioned over the image at the previous position of the tracked object. The

stencil that encompasses the most features, relative to its size, is considered to

indicate the displacement that the object has undergone. A reference point was

taken at the centre of the model images. Let f = (x, y) ∈ N
2 be the position of an

edge feature relatively to this reference point. In this case, the transformation space

is a set of R
3×N and we denote S = {[Tx1 , Tx2], [Ty1 , Ty2], [θ1, θ2], n} a sub-set of this

space. Rotations are centred about the reference point. By selecting the reference

point at the centre of the images of the stack, the displacement of the features due

to the rotational of the stack is reduced component and results in a more compact

look-up table.

6.1.2 Algorithm

Pre-processing Stage

The following procedure can be used to obtain the stencil associated with a subset

of transformations S:

1. Select the image i of the stack that corresponds to the depth component of S.

2. Consider the rotation part of the subset of transformations; each feature f is

transformed in a set of points that forms an arc centred about the reference

point, with angle θ2−θ1 where the middle point of the arc is f rotated around

the reference point by θ1+θ2

2
. To determine the pixel points, or digital points,

that correspond to this description, [θ1, θ2] is sampled every δθ. Tests show

that for the tracking of the gripper 0.5◦ is sufficiently small. However, this

value depends on the model size, which is expressed in pixels. Thus, a set of

digital points P1 is obtained. If a digital point is selected multiple times it

should be considered only once.

3. Consider now the translation part [Tx1 , Tx2]. For translations, the natural

distance is expressed in pixels. Microscope calibration can be used to de-

termine the exact corresponding real-world distance. As the transformation

CHAPTER 6. EXPERIMENTS 104

space is divided, the bounds of the segment Tx1 and Tx2 may not be inte-

gers. Different policies to determine a range with integer bounds can then

be applied. We first chose to consider the smaller range with integer bounds

that include [Tx1 , Tx2]. However, when the object moves in the middle of two

ranges, two stencils are likely to receive a high count of features. Another

policy would be to take the closest integer for each bound. Once a choice

has been made, the set of points P2 obtained by the translation is calculated.

P2 = {(x + tx, y) : tx ∈
(

pl([Tx1 , Tx2]) ∩ N
)

and (x, y) ∈ P1} where pl is a

function that describes the chosen policy.

4. Proceed in the same way to obtain P3, the set of digital positions obtained by

translating the set P2 along the y-axis.

5. P3, which corresponds to the positions of the model feature if the model was

moved by the set of transformations of S, is used to fill L by adding a reference

to S corresponding to each point of P3.

Figure 6.4 illustrates some of the stencils obtained. Although it may not seem

apparent, stencils with the same shape are slightly translated or rotated relatively to

each other. Different shapes in this case correspond to stencils coming from different

images of the stack.

Tracking Stage

The tracking stage is now described. Let p̂t := (x, y, z, θ) be the estimated position

of the object at frame t through four degrees of freedom. The tracking is performed

as follows:

1. The region of interest (RoI) of the image is selected. It is centred on (x, y)

and has the size of L and orientation θ.

2. Features are extracted using the same edge detector used to extract the model

features and their position is expressed relatively to the centre of the RoI with

a frame rotated by θ.

3. For each feature, we examine L at the corresponding position of the feature

and increment the corresponding stencils by 1.

CHAPTER 6. EXPERIMENTS 105

Figure 6.4: A sample of some of the stencils produced

4. The stencil with the greatest hit number (votes) is considered to be the one

associated with the sub-transformation S that contains the movement of the

object.

5. p̂t+1 = (x +
Tx1+Tx2

2
, y +

Ty1+Ty2

2
, n, θ + θ1+θ2

2
)

A working system combined with a recognition algorithm [37] has been success-

fully implemented. The algorithm implementation, which relies on the open source

Mimas vision toolkit framework [97], as well as some test data are available on the

Internet [98]. It serves as a good starting point to further test the algorithm.

6.1.3 Complexity analysis Experimental data that demonstrates how param-

eter variations affect the speed and space complexity of the algorithm is hereby

provided. In order to carry out this comparison we tracked the micro-gripper shown

previously on a video sequence of 470 frames.

The feature extractor was tuned to obtain a successful tracking in more than

90 percent of the 470 images. We then obtained a model that had 10 focus planes

having respectively from top to bottom containing 17, 33, 51, 75, 206, 324, 258, 71,

26, 10 features. Figure 6.3 shows the model for the gripper. The last image has

CHAPTER 6. EXPERIMENTS 106

not been shown since it does not hold enough features and is not relevant for the

tracking. Figures 6.6, 6.5 and 6.8 summarise the results of the tracking experiments

carried out with 4 different sets of parameters.

Let us first examine the pre-processing stage. If N is the number of model

features and O the number of possible discrete transformations, by construction of

L, a maximum of N ×O feature locations have to be determined and stored. Thus,

O(N × O) represents both the maximum space complexity of the algorithm and

the speed complexity of the pre-processing stage. Notice that O changes with the

power of the transformation dimensions i.e. doubling the size of the transformation

space multiply by approximately 2d the memory usage and the pre-processing time,

d being the number of dimensions. However, if we look at figure 6.6, the outcome is

unexpected. The complexity analysis needs to take into account another important

factor: how the state space is divided. The time complexity for the pre-processing

stage is not affected by this factor since the transformed models have to be evaluated

for every digital transformation. However, the space complexity depends on how

the transformation space is divided. To understand this consider a few transformed

models, a certain number of their points will be the same, if these transformations

belong to the same subset of transformations of the state space all these points will

refer to only one subset of transformations, but if the transformations belong to

different subset some of the points will refer to multiple subsets therefore increasing

the size of the memory space used. When the points are not sparse, which is the

case with the feature detector we are using, this phenomena is not negligible.

Returning to figure 6.6, the parenthesised values allow easy comparison of timings

and memory usage between the different tests. Reference value 1 has been taken for

the first experiment on the top left corner of the table. First of all notice that it is

not possible to double the depth precision as we have chosen a value close to the

limit of the depth resolution. If we take more images of the object they will not be

different enough to be discriminated by the algorithm. However, it would be possible

to increase the resolution on the depth axis by having a camera with a narrower

depth of view which would also bring a narrower operating field to simultaneously

see different objects.

From the above analysis precision should not affect the memory usage. However,

figure 6.6 shows that the memory usage has increased significantly (2.77 times more).

This is partly due to our policy to include pixels that intersects a transformed feature

CHAPTER 6. EXPERIMENTS 107

How dimension are divided:
translation along x, along y, depth, rotation

Dimension sizes:
pixel, pixel, number of images, degree

Preprocessing time
Number of elements stored in L

Asymptotic behaviour of the tracking

Figure 6.5: Key for figure 6.6

even if the intersection is very small. The effect is not negligible because our stencils

are “thin”.

It can be noticed, when comparing the top-left and the bottom-left parts of the

array, that increasing the transformation space by 8 results in an increase of 6.19 in

the space complexity, this is because rotational transformation unlike translations

do not increase proportionally the stencil area.

The tracking stage is now considered. When looking for the object, a region of

interest, having the same size of L and which holds P image features, is considered.

Considering that on average each element of L refers to a constant number of stencils

then the tracking complexity should be approximately proportional to the number

of features present in the region of interest, so the average time complexity should

be O(P). Figure 6.8 confirms that this hypothesis is a good approximation, the

linearity between the number of image features and the time to process an image

appears clearly. To further demonstrate this relationship we plotted, figure 6.9, the

number of votes against the number of features of a tracked image. Notice that on

figure 6.9 the trend line forks for small numbers of image features. This links with

the similar pattern that is visible on the bottom right graph of figure 6.8.

Figure 6.6 and 6.8 show that the speed varies with the precision and the size

of the search area in a non trivial way. The variation depends, amongst others, on

the feature density and the shape of the object model. The trade-off between speed

and precision and between the size of the search area boundary and the speed of the

tracker is clear. The complexity analysis provides an idea of the trend behaviour of

the speed of the tracker, so as to be able to forecast and guarantee the real speed

of the algorithm requires to test the implementation.

CHAPTER 6. EXPERIMENTS 108

Precision
-

Tracked
area

?

4, 4, 10, 2 (1)
20, 20, 10, 4 (1)

12.13 s (1)
561 648 (1)

2.30 × 10−2x + 1.2 (1)

9, 9, 10, 3 (7.59)
20, 20, 10, 4 (1)
21.34 s (1.76)

1 556 776 (2.77)
7.1 × 10−2x + 6.79 (3.1)

9, 9, 10, 3 (7.59)
40, 40, 10, 8 (8)
68.29 s (5.63)

3 477 125 (6.19)
9.77 × 10−2x + 0.87 (4.25)

18, 18, 10, 6 (60.75)
40, 40, 10, 8 (8)
166.93 s (13.71)

11 882 872 (21.15)
28.2 × 10−2x + 42 (12.26)

Figure 6.6: Tracking using 4 sets of parameters, see figure 6.5 for keys and figure
6.1.3 for the corresponding tracking behaviour

 2

 4

 6

 8

 10

 12

 14

 16

 50 100 150 200 250 300 350 400 450 500

T
im

e
to

 lo
ca

te
 th

e
ob

je
ct

 (
m

s)

Number of extracted features from the tracked image

2.30e-2x+1.2
 5

 10

 15

 20

 25

 30

 35

 40

 50 100 150 200 250 300 350 400 450 500

T
im

e
to

 lo
ca

te
 th

e
ob

je
ct

 (
m

s)

Number of extracted features from the tracked image

7.1e-2x+6.79

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 50 100 150 200 250 300 350 400 450 500

T
im

e
to

 lo
ca

te
 th

e
ob

je
ct

 (
m

s)

Number of extracted features from the tracked image

9.77e-2x+8.7
 40

 60

 80

 100

 120

 140

 160

 180

 50 100 150 200 250 300 350 400 450 500

T
im

e
to

 lo
ca

te
 th

e
ob

je
ct

 (
m

s)

Number of extracted features from the tracked image

0.282x+42

Figure 6.7: Speed comparison of the tracking of the gripper using different param-
eters

CHAPTER 6. EXPERIMENTS 109

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 50 100 150 200 250 300 350 400 450 500

T
im

e
to

 lo
ca

te
 th

e
ob

je
ct

 (
m

s)

Number of extracted features from the tracked image

Synthetic comparison of the 4 complexity tests

0.282*x+42
0.0977*x+8.7
0.071*x+6.79

0.023*x+1.2

Figure 6.8: Visual comparison of the asymptotic tracking behaviour

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 50 100 150 200 250 300 350 400 450 500

N
um

be
r

of
 v

ot
es

Number of points features

Relationship between features and votes

Figure 6.9: Number of stencil increment versus number of image feature

CHAPTER 6. EXPERIMENTS 110

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50 100 150 200 250 300 350 400 450 500

T
ra

ck
in

g
tim

e
(m

s)

Number of point features of the current image

Comparison using Qt threads and boost threads

2 Qt thread
2 boost threads

Figure 6.10: Comparison of Qt threads and boost threads, both implementation
uses Qt mutexes

6.1.4 Parallelisation The algorithm can be easily parallelised as follows: for

each thread/processor we associate an array L in which a subset of the stencils is

stored. The tracking can thus been carried out simultaneously by different thread-

s/processors.

Experiments were done with different implementations using threads from the

Qt library, Boost library and different synchronisation primitives (mutex, condition

and barrier).

In our test sequences threads from the Boost library were marginally faster and

presented more consistent timings (perhaps due to the display thread of the Qt

library that was used and that could have interupted more often the Qt threads)

as shown in figure 6.10. It was also found that implementations which launch new

threads for each new image will track slower. We were unable to find a reason

why, since launching a thread should be extremely fast, we suspect that this is due

to cache misses on the CPU. Figure 6.11 compares a few implementations of the

parallelisation. The best implementation obtained was by using permanent Boost

threads synchronised with barrier primitives.

CHAPTER 6. EXPERIMENTS 111

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 50 100 150 200 250 300 350 400 450 500

T
ra

ck
in

g
tim

e
(m

s)

Number of point features of the current image

Using 2 threads with different inplementations

Using boost condition primitive to synchronize threads
Threads are launched for each new image

Using boost threads with boost barrier synchronisation primitive

Figure 6.11: Comparison of the parallelisation on 2 processors using different im-
plementations

The best implementation was then used to compare the tracking speed using one

and two threads. The results are shown in figure 6.12. The asymptotic speedup is

0.089
0.056

= 1.59 which corresponds to an asymptotic parallelisation efficiency of 1.58
2

=

79%. Notice the few outliers that appear on the different figures which are probably

due to time slicing.

6.1.5 Summary In this section it was shown how the stencilled Hough transform

can be used to track rigid objects under a microscope in real-time (12 fps here). The

change in appearance of the object has been taken advantage of to track the object

depth-wise.

One pitfall is a lack of a recovery mechanism when the tracker fails, for instance

if the gripper goes out of focus. To solve this, the tracker has to be coupled with

a robust recognition algorithm that also serves as the initialisation process for the

tracker.

The technique was adapted to track microscopic objects with 4 degrees of freedom

in images with limited depth of field. The usage of colour cues, edge orientation or

CHAPTER 6. EXPERIMENTS 112

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 50 100 150 200 250 300 350 400 450 500

T
ra

ck
in

g
tim

e
(m

s)

Number of point features of the considered image

Comparison on a AMD Athlon MP 1600+ bi-processor computer
 with SMP architecture

Using 1 thread
With 2 threads

0.089x + 8.4
0.056x + 6.9

Figure 6.12: Speed comparison, one thread versus two threads

different kind of features are a few of the possibilities to further improve the speed

and robustness of the algorithm.

Finally, we have shown that parallelisation significantly increases the speed of

tracking. An implementation in C++ as well as test data is available on the web

under the title “MiCRoN vision”.

6.2 Testing of the stencilled Hough transform using syn-

thetic data

6.2.1 Experiments and results In order to test the robustness of the stencil

tracking algorithm, in a controlled manner, artificial images were generated. An

arbitrary set of points was chosen and translated across an empty image. The

displacement of the shape from one image to another was randomly selected in the

range allowed by a chosen transformation space. Also, the movement of the shape

was constrained to a certain distance out of the bound of the image. By using

an arbitrary set of points, results were obtained independently of a given filtering

method.

CHAPTER 6. EXPERIMENTS 113

A pixel can be in two different states, a “feature point” state or a “no feature

point” state. To evaluate how the stencil reduction method copes with disturbances,

salt and pepper noise was added to the image sequences. Salt and pepper noise

provides an extreme test case not present in real sequences, which enables the testing

of the algorithm for robustness. The salt and pepper noise was uniformly distributed

and expressed by its presence likelihood. It was generated as follows: for each pixel

a random number between 0 and 1 is generated and according to the desired rate

of error the pixel state is set to its other state. The loss of information is maximum

when the likelihood is .5. Indeed, whatever the original state of a pixel, both states

are equally likely to occur after noise of that level has been added.

The rate of false positives and false negatives were not considered separately. In

practice false negatives, due to the feature detector for instance, tend to happen

less often than false positives, due to the background. However, such a detailed

analysis would have complicated the generation and the interpretation of the tests.

Although this kind of noise has little relationship with what happens with real

images, it gives insight in how the algorithm behaves when severe disturbances are

present in the image. As a simple example, when illumination changes due to the

change of direction of its source, movement of the camera, shadow or movement of

the object, it is not unlikely that a few features will shift slightly relative to each

other. This generates false positives as well as false negatives, it is however complex

to model and it is only one phenomena out of a multitude of others. Therefore a

realistic modelling of disturbances is highly complex and for our purposes not within

the bounds of this thesis.

The results obtained by comparing the ground truth of the shape position from

the synthetic images we have generated with the results of the tracking algorithm

are now described.

To carry out our tests, two sets of image sequences were generated. Figure 6.13

shows the template models used to generate the 2 sets of sequences. The same

template were used to track the object. For visibility reasons, the hand shape size

has been displayed 3 times larger than the watch shape. Note that although a

hand is a deformable object the stencilled tracking is not appropriate, at least in

its current form, to track non rigid objects, the hand shape is simply an arbitrary

rigid shape and any other set of points would have been convenient for testing. The

first data set was generated using the hand-drawn “hand” shape, containing 194

CHAPTER 6. EXPERIMENTS 114

Figure 6.13: Templates of the tracked shapes.

features, translated over 500 images; from this sequence 26 other sequences were

generated with different levels of salt and pepper noise. Figure 6.14 shows the first

images of some of these sequences and helps visualise the level of noise present

in each sequence. The second data set features the edge feature points extracted

from an image showing a watch. The shape contains 2812 features. The image

sequences consist of 800 images each. Again, sequences with different levels of noise

were generated and figure 6.15 helps appreciate the content of noise in these images.

For each template we generated 26 videos with different levels of noise and these

videos were tracked with 11 different levels of stencil decimation. Therefore, for

each template, the tracking was performed on 286 videos of 500 and 800 images

each respectively.

When examining the figures in figure 6.14 the hand shape can be distinguished

easily by the author’s vision system until 28% of noise is present. With 34% and

up to about 40% of noise, the shape can still be distinguished by the human brain.

If the image sequence is viewed as a video, perhaps due to the shape movement,

it is possible to guess more easily where the hand shape is at 40% of noise. For

the watch shape shown in figure 6.15, maybe because the number of features is an

order of magnitude higher, the shape position can be guessed more easily than the

hand shape at 42% of noise. However, perhaps with a stretch of imagination, the

silhouette of the shape appears with 46% of salt and pepper noise indicating the

shape position. We will return to this point later, for now it suffices to say that the

performances to locate an object using stencils appear to be similar to the human

vision system.

Figures 6.16 and 6.18 sum up the tracking performances of the stencilled Hough

transform, each point represent the number of erroneous locations made by the

tracker for a given video sequence. The z-axis corresponds to the number of frames

CHAPTER 6. EXPERIMENTS 115

Figure 6.14: Appearance of the first image of the hand shape tracking sequence for
different noise levels. In percentage of image noise: 0, 4, 10, 16, 22, 28, 34, 40, 46
and 50% respectively

CHAPTER 6. EXPERIMENTS 116

Figure 6.15: Appearance of the first image of the watch tracking sequence for dif-
ferent noise levels. In percentage of image noise: 0, 4, 10, 14, 20, 26, 30, 34, 38, 42,
46 and 50% respectively

CHAPTER 6. EXPERIMENTS 117

where the tracking was incorrect, the x-axis corresponds to the noise of salt and

pepper in the video sequence and the y-axis to the level of decimation of the stencils

that was used to track the object in the sequence. Figures 6.17 and 6.19 represent

the same data with level lines. By examining these figures it can be observed that,

for the hand shape, the maximum capabilities of the stencil estimator, before any

decimation of the stencils, to correctly track the shape is roughly 40% noise, i.e.

80% of the maximum possible level of salt and pepper noise. The outlier at ratio

0.8, 32% noise in figure 6.16 is due to the failure of the tracking algorithm at frame

348.

 0
 10

 20
 30

 40
 50

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

 0

 100

 200

 300

 400

 500

 600

Ratio of kept stencil surface

Number of incorrect tracked positions
 490
 250
 80
 40
 20
 15
 10
 5

Percentage of noise

Figure 6.16: The z-axis corresponds to the number of images where the tracking
result differs from the ground truth. The ratio of kept elements of the stencil is
actually the ratio of the number of references listed in the 2-D array corresponding
to the stencil elements kept. The colour lines outline error levels. This graph
corresponds to the hand shape image sequences.

By examining figures 6.18 and 6.19 it can be seen that the tracking capability

against noise for the watch shape is slightly higher at around 46%, that is 92% of

the maximum possible level of noise. This is likely due to the much higher number

of features resulting in a higher likelihood to reach a critical threshold of features to

discriminate the shape from random noise. Arguably, and judging from figures 6.14

and 6.15, a level of salt and pepper noise of around 20% is well above the maximum

CHAPTER 6. EXPERIMENTS 118

 0 10 20 30 40 50

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Iso lines for the number of tracking mismatches.
(Hand shape sequence)

Ratio of kept stencil surface

 490
 250
 80
 40
 20
 15
 10
 5

Percentage of noise

Figure 6.17: The same graph as in figure 6.16 viewed from the top and with just
the error line levels. The levels are the number of images out of the 500 images of
the hand shape sequences where the tracking fails

that will be attained with most real images. According to figures 6.16 and 6.17 a

suitable decimation ratio of the hand shape tracking would be roughly 0.3. For the

watch tracking it would be 0.1. This suggests that the ratio of references is not a

measure that could be directly linked with the level of robustness of the tracking.

Consider the ratio of 1% for the hand stencils, three of these stencils are shown in the

last row of figure 6.23. One of the stencils has only one element, that correspond to

roughly 90 other stencils. At that level of decimation, the hand tracking has become

meaningless as confirmed by the last row of the histograms of figure 6.25 that shows

the number of votes that stencils get for three different images of the sequence. In

contrast, at the same level of decimation for the watch, tracking is still feasible as

shown by the last row of figures 6.34 and 6.36. This is again simply due to the fact

that the watch shape has many more features than the hand shape.

CHAPTER 6. EXPERIMENTS 119

 0
 10

 20
 30

 40
 50

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

 0

 100

 200

 300

 400

 500

 600

 700

 800

Number of incorrect tracking

 700
 200
 40
 20
 1

Percentage of noise

Ratio of kept stencil

Number of incorrect tracking

Figure 6.18: The z-axis corresponds to the number of images where the tracking
result differs from the ground truth. The ratio of kept elements of the stencil is
actually the ratio of the number of references listed in the 2-D array corresponding
to the stencil elements kept. The colour lines outline error levels. This graph
corresponds to the watch shape sequences

CHAPTER 6. EXPERIMENTS 120

 0 10 20 30 40 50

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Iso lines for the number of tracking mismatches.
(Watch shape sequence)

Ratio of kept stencil surface

 700
 200
 40
 20
 1

Percentage of noise

Figure 6.19: The same graph as in figure 6.18 viewed from the top and with just
the error line levels. The levels are the number of images out of the 800 images of
the watch shape sequences where the tracking fails

It was first believed that a good criteria to stop the decimation of the stencil

would be a threshold on the number of points of a stencil. However, when deter-

mining a suitable level of decimation relative to a given noise ratio it was realised

that it did not. Let us consider the noise level at 20%. As mentioned above, the

desirable corresponding decimation ratio for the hand shape and watch shape were

respectively 0.1 and 0.3. By analysing a few stencils on figures 6.22, 6.23, 6.33 and

6.34 with the corresponding level of decimation it can be observed that the number

of stencil elements does not fully explain the tracking performances relative to salt

and pepper noise. The number of stencil elements per surface area might be a better

indicator for characterising a certain level of robustness to a given level of salt and

pepper noise. If this is the case, it may allow the automatic selection of a threshold

level to stop the stencil decimation, given a level of desired robustness, defined using

the salt and pepper noise level.

Looking at the first column and first row of Figures 6.20 it can be seen that

CHAPTER 6. EXPERIMENTS 121

for the hand shape the maximum number of references, |array(p)|, is around 180.

Half of the elements of about 4000 elements each refer to less than 40 compatible

transformations. The second column shows the histogram of the number of elements

given the size of the reference list. The distribution may be better understood this

way. It can be seen that the shape of the histogram changes significantly when

stencils are reduced. The largest number of references an element of the array can

have reduces quite steadily and significantly with the reduction of the stencil size.

Tracking wise, the number of operations are reduced since for a given feature point,

fewer references receive votes. The histograms of the second column also show that

the wide majority of the elements of the array does not refer to any transformation.

The first column is the cumulative histogram of the histogram of the second column,

starting from elements having 1 reference. It therefore shows the maximum number

of votes that could be obtained if all points having less than n references were

selected. When tracking, not all of these points are selected. However it outlines

the impact of points having a large number of references. Looking at the first row

of figure 6.20, we mentioned that half of the elements, i.e. about 2000 for the hand

shape, each contained less than 40 elements. The histogram on the first row of the

third column shows that they are roughly responsible for a sixth of the maximum

number of votes that could be generated. In other words a minority of the elements

of the look up table array are responsible for most of the time consumed during the

tracking phase. The stencil reduction allows this to change: looking at the fourth

row of figure 6.20 it appears that the maximum number of elements is about 35 and

that the maximum level of votes that could be generated is approximately 50000.

When compared with the first row, it roughly corresponds to twice as many as the

maximum number of votes that could be generated by half of the elements that were

referencing about 40 stencils and less.

Figure 6.26 shows the average of the number of elements over all stencils for

a stencil that is not overlapped by its most overlapping stencil. When a stencil

is intersecting the shape, because they share a large number of points, its most

overlapping stencil is likely to be one of the other stencils that obtains the highest

number of votes. Therefore, this value can be considered as an indicator of the

robustness of the stencil estimator. Figure 6.26 shows the total robustness indicator

i.e. the minimum over all stencils of the number of elements of a stencil that are not

overlapped by its most overlapping stencil. Both curves do not differ significantly,

CHAPTER 6. EXPERIMENTS 122

indicating a certain homogeneity from one stencil to another. Since only translations

of the shape were considered and the sub-transformation space size was such that

the stencil shape and the template shape had the same number of elements this

homogeneity can be interpreted as follows: the most overlapping stencil for a given

stencil was one of the stencil slightly translated from the given stencil. This pattern

was observed many times, except for some of the stencils corresponding to the

boundary translation values of the transformation space. For the boundary values

of the transformation space, the most overlapping stencil, when it did not correspond

to the same translation pattern, intersected about the same number of elements of

the stencil.

These observations are similar for the watch stencil estimator as shown by figures

6.37 and 6.38. However, the robustness indicator value is much higher. Nevertheless,

the data is insufficient to be able to correlate robustness with this proposed indicator.

Figures 6.28, 6.29,6.30, 6.39, 6.40, 6.41 sum up time measurements for the dif-

ferent tracking sequences. Each measure corresponds to the average time over,

respectively, the 500 images of the hand shape sequences and the 800 images of the

watch shape sequences. The average time appears to vary almost linearly versus the

rate of noise and the ratio of kept references.

CHAPTER 6. EXPERIMENTS 129

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
o

b
u

st
n

es
s

Ratio of feature points selected

Average robustness of the stencils

Figure 6.26: What has been termed average robustness is, in fact, the average
difference of, the number of elements of a stencil, and, the number of overlapping
elements of its most overlapping stencil

 0

 10

 20

 30

 40

 50

 60

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
o

b
u

st
n

es
s

Ratio of feature points selected

Total robustness

Figure 6.27: By total robustness we refer to the minimum, for all stencils, of the
robustness such it is explained in figure 6.26

CHAPTER 6. EXPERIMENTS 130

 10

 20

 30

 40

 50

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

 0

 10

 20

 30

 40

 50

 60

Time (ms)

Average time (over 500 images) to track the object in an image

 50
 40
 30
 20
 15
 10
 5

Percentage of noise

Ratio of stencil surface kept

Time (ms)

Figure 6.28: Time taken to track a shape versus the level of noise and the decimation
ratio of the stencils for the hand image sequences

 0 10 20 30 40 50

 0

 10

 20

 30

 40

 50

 60

Time (ms)

Average time (over 500 images) to track the object in an image

Percentage of noise

Time (ms)

Figure 6.29: The graph of figure 6.28 from a different viewpoint. This shows how
the level of noise affects the tracking time

CHAPTER 6. EXPERIMENTS 131

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 0

 10

 20

 30

 40

 50

 60

Time (ms)

Average time (over 500 images) to track the object in an image

Ratio of stencil surface kept

Time (ms)

Figure 6.30: The graph of figure 6.28 from a different viewpoint. This shows how
the stencil decimation ratio affects the speed performance of the tracking

CHAPTER 6. EXPERIMENTS 132

6.2.2 Comparison with different similarity methods using an exhaus-

tive search For comparison purposes, we implemented the stencil estimator using

algorithm 3.

Algorithm 3: Tracking using the stencil estimator by moving the shape across
the region of interest.

foreach position near to the previous object location do

foreach element of the shape of the object do

if the shape element corresponds to an image feature then
increase the number of votes for the current position by one

return the position that has the maximum number of votes

A correlation algorithm would iterate in the same way for a small region of

interest1, however this algorithm differs in two ways: firstly, instead of using a

rectangular shape surrounding the image for computing the correlation the stencil

estimator can use the features of the shape only, thus reducing the number of op-

erations needed. Secondly, the measure used is not the correlation measure but the

number of matching features to the shape. Since it is faster to evaluate the number

of matching features than to correlate the points (which involves various multipli-

cations), and less points are considered, only the shape points and not all those in

the rectangular area surrounding the shape, this measure is faster (see table 6.1).

Tests for the watch sequence and the hand sequence were realised on two dif-

ferent computers and therefore cannot be directly compared in terms of speed (the

computer used for the watch sequence was between 2 to 4 times slower). While no

stencil reduction is needed to track the hand shape in real-time, it offers a marked

improvement for the watch shape that contains many more points than the hand

shape.

Table 6.1 also shows the benefits of using the bounded Hough transform algo-

rithm. This difference in speed can be explained by two factors: the two embedded

for loop calculations are factorised into the pre-processing stage. Also, when the

tracking is performed with the bounded Hough transform, votes are increased only

for image feature points. It is therefore equivalent to omitting the check as to

whether a shape point corresponds to an image feature when no feature is present

1If the region of interest becomes large it is more efficient to perform the convolution of the
image and the template image in the frequency domain (using the fast Fourier transform).

CHAPTER 6. EXPERIMENTS 139

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
o

b
u

st
n

es
s

Ratio of feature points selected

Average robustness of the stencils

Figure 6.37: What has been termed average robustness is, in fact, the average of the
difference of, the number of elements of a stencil, and, the number of overlapping
elements of its most overlapping stencil

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
o

b
u

st
n

es
s

Ratio of feature points selected

Total robustness

Figure 6.38: By total robustness we refer to the minimum, for all stencils, of the
robustness such it is explained in figure 6.37

CHAPTER 6. EXPERIMENTS 140

 10

 20

 30

 40

 50

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

 0

 50

 100

 150

 200

 250

 300

Time (ms)

Average time (over 800 images) to track the object in an image

 250
 200
 150
 100
 50
 10

Percentage of noise

Ratio of stencil surface kept

Time (ms)

Figure 6.39: Time taken to track a shape versus the level of noise and the decimation
ratio of the stencils for the watch image sequences

 0 10 20 30 40 50

 0

 50

 100

 150

 200

 250

 300

Time (ms)

Average time (over 800 images) to track the object in an image

Percentage of noise

Time (ms)

Figure 6.40: The same graph as in figure 6.39 but with a different viewpoint. This
shows how the level of noise affects the tracking time

CHAPTER 6. EXPERIMENTS 141

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 0

 50

 100

 150

 200

 250

 300

Time (ms)

Average time (over 800 images) to track the object in an image

Ratio of stencil surface kept

Time (ms)

Figure 6.41: The same graph as in figure 6.39 but with a different viewpoint. This
shows how the stencil decimation ratio affects the speed performance of the tracking

Image sequence description Hand shape sequence Watch sequence
(194 feature points) (2812 feature points)

Best time using cross correlation 1967 ms (1x) 27931ms (1x)
with a rectangular template (windows size 50x50) (windows size 161x213)

Best time using cross correlation. The 158ms (12.4x) 2050ms (13.6x)
template have the shape of the object

Best time using using 142 ms (13.8x) 1705ms (16.4x)
the stencil estimator

Average time using the stencil estimator 5.5ms (358x) 75.4ms (370x)
with the bounded Hough transform average over 500 images average over 800 images

algorithm (full stencil)
Average time using partial stencils 50% 3.5ms (562x) 41ms (681x)
Average time using partial stencils 10% 2.3 ms (855x) 12.4ms (2252.5x)
Average time using partial stencils 1% Not relevant: some stencils 4.6ms (6072x)

don’t even have a point

Table 6.1: Comparison of the speed of different algorithms to track an object trans-
lated in 2-D in its surrounding.

CHAPTER 6. EXPERIMENTS 142

in the corresponding image position.

If the reader wishes to carry more tests, a test bed, developed in C++, has been

provided on-line as an example application within the Mimas library (version 2.1).

Facilities are also provided to generate image sequences as well as to display the

results directly into diagrams.

6.2.3 Summary Comparisons with the cross-correlation similarity measure show

the superiority of the stencil estimator in term of speed performances, especially

when the stencils are used in conjunction with the bounded Hough transform: a

speed-up of a factor of 358 and 370 respectively for the hand and the watch shapes.

These performances can be further improved by decimating the stencils by a factor

of 2 to 10 depending of the shape of the object and the robustness requirement of

the application.

Interestingly the stencil estimator seem to match or outperform the human vision

system. Psycho-physicists might be interested to further investigate this maybe illu-

sory but striking correlation, especially when considering that the parallel gathering

of information is not structurally incompatible with neural networks. However the

extent of this study is lacking evidence to determine whether this is a coincidence

or not.

Future research

Having a criteria to decide automatically when the stencil decimation has to stop

would remove the need for manual tuning. The density of retained points of the

stencil might provide a criteria for a given level of salt and pepper noise resistance.

Histograms presented in figures 6.20, 6.21, 6.31 and 6.32 could also be useful to

determine a criteria to stop the stencil reduction.

The speed of the tracking is enhanced by the reduction of the stencils’ area while

remaining robust. However, more research is needed to determine an optimal way

to reduce the stencils’ area. For instance the weight of the stencils elements could

be determined in a different way.

For detection of the shape in a whole image we propose a hierarchical approach.

Large stencils could be used to coarsely determine the position of a shape followed

by successive refinements. Determining the number of stages that optimally enhance

the tracking performance is one of the issues that needs to be tackled. At this point

CHAPTER 6. EXPERIMENTS 143

it also appears that the density of features present in an image can be a useful cue

to locate an object, the bounded Hough transform can be adapted to practically

measure this density.

Similarly it is possible to separate the translation component of the state space

from other transformation such as scale, rotation and shear. One possible way to

implement this would be to first make a stencil able to encompass the maximum

size of the object and then filter the image to establish the regions of interest where

the shape could be located; this would be followed by a second stage where the

stencilled Hough transform could be operated on these pre-determined region of

interest. However, in images where features are dense this may not work since any

part of the image would potentially be a region of interest. Designing a stencil that

better characterises the presence of a shape in a region of interest might solve this

issue.

6.3 Testing the particle filter on the micro-pipette tracking

sequence

Figures 6.42 to 6.49 illustrate scene images and their corresponding pdf based on the

edge template correlation. Figure 6.42 and 6.43 illustrate the optimal case where

particles are clustered around the micro-pipette tip, the resulting pdf is almost uni-

modal. Figure 6.44 illustrates the case where particles are spread out, the resulting

pdf (figure 6.45) is multi-modal because of the influence of background clutter. The

multiple modes are subsequently resolved and the pipette tip is correctly located

by using further measurements to evaluate modes. Figure 6.46 illustrates the case

where the correlation of the edge template results in most of the peak points around

the tip of the pipette. But the particles are spread out and subsequent measure-

ments incorrectly select the mode that is far away from the actual location of the

tip. Improving the multivariate measure might correct this problem. Figure 6.48

and 6.49 illustrate yet another scene where the background clutter and change in

scene lighting give rise to multiple modes. However, in this case the multiple modes

are correctly resolved by additional measurements.

The graph shown in figure 6.51 shows the plot of the actual location of the

micro-pipette (manually traced) and the corresponding tracked location of the micro-

pipette tip. The histogram of figure 6.52 shows the repartition of all frames classified

CHAPTER 6. EXPERIMENTS 144

according the accuracy of the software tracked location. To give an idea of the

accuracy, the actual location has been manually compared with an average error of

less than 3 pixels despite all the constraints. The micro-pipette width is 48 pixels.

The graph shows that in 9 frames out of 329 frames the actual location and the

probable tracked position differs by more than 21 pixels.

The graph shown in figure 6.53 illustrates the same tracking scenario but with

the tracked locations plotted only when the measure is above 0.8 (values ranging

from 0 to 1). This graph, by showing that all the tracked location having a high

value measure associated are the expected ones, illustrates that a certain threshold

level allows to be confident that the object is accurately located. It can also be

seen that for dozens of frames, no tracked location information is available. Trusted

tracked locations can typically be used to partially re-initialise the particle filter.

In a scenario, where clutter comes from the presence of multiple instance of

an object in the image, partial reinitialisation cannot be applied since measures of

other object instances are almost identical to the tracked object. However, previous

dynamic of the object can be incorporated to the particle filter with the above

mentioned method.

Further tests of the implementation of the particle filter have been carried out,

appendix C presents and discusses the adaptations needed for these tests and their

results.

CHAPTER 6. EXPERIMENTS 145

Figure 6.42: The template is shown on the top left corner. The small black dots are
the particles. The centre of the square is the tracked location.

340
360

380
400

420
440

460
480

x

100
120

140
160

180
200

220
240

y

0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
0.2
0.22
0.24
0.26

weight

Figure 6.43: The weight measures for this graph and the subsequent graphs rep-
resents edge correlation measure. This is an ideal case where the measure gives a
unimodal pdf. x and y axis are the pixel coordinates of the image point measured. It
can be observed that correlation measure is well localised which is a disadvantage for
particle filters that are likely to sample the tracked object only on the neighbourhood
of the object.

CHAPTER 6. EXPERIMENTS 146

Figure 6.44: In spite of the blurred features of the pipette, its location is found. Big
black square dots are the peak points.

200
250

300
350

400
450

500

x

0
50

100
150

200
250

300
350

400

y

0

0.02

0.04

0.06

0.08

0.1

weight

Figure 6.45: The heavy background clutter is illustrated by the existence of multiple
peaks in the graph. In spite of the heavy clutter the pipette tip is well localised
through further evaluation of the peak points.

CHAPTER 6. EXPERIMENTS 147

Figure 6.46: A rare case where the tracking has failed. The centre of the square is
the tracked location.

100
150

200
250

300
350

400
450

500

x

200
250

300
350

400
450

y

0

0.02

0.04

0.06

0.08

0.1

weight

Figure 6.47: The graph illustrates that most of the peak point obtained, though
the correlation of the edge template, are located around the pipette tip. But subse-
quent multivariate feature measure picked up the wrong peak point as the probable
location.

CHAPTER 6. EXPERIMENTS 148

Figure 6.48: Another cluttered image, this one is due to the change of the back-
ground of the pipette and illumination of the scene. The small black square points
are the peak points. Centre of the square is the tracked location.

100
150

200
250

300
350

400

x

250
300

350
400

450
500

550

y

0

0.02

0.04

0.06

0.08

0.1

weight

Figure 6.49: The graph illustrates the background clutter which gives rise to multiple
peak points.

CHAPTER 6. EXPERIMENTS 149

Figure 6.50: Last image of the tracking sequence. Magenta points are previous
tracked locations.

Actual location

Software tracked location

0

50

100

150

200

250

300

350

frame number

200

250

300

350

400

450

X

150

200

250

300

350

400

450

500

550

Y

Figure 6.51: Actual location of pipette (line) and tracked location (crosses).

CHAPTER 6. EXPERIMENTS 150

Figure 6.52: Number of tracked frames versus distance of actual location and tracked
location.

Actual location

Software tracked location

0

50

100

150

200

250

300

350

frame number

200

250

300

350

400

450

X

150

200

250

300

350

400

450

500

550

Y

Figure 6.53: Actual location of pipette (line) and tracked location (crosses). Only
tracked location of points with high probability is displayed

CHAPTER 6. EXPERIMENTS 151

6.4 Testing the stencil Hough transform on the pipette video

sequence

6.4.1 Experiments and results For comparison purposes with the particle fil-

ter, the algorithm presented in chapter 3, the stencil Hough transform was evaluated

on the pipette video sequence. As a reminder, figure 6.54 presents 2 images extracted

from the video sequence.

Figure 6.54: Two images from the pipette tip sequence. It is the same sequence that
was used to discuss the particle filter algorithm.

A custom edge detector was used for the fast extraction of features. A Canny

edge detector with 2 different settings was also tested, the feature extraction resulted

to be 4 to 5 times slower but yielded more accurate tracking results. Our custom

edge detector simply consists of thresholding the gradient of the image and, when

multiple contiguous pixels with high gradient value are present on a same line, to

select the pixel with the highest gradient value. The number of feature points is

thus reduced and the filtered image consists of thin edges. Despite the simplicity of

the method the edge extraction process is rather slow (around 200 ms per image).

For real-time processing, images can be down-sampled and a multi-core CPU used.

Figures 6.55 to 6.59 allow us to visualise and compare the behaviour of the track-

ing algorithms for different settings of its components; table 6.4.1 provides numerical

data that show the precision of the tracking. The best results were obtained with

the first settings of the Canny feature detector and using the motion filter that is

described later on. Although the motion filter visually improved the tracking in a

CHAPTER 6. EXPERIMENTS 152

 150
 200

 250
 300

 350
 400

 150
 200

 250
 300

 350
 400

 450
 500

 550

 0
 50

 100
 150
 200
 250
 300
 350

Actual positions
Tracked positions

Figure 6.55: Comparison of the tracked positions and the manually determined
positions of the pipette tip when using our custom edge detector.

 150
 200

 250
 300

 350
 400

 450

 150
 200

 250
 300

 350
 400

 450
 500

 550

 0
 50

 100
 150
 200
 250
 300
 350

Actual positions
Tracked positions

Figure 6.56: Comparison of the tracked positions and the manually determined
positions of the pipette tip using the Canny edge detector with the first set of
parameters.

CHAPTER 6. EXPERIMENTS 153

 150

 200

 250

 300

 350

 400

 150 200 250 300 350 400 450 500 550

 0
 50

 100
 150
 200
 250
 300
 350

Actual positions
Tracked positions

Figure 6.57: Comparison of the tracked positions and the manually determined
positions of the pipette tip when using using the Canny edge detector with the
second set of parameters.

noticeable way: when the tracking is observed the pipette tip appears to be tracked

correctly even when none of its features appears in the filtered image, this improve-

ment is not obvious and its utility might be questionable when looking at the table

6.4.1. Nevertheless the computational cost of this improvement is negligible and

the increase of corrected tracked frames, although minimal, can make the difference

between losing the track or not and, ultimately, minimising the number of costly

re-initialisation steps.

6.4.2 The motion model The shape of the feature of the pipette, due to its

transparency and changes in illumination, changes to an extent that for some frames

most of the features of the pipette tip disappear and the stencil Hough transform

can no longer locate the pipette tip. In the pipette sequence these changes span

for a number of frames and the previous dynamics of the pipette can be used to

estimate the tip position.

The following motion model was used: since the pipette tip has an erratic move-

ment but generally tend to move in the same direction it was assumed that the

CHAPTER 6. EXPERIMENTS 154

 150
 200

 250
 300

 350
 400

 150 200 250 300 350 400 450 500 550

 0
 50

 100
 150
 200
 250
 300
 350

Actual positions
Tracked positions

Figure 6.58: Comparison of the tracked positions and the manually determined
positions of the pipette tip when using using the Canny edge detector with the first
setting and the motion filter.

speed of the pipette is constant for a few frames and becomes null a few frames

later. This allows the tip to be tracked for a few frames in case of occlusion while

not getting too far off the pipette in case of a change of its direction; an event which

probability increases as time passes. Of course if the pipette direction changes when

it becomes occluded the pose estimation provided by the motion model would be

incorrect. However, for the pipette sequence this does not occur. In general, if the

cause of an occlusion can also be the cause of a directional change of the tracked

object, motion models relying uniquely on the previous dynamic of the object would

not be very useful.

x̂t denotes the estimated position of the object after the evaluation of the mea-

surements, x̂−
t the position estimated using the motion model which is evaluated as

follows: x̂−
t = x̂t−1 + vt−1 where vt−1 is the previous estimated speed of the object.

All these variables are vectors, and for the pipette sequence they are 2 dimensional.

To take into account of the inherent uncertainty of the motion model which varies

with the measurement an additional variable ut is used. ut represents the maximum

distance the object can be from the current estimated position of the object at frame

CHAPTER 6. EXPERIMENTS 155

 150
 200

 250
 300

 350
 400

 150 200 250 300 350 400 450 500 550

 0
 50

 100
 150
 200
 250
 300
 350

Actual positions
Tracked positions

Figure 6.59: Comparison of the tracked positions and the manually determined
positions of the pipette tip when using using the Canny edge detector with the
second setting and the motion filter.

Edge detection method Number of frames (out of 331) for which
the distance between the tracked position
and the manually determined position is:

< 6 pixels < 12 px > 12 px > 20 px > 40 px

Custom edge detector 176 220 104 76 49
Canny, first setting 224 262 65 38 12

Canny, second setting 206 220 77 54 20

With motion model:
Canny, first setting 227 265 62 36 7

Canny, second setting 210 256 70 43 20

Figure 6.60: Tracking accuracy

Edge detection method tracking speed (ms) feature detection time (ms)
average max min average max min

Custom edge detector 64 155 24 197 368 174
feature collection time (ms)

Canny, first setting 22 52 6 34 66 22
Canny, second setting 46 117 13 44 96 18

Figure 6.61: Tests carried out on an Intel Celeron Northwood 2.7 GHz CPU

CHAPTER 6. EXPERIMENTS 156

t.

According to the validity of the measure given by the stencil Hough transform

the parameters of the motion model (speed and uncertainty) are updated and the

tracked location is determined. Algorithm 4 details the procedure.

Readers familiar with the Kalman filter would have noticed a number of simi-

larities such as the recursive integration of the novel information about the speed

of the object. There are also dissimilarities; because of the nature of the stencilled

Hough transform, measurements are done exhaustively in a region of interest that

is usually larger than the region of interest indicated by the motion model. The

motion filter is only used as an auxiliary feature when the measurements are not

satisfactory or to check that the result, that depends on the measurements, is logi-

cally compatible with the previous location of the object and its motion model. This

is because the reliability of the measurement is believed to be considerably higher

than the information that can be obtained from the motion model. Given the weak

assumptions that could have been made on the motion model this is justified and

results in this particular case of the Kalman filter where the motion estimation is

used only when the image data does not allow to locate the position of the object.

The motion filter can also be used to position the region of interest where measure-

ment are made. However, given that the motion is small compared to the size of

the region of interest, choosing the previous estimated position of the object as the

centre of the region of interest was not altering the tracking.

Without the motion filter the size of the state space has to remain large to be

able to recover the pose of the tracked object when it is occluded. By reducing

the uncertainty, the motion model allows the size of the region of interest where to

look for the object to be reduced, thus reducing the size of the state space along its

translation dimensions. This also increases the speed of the feature extraction by

reducing the region of interest in the image where to look for the object. For the

pipette sequence, despite the weakness of the motion model,this reduction was not

negligible: the size of the state space along the y-axis could be reduced by about

40%, while it remained unchanged along the x-axis.

6.4.3 Summary Compared with the particle filter algorithm the bounded Hough

transform is faster. The particle filter was taking a few seconds per frame to track

the object; this was essentially due to the matching method that consisted of cross

CHAPTER 6. EXPERIMENTS 157

correlating edge features in the images. Using a better measure with the particle

filter would solve this issue but may add some complexity to the implementation;

for instance, a contour model of the pipette tip could be used but for each new

tracked object a new model should be used which adds another level of complexity

for the users of the algorithm and requires an additional module to the tracking

system. For rigid objects, real-time can be achieved comfortably if the motion is

planar (rotation and translation) for more degrees of freedom except if the motion

can be tightly bounded the particle filter with an efficient similarity method is likely

to perform better.

The stencilled Hough transform did require significantly less tuning compared

with the particle filter algorithm, the similarity method is very robust but less than

what could be expected from the artificial data. This is because the pipette is self

similar along its axis of symmetry which occasionally results in the pipette body to

better fit the pipette tip stencils when the tip is occluded.

A major difference between these two techniques is that the stencilled Hough

transform performs an exhaustive search on the region of interest while particle

filters sample this region. Depending on the requirement of the application this may

provide a theoretically more satisfying guarantee that the object is more precisely

located.

CHAPTER 6. EXPERIMENTS 158

Algorithm 4: A motion filter for the stencil Hough transform

Measurements are taken around x̂−
t if measurements give the position with a

high value of certainty then
x̂t is set to the best measured position
ut = 0
if the previous pose was known with accuracy then

v̂t = x̂t − x̂t−1

else

v̂t = v̂t−1+K1(x̂t−x̂t−1)
1+K1

if Measurements give the position with an intermediate value of certainty
then

ut = ut−1 + U1

for The n poses having the best value in decreasing order of likelihood do

if The pose is compatible with the motion model then
x̂t is set to this pose
if the previous pose was known with accuracy then

v̂t = v̂t−1+K2(x̂t−x̂t−1)
1+K2

ut = U2

break
else

v̂t = v̂t−1+K3(x̂t−x̂t−1)
1+K3

ut = U2

break

if No likely pose is compatible with the motion model then
x̂t = x̂t−1 + v̂t−1

if Motion filter parameters have been updated in the last few frames
then

v̂t = v̂t−1

else v̂t = 0

if Measurement do not give any satisfactory value then
ut = ut−1 + U1

x̂t = x̂−
t = x̂t−1 + v̂t−1

if Motion filter parameters have been updated in the last few frames then
v̂t = v̂t−1

else v̂t = 0

Where K1, K2 and K3 are scalars that can depend on the measurement value
and the uncertainty of the motion filter; and U1 and U2 are also scalars that
can represent the maximum speed of the object and a distance that can
depend on the value of the measurement.

Chapter 7

Conclusion

7.1 Contributions

An original framework that analyses a shape relative to its state space has been

established. This results in an additional step that can be performed offline and

that refines the shape representation of a known rigid object. A set of characteristic

points that are relevant for the robust identification of an object is thus determined,

which increases the performance of tracking, recognition and detection algorithms.

For a given state space, it has been shown how a variation of the Hough transform

can be utilised to determine whether a set of points uniquely characterises an object

state. This algorithm works for sets of points, extracted from a rigid object shape,

when the object motion can be bounded.

The concept of the stencil estimator has been introduced and it has been shown

how it is useful in improving the performance of the bounded Hough transform

in terms of computational speed and memory space requirements. The modified

tracking algorithm, which is independent of the selected feature detector, is referred

to as the stencilled Hough transform. Performance comparisons have established

that the approach is well founded. It has also been demonstrated that the stencilled

Hough transform can be parallelised efficiently with minor modifications.

The particle filter was presented by describing a simple example of its usage,

it is hoped that this will aid in obtaining a deeper understanding of this tracking

algorithm. Some generic improvements have also been proposed: the clustering of

particles, the over-weighting of the particles, partial reinitialisation and the intro-

dution of additional stages to incorporate other measurements in order to enhance

159

CHAPTER 7. CONCLUSION 160

the sampling of the new data. Some of these improvements, such as partial reini-

tialisation and the usage of additional measurements, had been already proposed

previously by other researchers, but in a slightly different manner.

Additionally, as presented in section 6.1, it has been shown how the bounded

Hough transform can be adapted for tracking, with 4 degrees of freedom (x-y trans-

lations, rotation and depth translation), of rigid objects under a microscope. The

evaluation of the depth translation was performed using a stack of object images

taken at different depth levels. This takes advantage of the fact that due to the

narrow depth of field of microscopes the appearance of an object changes with its

distance to the microscope lens.

7.2 Future research

It has been argued [15][99] that high curvature points convey significant information

about a shape and as a consequence characterise shapes well. It would be useful to

investigate if the selection of these points for a given shape also characterises the

shape with the definition proposed in this thesis.

Three main directions to extend the work presented in this thesis are suggested:

1. Increasing the search space to obtain a detection or recognition algorithm: in

this thesis, since the focus was on tracking, the transformation space or state

space was reduced to encompass a region of interest where the object was

previously located. Further tests need to be performed to determine if it is

possible to detect a shape in a whole image by simply increasing the area of

interest and to correlate the evolution of the memory usage when the number

of dimensions of the state space increases. If we consider the stencilled Hough

transform algorithm, the main issues are currently the quantity of memory

available and the number of features extracted. At the end of chapter 4 we

suggested an algorithm (algorithm 1) for object detection. This algorithm may

be implemented in many different ways and the stencilled Hough transform

algorithm is an efficient way to implement stages three and four when the

search space is relatively small.

2. Enhancing the object representation by selecting more discriminative feature

detectors: another way to increase the robustness of the stencil estimator

CHAPTER 7. CONCLUSION 161

is to incoporate additional information such as the gradient direction of the

features or its colour, reducing the necessary number of feature points needed

to characterise the object state. If distinguishability can be quantified, for

instance features may belong to one of n categories (e.g. 8 directions for the

gradient, 12 hues for the dominant colour of the feature surrounding patch etc.)

it may be possible to further develop the framework described in this thesis to

determine which feature detector, in terms of its speed and distinguishability of

its feature, can be used to optimise the speed of the stencilled Hough transform.

3. Generalising the algorithm to track objects in 3-D: the bounded Hough trans-

form has been shown to work with 3-D objects for movements in space. The

stencilled Hough transform can be adapted for projective transformations of

a 3-D object representation. One possibility is to use a stack of images of

different object views.

The template reduction scheme, originally developed for the stencil algorithm,

still needs to be tested with different shape matching algorithms to evaluate its

robustness and the performance enhancement it provides.

Appendix A

Fitting a square to a set of points

A.1 3 points case

Figure A.1: An infinite number of squares can fit 3 points.

We shall use the following notations: (ab) for the line passing through the points

a and b, [ab] represents the segment having vertexes a and b and |ab| the distance

between a and b.

It is trivial that an infinite number of squares can fit 3 aligned points.

Consider 3 unaligned points as shown in figure A.1. The 2 points furthest apart

are first considered. In the case of figure A.1 these 2 points are a and c. The third

point belongs by hypothesis to the intersection of the 2 discs of radius |ac| and with

the centre these 2 points. It is then possible to construct a square intersecting these

3 points by considering that a and c belong to two opposite edges perpendicular to

(ac), respectively called A and C . One of the edge of the square goes through the

162

APPENDIX A. FITTING A SQUARE TO A SET OF POINTS

last remaining point, in our example b. This is possible because if b is projected on

line A or C on respectively a′ and c′, then |aa′| or |cc′| are smaller than |ac|. The

blue square of figure A.1 has thus been obtained.

It is in fact possible to construct an infinite number of squares that passes through

these 3 points. Instead of taking the edges passing through a and c perpendicular to

(ac), one can consider them to have a slightly different angle. We call this angle α. A

square fitting the 3 points can be constructed this way as long as b remains between

these 2 lines and that its projections on the 2 lines a′ and c′ are such that |aa′|
and |cc′| are smaller than the square edge size. The square edge size is |ac| cos(α).

When α = 0 the maximum value for |aa′| and |cc′| is |ac| sin(arccos(0.5)), this would

happen if c was at the intersection of the circles. This gives a comfortable margin

for α to vary around 0 and still satisfy the previous above mentioned conditions

that allow a square to fit the given points. The red square (or clear grey square) of

figure A.1 is an example of such a square.

A.2 4 points case

Consider that any 3 points of the configuration are not aligned. For this case we

could not determine the conditions that ensure that more than one square fitting four

points can be constructed. As shown in chapter 4, figure 4.4, some configurations

of 4 points can be fitted by only one square, nevertheless note that the presented

configuration has 3 points aligned. However we present a few starting ideas to

explore the problem.

A necessary condition for four points to belong to square edges is that it is

possible to make a convex quadrilateral that has these four points as its vertexes.

Considering the 3 points a, b and c of figure A.2 to have such a condition, a fourth

point has to be taken on the non hatched area and outside the triangle abc. d and

e are examples of such points. This may not however be a sufficient condition.

We now examine what happens when trying to generalise the constructive me-

thod presented for the 3 points case. Figure A.3 exhibits an example where 2 points

are furthest apart. Like in the previous method we assume that these points belong

to opposite edges of the square. This leads to 2 parallel lines going through the

points as shown in figure A.3.

If we assume that the 2 remaining points belong to the same edge there is at

163

APPENDIX A. FITTING A SQUARE TO A SET OF POINTS

Figure A.2: abcd and abce are 2 four point convex configurations.

Figure A.3: For this configuration of four points we consider the 2 points furthest
apart.

164

APPENDIX A. FITTING A SQUARE TO A SET OF POINTS

Figure A.4: The green shaded square was constructed by assuming that the 2 points
furthest apart belong to opposite edges and the 2 remaining points to one of the
edge.

Figure A.5: It is not always possible to fit a square that intersects the 4 points using
the assumption that the 2 points furthest apart belong to opposite edges and the 2
remaining points to one of the edge as shown with this configuration of four points.

165

APPENDIX A. FITTING A SQUARE TO A SET OF POINTS

most one square satisfying these conditions. Such a square is shown on figure A.4.

However it is not always possible to fit such a square as the example of figure A.5

demonstrates this.

A special case is considered in figure A.4. Indeed, the convex quadrilateral

which vertexes are the four points outlined in the yellow dotted line is such that

the longest distance between the four points is an edge of this quadrilateral. If

the longest distance belongs to a diagonal of the quadrilateral then the assumption

that the 2 points that are furthest apart belong to opposite edges of a square is

inconsistent with the assumption that the 2 remaining points belong to the same

edge of a square.

Figure A.6: If the longest distance is an edge of the convex quadrilateral and we
assume that the two remaining points belong to different edge of the square there
exists at most two squares that fit the four points.

We can also assume that the two remaining points belong to two different edges

of the square. If once again, we consider the condition that the points furthest

apart belong to the edge of the convex quadrilateral; to construct such a square the

parallel lines can be rotated until one of the two remaining points belongs to one of

the lines and the other point is between them. This might not be possible as shown

in figure A.7 or possible as shown in figure A.6

So, examining the problem by considering the 2 points furthest apart, we see

that multiple cases are possible and we have not reached a better conclusion than

166

APPENDIX A. FITTING A SQUARE TO A SET OF POINTS

some 4 point configurations can be fitted by one or more squares and some cannot.

If one is inclined to solve this problem a few ideas are suggested hereafter. A

different approach to analysing the problem would be to divide the points into 3

groups according to the 6 intersection points of the lines of the convex quadrilateral

which vertexes are the four points. By assuming that parallel lines intersect at

infinity, parallel lines could be taken as a separate case or not, according to the need

of the analysis. Figure A.8 illustrates this idea. Yet another approach would be to

establish a system of equations that need to be satisfied for constructing a square

and to solve it when possible. Figure A.9 illustrates such an approach.

Figure A.7: An example when the four points are fitted by a square assuming that
the two points furthest apart are on opposite edges of the square and the remaining
points belong to different edges.

A.3 5 points

We consider that any 3 points of the configuration are not aligned. Since the square

has four edges, at least 2 points belong to a given edge. 2 points are chosen such

that a line passing through them has the 3 remaining points on one of its side. If a

convex pentagon can be made by joining the points with lines then there are 5 such

possible choices. For each of these choices we are going to evaluate the maximum

number of possible squares passing through all 5 points. On the remainder of the

section we call A the edge of the square passing through the chosen pair of points.

167

APPENDIX A. FITTING A SQUARE TO A SET OF POINTS

Figure A.8: By considering the direction of intersection, represented by arrows, of
the plain black lines the four points can be separated into 3 groups: the point circled
in green, the other point on the dashed green line and the two remaining points.

Figure A.9: 2 Points are taken randomly, by assuming that they belong to opposite
edges, for instance, a system of equations can be written and solved to check if it is
possible to construct squares that are intersecting this four points. Curved arrows
represent the possible rotations of the parallel lines.

168

APPENDIX A. FITTING A SQUARE TO A SET OF POINTS

The 3 points are not aligned so either (1) the three points belong to 3 different edges,

or (2) 2 points belong to one edge and the last remaining points to a different edge.

1. In this case at most one square can pass through all 5 points. We consider

the 3 lines perpendicular to A that passes through the 3 remaining points. If

there are only 2 lines it is categorised as case (2). No demonstration is given

but the point belonging to the middle line must belong to the opposite edge

of A and the points on each side to the adjacent edges of A. Given the points

defining the direction of A and the opposite edge of A and considering the

previous constraint only one square is compatible with these points. For the

configuration to be compatible with a square shape, the 2 remaining points

must belong to this square.

2. A minimum requirement for the configuration of points to be compatible with

a square shape is that 2 of the 3 remaining points belong either to a perpendic-

ular line or to a line parallel to A. Without considering any other constraints

at most 6 squares can be compatible with this point configuration.

As a conclusion, if we consider a configuration of 5 points, only a small finite

number of squares can pass through this configuration. Moreover if the points were

taken randomly we believe that it is highly probable that there may not exist a

square that passes through all points. Indeed in case (1) the 2 last points must

belong to 2 segments of the plane for the configuration to be compatible with a

square. This is unlikely even if we consider a small margin of error and a bounded

surface for the possible position of the points. For case (2) to occur, 2 points out of

3 must belong to a perpendicular line or a parallel line to A which is also unlikely.

Again considering a small margin of error and a bounded space the author believes

that it is possible to prove that this is unlikely.

A.4 Perspective transformation

If a perspective transformation is considered, one of the unique invariants that re-

main for geometric shapes is the alignment of points. Thus, when undergoing a

perspective transformation a square can become a quadrilateral. With 8 points,

any 3 of them not aligned, in a convex configuration it is possible to construct 2

quadrilaterals that fit the points. This can be seen in figures A.10. Therefore to

169

APPENDIX A. FITTING A SQUARE TO A SET OF POINTS

determine a transformation that a square undergoes to fit points a minimum of 9

points, out of which there is necessarily at least one group of 3 points aligned, is

required. This example is given to underline the fact that the number of dimensions

of transformation space under consideration affects the minimum number of points

required to completely determine an object location.

Figure A.10: 8 points, any 3 of them not aligned, in a convex configuration can be
fitted by 2 quadrilaterals.

170

Appendix B

Dense disparity map using

epipolar geometry

B.1 Depth maps of 3-D scenes

Having a 3-D models of the objects that are being tracked is necessary to be able to

track them in full 3-D. However, obtaining a 3-D model of an object is not straight-

worward. There currently exists a number of commercial applications [100]. To

achieve this goal, in the following sections we shall explore the well known technique

of stereo vision. Knowledge about the geometry of a scene provides interesting clues

to identify and estimate the pose of an object.

We will conclude that stereo vision, although it has some interesting application

domains, is, in our opinion, and despite the effort of many researchers, not appro-

priate to capture the 3-D geometry of an object. This is because better, simpler

and more efficient techniques are available.

B.1.1 Stereo vision Stereo vision is also known as stereopsis, stereoscopic vision

or binocular vision. These techniques aim to provide a depth map of a scene using

two cameras. It combines two images taken from two slightly different points of

view.

This process can be compared with the human vision system. When our eyes view

a scene, the images drawn on each retina differ by a small degree. This is illustrated

by figure B.1 [101]. From these two corresponding images and the position of the

eyes, the brain creates a perception of depth.

171

APPENDIX B. DENSE DISPARITY MAP USING EPIPOLAR GEOMETRY

The whole stereopsis process can be divided into the following three stages:

1. Camera calibration

2. Image correspondence

3. Triangulation

The method has been generalised to more than two cameras, i.e. trinocular and

beyond [102].

B.1.2 Camera calibration The mapping of the world - the geometry of which

can be modelled with a 3-D vector space - to a 2-D discrete space, the image, has

already been modelled successfully through various methods [42]. According to the

chosen model, a slightly different set of parameters have to be found. These pa-

rameters depends on the characteristics of each camera. The process of determining

these parameters is known as camera calibration.

Camera calibration is still an active field of research, although the technology is

mature enough so that different implementations are freely available. Such imple-

mentations can be found for instance in the Mimas, OpenCV and Gandalf libraries.

Thus, the camera calibration problem boils down to identifying a suitable model for

our requirements and an implementation to obtain the model’s parameters.

Camera parameters are generally classified into two classes: the intrinsic and

the extrinsic parameters of the camera. The intrinsic parameters are the focal

length, the coordinates of the principal point and a few parameters to model the

geometric distortions characteristic of the lens system. The extrinsic parameters are

the position of the camera, i.e. location and orientation compared to an arbitrary

external frame.

The process of calibration needs to be performed only once and thus it can be

conducted off-line. It involves taking images of a scene where 3-D points of the

scene are known. By finding the correspondence points in the resulting images, the

parameters are found by solving a system of equations. Once the camera is calibrated

it is possible to associate a 3-D ray to each pixel of the image as illustrated in figure

B.2 or to predict the 2-D location in an image of a 3-D point of the scene.

We have tested a method that uses a calibration object [42]. This object is a grid

similar to a chess board with known measures. Figure B.5 shows the calibration grid.

172

APPENDIX B. DENSE DISPARITY MAP USING EPIPOLAR GEOMETRY

Figure B.1: The images seen by each eye are slightly different. Image from the
Optometrists Network website.

Image frame

Camera frame M

M’

Figure B.2: By obtaining the intrinsic parameter it is possible to determine where
each point expressed in the camera frame will be projected onto the image.

173

APPENDIX B. DENSE DISPARITY MAP USING EPIPOLAR GEOMETRY

Once the intrinsic parameters of the camera are known it is possible, for instance,

to project a model of an object in the image as illustrated in Figure B.3. Using the

intrinsic parameters of the camera we have mapped a cuboid having the dimensions

of the chess board with the chess board in the image. The mapping was performed

manually by trials to estimate the location and rotation of the chess board.

This process can be automated if there exists a way to estimate the pose of the

object. This is actually the basis of model-based 3-D pose estimation which was the

initial direction of this research on stereo-vision. The results of some experiments

made with a Rubik’s cube are presented in section C.2 of this thesis.

In figure B.3, the white line at the top of the image is curved due to lens defor-

mation. It is a line we have mapped on the image to the approximated, manually

estimated, position of an edge of the power supply unit at the top left corner of the

image. It demonstrates that the deformations of the image by the lens system are

taken into account by the model when a model is re-projected onto the image.

Figure B.3: A red parallelepiped and a white line projected on the image using the
image formation model

Distortion parameters can also be used to rectify an image. A rectified image is

an image such that lines onto the image are projections of lines from the real world.

This is illustrated by figure B.4.

174

APPENDIX B. DENSE DISPARITY MAP USING EPIPOLAR GEOMETRY

B.1.3 Stereo calibration When a scene is captured from multiple points of

view, knowing the relative location of the cameras is a preliminary step towards

determining the geometry of the scene. In the case of a stereo rig the process of

determining the relative position of the two cameras is known as stereo calibration.

Once calibration is achieved, it is then possible to obtain standardised images.

Standardised images have been rectified such that when a point can be seen on the

two images, this point belongs to the same base line on both images. Once the

stereo-calibration has been performed off-line, the image standardisation process is

reduced to a warping of the image pair. Image standardisation is useful as they

provide a way to reduce the dimensionality of the correspondence problem.

Figure B.5 shows the two original images acquired with the stereo rig and the

standardised images.

B.1.4 Correspondence problem In its more general formulation, the corre-

spondence problem consists of finding, for a point in a scene, where it appears (if it

appears) on different images taken from different points of view.

In the special case of stereo vision since the two points of view are close, most of

the points are visible in both images. Moreover, the two images can be transformed

in such a way that two corresponding points would appear on the same line. After

such a transformation the images are said to be standardised.

A disparity map can be created to represent the relative position of two corre-

sponding points. Such a map can be visualised as an image as shown in figure B.6.

Dark pixels represent small disparities and thus far elements and brighter pixels

Figure B.4: The right image is the rectified left image. Notice that the power supply
edge highlighted in previous figure appears straight.

175

APPENDIX B. DENSE DISPARITY MAP USING EPIPOLAR GEOMETRY

Figure B.5: Top: pair of images taken by our stereo rig. Bottom: the same pair
after standardisation. Black lines have been drawn to exhibit the alignment of the
corresponding image elements.

176

APPENDIX B. DENSE DISPARITY MAP USING EPIPOLAR GEOMETRY

represent larger disparities and thus nearer elements.

Methods to solve the correspondence problem can be divided into two categories:

sparse disparity maps where only the most reliable features are registered and dense

disparity maps where a corresponding point is attributed to almost every points

of the image. The usage of constraints such as continuity are used to match un-

textured surfaces. The second formulation is ill-posed as some points do not have

correspondent points on the other image. However in the case of stereo images these

points are a minority. Dense disparity maps are less reliable than sparse maps,

however they give an approximation of the distance between the camera system and

the object for almost every pixel.

Figure B.6: Pair of standardised image and their disparity map. Red points are
displayed when uncertainty is too high.

B.1.5 Discussion The major issue of dense disparity map evaluation is compu-

tational complexity. To illustrate this, assume that there exists a reliable method to

decide if two pixels from different images correspond to the same point. If a brute

force comparison algorithm is used to compare each pixel of one image with each

177

APPENDIX B. DENSE DISPARITY MAP USING EPIPOLAR GEOMETRY

pixel of the other image this hypothetical method would have to be used n2 times

where n is the number of pixels. So for relatively small images, say 320×240 pixels,

the method would have to be applied around 6 × 109 times.

Considering that the hypothetical comparison method may require a non negli-

gible amount of time, it appears that obtaining dense disparity maps, in real-time,

on an entry level desktop computer is computationally expensive. As a result, many

techniques have been developed that tries to limit computation. At the time of

writing, a cost/energy minimisation formulation of the problem solved using a max

flow/min cut algorithm [103] is one such approach [104][105]. At the point of imple-

mentation we thought that this technique was too slow for our purposes. However,

Boykov and Kolmogorov [106] have shown that it was possible to implement graph

cuts for real-time applications. In a 2007 seminar, Blake [107] mentioned the ex-

istence of a graph cut implementation, for standard PC, operating at a rate of 2

million pixels per second. It should be noted that graph cut algorithms provide an

exact solution for a certain class of problem [108] modelled by a random Markov

Field. They have also many other applications, notably for image segmentation

[109][110], image reconstruction and more atypical image manipulations such as the

creation of digital tapestries [111].

Another classic approach consists of using standardised images as described

above. Thus, the search of a corresponding point is reduced to a line, transforming

a 2-D problem into a one dimensional one. To determine if two pixels correspond

to the same physical entity, measures, based on intensity or colour of the pixels,

are used. To overcome major problems such as illumination changes, noise, drift

between lines and the lack of texture, a window of surrounding pixels is taken into

account. Further discussion on this approach is provided in appendix B.

For reference purposes other approaches have been tried [112]: simulated anneal-

ing, cooperative algorithms, dynamic programming, divide and conquer algorithms

to cite just a few. The implementations are often more complex and do not provide

significant improvement on the quality of the result or speed of the algorithm.

B.1.6 Summary Although stereo-vision has naturally emerged for biological

“systems” and proved to be useful in various applications [104], such as segmen-

tation or in robotics for obstacle avoidance, for systems aiming at capturing the

geometry of a relatively small object it is impaired with:

178

APPENDIX B. DENSE DISPARITY MAP USING EPIPOLAR GEOMETRY

1. unreliability when the object has insufficient texture to correctly evaluate the

depth map.

2. imprecision since depth accuracy is decreasing proportionally to the inverse of

the distance between the camera system and the entity position.

3. slowness due to computationally expensive techniques to evaluate the depth

map. Although this is not an issue anymore due to graph cut techniques.

Capturing a model of an object is better tackled using structured light, like a laser or

a striped projector, or time of flight [113] methods. Therefore, stereo vision has to be

considered with circumspection for model building of objects since other technology

can achieve the same purpose by evaluating the 3-D geometry of a visible scene in

a more accurate, efficient and precise manner.

B.2 Model building alternatives

Another approach that can be used to locate a 3-D object is to determine object

features that are highly identifiable despite perspective changes, or more simply,

affine deformations. In his thesis [114] Johnson introduced the concept of spin

images which has this property. Another kind of feature that is robust to affine

transformations is referred to as local image descriptors. Amongst the most reliable

such features are scale invariant feature transform (SIFT) [115][116] features and

gradient location and orientation histogram (GLOH) features [117]. Mikolajczyk

and Schmid [117] have done remarkable work in implementing a wide variety of

popular and efficient local feature descriptors to compare them. Principal component

analysis SIFT (PCA-SIFT) [118] and Speeded up Robust Features (SURF) [119] are

two other interesting methods for local image invariants. In [120] Mikolajczyk et

al. evaluate combinations of five region detectors and five region descriptors for

the recognition of object classes. Results indicate that the usage of the Hessian-

Laplace region detector combined with the extended SIFT (GLOH) image descriptor

performs best for object class recognition. For an overview of image recognition

videos of Pietro Perona conferences are available online [121] [122].

Having a 3-D model with these kind of features, it would then be possible to

determine the pose of an object using a random sample consensus (RANSAC) algo-

rithm [123].

179

APPENDIX B. DENSE DISPARITY MAP USING EPIPOLAR GEOMETRY

In order to acquire the geometry of a 3-D model a laser line can be used. Faucher

[124] and Boissenin started to implement such a solution, to acquire the 3-D of the

object it is positioned on a rotational platform. The project, named Bright, is

available on the web. It makes use of the Mimas library.

Structure from motion (SFM) determines an object geometry by analysing ob-

jects movements relatively to a camera. Therefore no laser line is necessary. Chang

and Wong [125] proposed to solve the SFM problem by using a two-stage bundle ad-

justment [126] method. The first stage uses an approximated model to estimate the

pose of the object. The second stage uses the pose information to refine the model

structure. The two stages are executed repeatedly until the difference between the

observed data and data re-projected from the estimated model is minimised. The

tracking of the object is done using Lowe’s method [127]. A method is used to track

and estimate the 3-D pose of an object using a 3-D model of the object. A full

perspective model of the camera can be adopted. A Newton minimisation method

is used to solve the set of equation [128][129].

Wong et al. [130] discussed a method to acquire 3-D object using a video camera

for the purpose of recognition and pose estimation.

B.3 Implementation

As mentioned in section B.1.5, a practical solution to compute dense disparity maps

in real-time can be implemented by using the epipolar geometry of stereo images

in combination with a correlation based algorithm. We have implemented such a

method, that consists of calculating a similarity measure, say the sum of the ab-

solute difference of the values of the pixel in the neighbourhood of the two points

under consideration, based on the intensity of the pixels. The most similar pixels in

different images are considered to be matched. The speed requirement is achieved

using two schemes. To reduce the amount of calculations, images are first standard-

ised (such that 2 corresponding pixels are in the same row in both images) using

stereo calibration. A window shifting technique [131] speeds up the computation by

eliminating redundant computations.

Figure B.7 shows a classical pair of standardised images from the Tsukuba uni-

versity repository and the corresponding disparity map obtained with our imple-

mentation of a correlation based algorithm. The red areas represent the pixels that

180

APPENDIX B. DENSE DISPARITY MAP USING EPIPOLAR GEOMETRY

are occluded. The lighter the colour the nearer the entity is to the camera.

Figure B.7: Result of our implementation on a well known pair of standardised
images from the Tsubaka university repository.

Figure B.6 illustrates problems due to illumination. On the disparity map the

computer box in the scene contains black regions wrongly suggesting that there are

holes in the surface. Further analysis of the original image leads us to suggest that

the light reflection dissimilarity due to the slight difference of the position of the

camera is responsible for the erroneous result.

Figure B.8 presents different depth maps with a checker board placed at different

positions.

B.4 Triangulation

All the necessary information to locate a point relative to the stereo vision system

is now known. The calibration of each of the cameras allows the estimation of the

coordinate of any line passing through the camera origin and a pixel. Moreover,

stereo calibration gives the relative orientation and position of the two cameras.

Therefore, knowing the corresponding pixel of an object point allows the complete

determination of the triangle whose vertices are the two camera origins and the the

object point.

181

APPENDIX B. DENSE DISPARITY MAP USING EPIPOLAR GEOMETRY

Figure B.8: Different disparity maps using our calibrated images.

Baseline

Image1

Image2 : corresponent pixels

Frame2

Frame1

Line coordinate found

thanks to the calibration.

 the two lines seldom cut themselves

Figure B.9: Triangulation of a point.

182

APPENDIX B. DENSE DISPARITY MAP USING EPIPOLAR GEOMETRY

In practice, noise and discreteness of the data results in a triangle that presents

an open angle as shown in figure B.9. The location of the object can be considered

to be the nearest point to both lines.

B.5 Summary

Although stereo-vision has naturally emerged for biological “systems” and proved

to be useful in various applications, such as segmentation or in robotics for obstacle

avoidance, for systems aiming at capturing the geometry of an object it is impaired

with:

1. unreliability when the object has insufficient texture to correctly evaluate the

depth map.

2. imprecision since depth accuracy is decreasing proportionally to the inverse of

the distance between the camera system and the entity position.

3. slowness due to computationally expensive techniques to evaluate the depth

map. Although this is not an issue anymore thanks to technique like graph

cuts.

Creating a model of an object is better tackled using structured light, like a laser

or a projector, or time of flight [113] methods. Therefore, stereo vision has to

be considered with circumspection for model construction of objects since other

technology can achieve better results by evaluating the 3-D geometry of a visible

scene, in a more accurate, efficient and precise manner.

183

Appendix C

Further testing of the particle

filter

C.1 Table tennis sequence

Figures C.1 and C.2, show the results of the tests of the implementation of the

particle filter on 2 ping-pong sequences. In this case a correlation measure and the

modified particle filter that takes into account the speed of the object were used.

Some parameters, such as the distance of relocation of particles for the propagation

step of the particle filter, needed to be tuned but this was done quickly and the

tracking worked almost immediately.

C.2 Rubik’s cube sequence

In order to make sure the implementation was robust and generic enough a third

tracking scenario was selected: the 3-D tracking of a Rubik’s cube. The measure

associated with this scenario differed from previous tracking scenarios since a 3-D

wireframe model was used instead of a template image of the object.

Brown et al. [132] proposed a method to acquire a 3-D wireframe model using a

semi-automatic method. Outlines of the tracked object are drawn on the image. It

is then tracked using a Kalman filter, the accumulated information then serves to

determine the wireframe model. The method also explains how lines can be tracked

in 3-D. For more references on 3-D tracking and 3-D models see page 179.

In a first attempt to track the Rubik’s cube the outline of the cube was projected

on the image and the number of edge points close to this outline were counted. Figure

184

APPENDIX C. FURTHER TESTING OF THE PARTICLE FILTER

Figure C.1: Tracking of a ping-pong ball. Top left corner, the ball template image.
The large white dots represent the previous tracked positions of the ball. The large
black dot, the current position of the ball and the small white dots, the particles’
positions.

Figure C.2: The large black square is the probable actual position of the ping-pong
ball. The small white dots indicate the particles’ positions and the larger white
squares represent the earlier tracked positions.

C.3 shows that the tracking failed quickly.

To improve our model a hand-crafted 3-D wireframe model of the Rubik’s cube

185

APPENDIX C. FURTHER TESTING OF THE PARTICLE FILTER

Figure C.3: After a few frame the tracking fails completely.

was made by determining the 3-D coordinate of the 54 square elements lying at the

surface of the Rubik’s cube. Edges corresponding to the boundary of these squares

were used to represent the Rubik’s cube. A projective model of the camera was used

to project these lines on the image and comparison with an edge filter image of the

sequence were used to validate hypotheses. Although the particle cloud appeared to

stay focused longer around the Rubik’s cube, the particles still spread quite quickly

resulting in the tracking failing again.

In order to improve the filtering method the following was undertaken. First, a

coarse colour filter was applied to the image. Morphological operators, opening and

closing, were used to roughly identify the position of the Rubik’s cube. In indsight

the use a colour filter based on the hue saturation ligthness (HSL) colour space

would be preferable and morphological operator parameters could have been better

tuned to eliminate the unnecessary square appearing in the third image of figure C.4

and which does not correspond to the Rubik’s position. This first segmentation was

then used as a stencil to select the edges filtered with a Canny edge detector. Then

a distance map was created such that each pixel indicates the distance to its closest

edge. This allows the application of minimisation techniques to better position the

model on the image as described further down. Figure C.4 illustrates these steps.

Figure C.5 shows this distance map in false colour.

The next improvement was to remove hidden lines from the measurement data.

This is a well-known problem discussed at length by the computer graphics com-

munity. The literature review shows that there is no easy algorithm that allows the

determination of which edges are occluded by the surface of an object. Hidden line

186

APPENDIX C. FURTHER TESTING OF THE PARTICLE FILTER

Figure C.4: Different stage of the image filtering process

Figure C.5: The filtered image with false colours.

187

APPENDIX C. FURTHER TESTING OF THE PARTICLE FILTER

removal is considered as one of the most “tedious tasks in 3-D programming” [133].

An analysis of the paper [134] shows that there is a huge number of special cases to

take into account that largely justifies this statement. Some implementations can be

found, nevertheless they do not exhaustively remove hidden lines, culling of back-

face polygon is generally the only operation done. While the algebraic approach

proved to be difficult, hardware implementations using a Z-buffer technique (also

called stencil [135] buffer) to implement efficiently hidden line removal are read-

ily available. Lines are written in the buffer and overwritten with the background

colour when another polygon hides them. OpenGL1 has been used to render the

corresponding cube to a particle. A major issue of this technique is that primitives

are lost during the rendering process. Thus to obtain the outline of the cube the

image was rendered and then filtered to obtain the points corresponding to edge

locations. This process is slow and directly obtaining the visible edges primitives

would have been more desirable. For further information, [136] presents a taxonomy

of different hidden line removal algorithms.

Despite this last improvement, the tracking continued to fail as shown in figure

C.6. The presented frames indicates that one of the reasons was the clustering of

particles around positions that match some of the Rubik’s edges but not the correct

ones. The technique discussed in section 3.5.4 that involves using a complemen-

tary measure could be implemented using the colour segmentation based measure.

However a different approach was utilised. In order to reduce the number of parti-

cles used and thus increase the tracking speed, a gradient descent implementation

technique was employed. The particles having promising results were relocated

using a gradient descent algorithm in order to maximise their weight. Although

this improved the tracking, it did not completely succeed. However, the successive

implementations allowed us to refine the genericalness of the particle filter imple-

mentation.

After further consideration of the problem, the following method was conceived:

using the Hough transform some of the main line of the cube could be determined.

The intersection of the lines could then provide some of the points of the Rubik’s

cube at the intersection of the Rubik’s cube edges. Point correspondence, using a

1A standard used by graphic cards to render 3-D surfaces.

188

APPENDIX C. FURTHER TESTING OF THE PARTICLE FILTER

frame A frame B

frame C frame D

Figure C.6: Tracking a Rubik’s cube, transparent white doted lines indicates the
hypothesis location.

189

APPENDIX C. FURTHER TESTING OF THE PARTICLE FILTER

RANSAC2 method would ultimately provide the position of the Rubik’s cube. Al-

though this method does not involve particle filters it enabled a better acquaintance

with the Hough transform method. This was eventually used during the MiCRoN

project and constituted the starting point for the research in template reduction

presented in previous chapters.

2Random sampling consensus, see page 179

190

Appendix D

Machine vision and computer

vision

The distinction between machine vision and computer vision is often misunderstood

and a short explanation is given. The various techniques developed in “machine

vision” usually tend to be related to the needs of industry and includes the design of

the physical vision system (camera, light source, laser, lenses, interface, processing

unit etc.) in an industrial environment as well as evaluating risks associated to the

system. In contrast “computer vision” is more concerned with the algorithmic issues

and is considered to be a sub-field of artificial intelligence [137]. The two fields are

closely interrelated and the boundary is blurred. However it is often the case that

machine vision development is industry based and computer vision academically

based.

Computer vision comprises a vast body of knowledge that intersects with di-

verse scientific fields (computer science, psycho physics, mathematics, engineering)

and also has its own sub-development, e.g. the theory of camera calibration. The

number of techniques and ideas it encompasses is so vast that it is difficult to in-

tuitively grasp this field in its totality. Some idea of its extent can be gained by

browsing CVonline, an evolving, distributed, non-proprietary, on-line compendium

of computer vision. Many researchers have claimed that computer vision has come

of age. Recent technical improvements (support vector machines, the generalised

usage of statistical methods etc) along with developments related to the Internet

have led experts to suggest that, despite the incredible complexity of the task, it

might be possible to mimic the vision capability of the brain for scene interpretation.

191

APPENDIX D. MACHINE VISION AND COMPUTER VISION

It has been estimated that roughly 60 percent of the human brain cortex is involved

in vision processes.

192

Appendix E

Tracking source code

A minimalistic implementation of the tracking algorithm follows. It is also available

in the Mimas library in the examples/tracking/stencil minimalist directory. The

header file:

#i f n d e f MMVL STENCIL TRACKING HH INCLUDED

#de f i n e MMVL STENCIL TRACKING HH INCLUDED

#inc lude <iostream>

#inc lude <fstream>

#inc lude <iomanip>

#inc lude <vector>

#inc lude <set>

#inc lude <algorithm>

#inc lude <boost / mul t i a r ray . hpp>

#inc lude <boost /numeric / ublas / vec tor . hpp>

#inc lude < imag e f i l e i n pu t . h>

#inc lude <image f i l e ou tpu t . h>

#inc lude <image . h>

/∗∗

∗ Feature−image has to be given in a coord inate sytem centered

∗ on the middle o f the prev ious po s i t i o n o f the ob j e c t .

∗

∗ I n sp i r ed from the bounded hough transform .

”

∗ ” E f f i c i e n t Tracking with the Bounded hough Transform .

∗ Michael Greenspan , Limin Shang , P iot r Jas i obedzk i ”

∗

∗As i t might be long to pre−c a l c u l a t e the data s t ru c tu r e

∗ nece s sa ry f o r the t rack ing i t would be i n t e r e s t i n g

∗ to save the ob j e c t once i t has been i n s t an t i a t e d and i n i t i a l i s e d .

∗At the moment the best s o l u t i o n seems to use

∗ s e r i a l i z a t i o n . This i s provided by

∗boost s e r i a l i z a t i o n ava i l a b l e in ve r s i on 1 .32 o f the boost l i b r a r y

∗

∗

∗How to take in to account other c l u e s l i k e co lor , f e a tu r e o r i e n t a t i o n . . .

∗

∗ Time−stamp : <2005−01−28 12 : 10 : 45 engmb>

∗ Copyright (C) 2005 by Manuel Bo i s s en in

∗

∗ @author Manuel Bo i s s en in

∗ @date 17/01/2005

193

APPENDIX E. TRACKING SOURCE CODE

∗

∗∗∗/

// i n t e r v a l t y p e can be cont inuous or d i s c r e t e (f o r s tack o f images)

c l a s s I n t e r v a l {

pub l i c :

enum in t e r v a l t y p e {Continuous = 0 , D i s c r e t e } ;

enum in t e r v a l t y p e type ;

// f o r Continous type

f l o a t lower bound ;

f l o a t upper bound ;

// f o r D i s c r e t e type

i n t value ;

I n t e r v a l (f l o a t lowerBound , f l o a t uperBound)

: type (Continuous) , lower bound (lowerBound) , upper bound (uperBound)

{} ;

I n t e r v a l (i n t value)

: type (D i s c r e t e) , va lue (value)

{} ;

} ;

/∗∗

∗ A trans fo rmat ion c o n s i s t s o f a c l o s ed subset o f the t rans fo rmat ion

∗ space .

∗

∗ For the s t e n c i l t r a ck ing the idea i s p a r t i t i o n the t rans fo rmat ion space .

∗ The r e s u l t i n g d i s c r e t e s e t s have to be smal l enough to cons ide r that

∗ any o f t h e i r e lements i s with in the t o l e r e n c e e r r o r o f the average o f

∗ the subset e lements .

∗∗/

c l a s s Transformation{

pub l i c :

std : : vector<In t e rva l > i n t e r v a l s ;

i n t votes ;

Transformation () :

votes (0){}

s t r u c t l t t r a n s f : pub l i c std : : b ina ry funct i on <Transformation , Transformation , bool> {

bool operator () (Transformation x , Transformation y) { re turn x . votes < y . votes ;}

} ;

/∗∗

∗Feature i s used to de s c r i b e the x , y po s i t i o n o f a f e a tu r e

∗

∗ l t f e a t u r e i s used to compare two f e a t u r e s by std : : s e t

∗

∗ @author Manuel Bo i s s en in

∗ @date 18/01/2005

∗∗/

typede f boost : : numeric : : ub las : : vector<int> Feature ;

s t r u c t l t f e a t u r e

{

bool operator () (const Feature &f1 , const Feature &f2) const

{

i f (f 1 (0) == f2 (0))

{

re turn f1 (1) < f 2 (1) ;

}

re turn f1 (0) < f 2 (0) ;

194

APPENDIX E. TRACKING SOURCE CODE

}

} ;

c l a s s s t e n c i l t r a c k i n g {

pub l i c :

//Put the frame o f the model in the middle o f the image .

// Features are g iven in a model centered coord inate system .

//We assume that a l l model images are o f the same s i z e and

// that the ob j e c t has the same o r i e n t a t i o n

//and i s centered in the middle o f the image .

s t e n c i l t r a c k i n g (const std : : vector<Feature> &feature image ,

i n t model width , i n t model height ,

i n t x min , i n t x max , i n t x sub ,

i n t y min , i n t y max , i n t y sub) ;

//This i s used as an i nd i c a t o r (when compared with the number o f

// h i t f i nd) f o r the suc c e s s o f the t rack ing

i n t number o f f ea ture s ;

/∗

Pseudo−code

f i l l im a g e s p a c e ()

{

f o r each t rans fo rmat ion

f o r each f e a tu r e o f the image corresponding to the t rans fo rmat ion

{

c a l c u l a t e l o cu s o f po int accord ing to the sub−transformed space ;

add trans fo rmat ion r e f e r e n c e to t h i s l o cu s to the image space array ;

}

}

∗/

// t h i s i s separated from the cons t ruc to r as the data

// s t r u c tu r e i t f i l l s might be l a t t e r loaded

void f i l l im a g e s p a c e (void) ;

//The f e a tu r e should be expressed in a ob j e c t centered coord inate system of

// the prev ious tracked l o c a t i on .

Transformation track (std : : vector<Feature> &f e a t u r e s) ;

i n t get model width (void) const { re turn model width ; }

i n t ge t mode l he ight (void) const { re turn model he ight ; }

pr i va t e :

i n t model width ;

i n t model he ight ;

i n t x sub ;

i n t y sub ;

//To s t o r e the vector o f f e a tu r e o f an image

std : : vector<Feature> f ea ture image ;

boost : : mult i ar ray<Transformation ,2> t r ans f o rmat i on space ;

// to index the transform space

typede f boost : : mult i ar ray<Transformation ,2 > : : index i d x t s ;

// s i z e o f the image space depends on the image model s i z e and

// the t rans fo rmat ion space .

boost : : mult i ar ray<std : : vector<Transformation ∗>,2> image space ;

std : : vector<Transformation ∗ >:: i t e r a t o r t r a n s f i t ;

// to index the image space

typede f boost : : mult i ar ray<std : : vector<Transformation ∗> ,2>:: index i d x i s ;

195

APPENDIX E. TRACKING SOURCE CODE

} ;

typede f boost : : shared ptr< s t e n c i l t r a c k i n g > s t e n c i l t r a c k i n g p t r ;

#end i f

The stencil tracking.cc file:

/∗∗

∗ A minimal i s t code to help understand the e s s e n t i a l

∗ e lements o f s t e n c i l t r ack ing .

∗

∗

∗ Time−stamp : <05/10/19 21 : 06 : 11 engmb>

∗ Copyright (C) 2005 by Manuel Bo i s s en in

∗

∗ @author Manuel Bo i s s en in

∗ @date 17/01/2005

∗

∗∗∗/

#i f n d e f NDEBUG

#inc lude <boost / mul t i a r ray . hpp>

#end i f

#inc lude <u t i l i t y >

#inc lude " s t e n c i l _ t r a c k i n g . h "

#i f n d e f NDEBUG

using namespace boost ;

#end i f

s t e n c i l t r a c k i n g : : s t e n c i l t r a c k i n g (const std : : vector<Feature> &feature image ,

i n t model width , i n t model height ,

i n t x min , i n t x max , i n t x sub ,

i n t y min , i n t y max , i n t y sub) :

model width (model width) ,

model he ight (model he ight) ,

x sub (x sub) , y sub (y sub) ,

f ea ture image (f ea ture image) ,

t r ans f o rmat i on space (boost : : ex tent s [x sub] [y sub]) ,

image space (boost : : ex tent s [model width + (x max − x min)] [model he ight + (y max − y min)])

{

f l o a t x s i z e = f l o a t (x max − x min)/ x sub ;

f l o a t y s i z e = f l o a t (y max − y min)/ y sub ;

// F i l l the t rans fo rmat ion space with i t s va lues

f o r (i d x t s x = 0 ; x < x sub ; x++)

f o r (i d x t s y = 0 ; y < y sub ; y++)

{

std : : vector<In t e rva l > tmp interv ;

tmp interv . push back (I n t e r v a l (x min + x ∗ x s i z e , x min + (1+x)∗ x s i z e)) ;

tmp interv . push back (I n t e r v a l (y min + y ∗ y s i z e , y min + (1+y)∗ y s i z e)) ;

Transformation tmp trans f ;

tmp trans f . i n t e r v a l s = tmp interv ;

t r ans f o rmat i on space [x] [y] = tmp trans f ;

}

number o f f ea ture s = fea ture image . s i z e () ;

}

/∗

Pseudo−code

f i l l im a g e s p a c e ()

{

196

APPENDIX E. TRACKING SOURCE CODE

f o r each t rans fo rmat ion

f o r each f e a tu r e o f the image corresponding to the t rans fo rmat ion {

c a l c u l a t e l o cu s o f po int accord ing to the sub−transformed space ;

add trans fo rmat ion r e f e r e n c e to t h i s l o cu s to the image space array ;

}

}

t h i s func t i on i sn ’ t c a l l e d by the cons t ruc to r in the hope l a t e r to s e r i a l i z e the

t r a cke r (i t can be very long to c a l c u l a t e the data s t ru c tu r e e s p e c i a l l y f o r high

dimens iona l spaces)

∗/

void s t e n c i l t r a c k i n g : : f i l l im a g e s p a c e (void){

#i f n d e f NDEBUG

unsigned n = 0 ;

#end i f

f o r (i d x t s x = 0 ; x < x sub ; x++)

f o r (i d x t s y = 0 ; y < y sub ; y++){

Transformation ∗ tmp trans f = &trans f o rmat i on space [x] [y] ;

s td : : set<Feature , l t f e a t u r e > x t r an s l o c u s ;

f o r (i n t x = in t (tmp transf−>i n t e r v a l s [0] . lower bound) ;

x <= tmp transf−>i n t e r v a l s [0] . upper bound ; x++)

{

f o r (std : : vector<Feature > : : c o n s t i t e r a t o r f e a t i t = fea ture image . begin () ;

f e a t i t != fea ture image . end () ; f e a t i t++)

{

Feature tmp feature (2) ;

tmp feature (0) = (∗ f e a t i t) (0) + x ;

tmp feature (1) = (∗ f e a t i t) (1) ;

x t r a n s l o c u s . i n s e r t (tmp feature) ;

}

}

std : : set<Feature , l t f e a t u r e > xy t r an s l o cu s ;

f o r (i n t y = in t (tmp transf−>i n t e r v a l s [1] . lower bound) ;

y <= tmp transf−>i n t e r v a l s [1] . upper bound ; y++)

{

f o r (std : : set<Feature , l t f e a t u r e > : : c o n s t i t e r a t o r f e a t i t =

x t r an s l o c u s . begin () ;

f e a t i t != x t r an s l o c u s . end () ; f e a t i t++)

{

Feature tmp feature (2) ;

tmp feature (0) = (∗ f e a t i t) (0) ;

tmp feature (1) = (∗ f e a t i t) (1) + y ;

xy t r an s l o cu s . i n s e r t (tmp feature) ;

}

}

// f i l l the image space with the po in t e r to the t rans fo rmat ion

f o r (std : : set<Feature , l t f e a t u r e > : : c o n s t i t e r a t o r f e a t i t = xy t r an s l o cu s . begin () ;

f e a t i t != xy t r an s l o cu s . end () ;

f e a t i t++)

{

// transform back to top l e f t coord inate system

in t x = (∗ f e a t i t) (0) + image space . shape () [0] / 2 ;

i n t y = image space . shape () [1] / 2 − (∗ f e a t i t) (1) ;

//Not to add twice the same transform i f

// the same sub−t rans fo rmat ion br ing two po int s

// to the same p lace

i f ((image space [x] [y] . empty ()) | | (image space [x] [y] . back () != tmp trans f))

{

image space [x] [y] . push back (tmp trans f) ;

}

}

197

APPENDIX E. TRACKING SOURCE CODE

}

}

Transformation s t e n c i l t r a c k i n g : : t rack (std : : vector<Feature> &f e a t u r e s)

{

// r e i n i t i a l i z e the number o f vote

f o r (unsigned in t n = 0 ; n < t r ans f o rmat i on space . num elements () ; n++)

t rans f o rmat i on space . data () [n] . votes = 0 ;

f o r (std : : vector<Feature > : : c o n s t i t e r a t o r f e a t u r e i t = f e a t u r e s . begin () ;

f e a t u r e i t != f e a t u r e s . end () ; f e a t u r e i t++)

{

Feature temp (2) ;

temp (0) = (∗ f e a t u r e i t) (0) + image space . shape () [0] / 2 ;

temp (1) = image space . shape () [1] / 2 − (∗ f e a t u r e i t) (1) ;

f o r (t r a n s f i t = image space [temp (0)] [temp (1)] . begin () ;

t r a n s f i t != image space [temp (0)] [temp (1)] . end () ;

t r a n s f i t++)

(∗ t r a n s f i t)−>votes++;

}

Transformation max element = ∗(std : : max element (t rans f o rmat i on space . data () ,

t r ans f o rmat i on space . data ()+

t rans f o rmat i on space . num elements () ,

l t t r a n s f ())) ;

r e turn max element ;

}

Part of the main file. The whole implementation is provided with the Mimas exam-

ples in the tracking/stencil minimalist repertory.

i n t main (i n t argc , char∗∗ argv)

{

i n t retVal = 0 ;

t ry {

g l u t I n i t (&argc , argv) ;

x11 d i sp l ay d i sp ;

image mesaoutput<unsigned char > d i sp l ay (&disp) ;

// begin load parametres

s t r i n g model image = argv [1 1] ;

s t r i n g base name image = argv [1 2] ;

image<unsigned char> current image ;

mimas : : hf : : image loader<unsigned char> im ld (current image ,

mimas : : hf : : image loader<unsigned char > : : s e t (base name image , 4 , " . pgm " , 0 , 2 9 9)) ;

i n t th re sho ld = a to i (argv [1 3]) ;

i n t model width = ato i (argv [1]) ;

i n t model he ight = a to i (argv [2]) ;

i n t c en t e r x = a to i (argv [3]) ;

i n t c en t e r y = a to i (argv [4]) ;

o b j e c t p o s i t i o n cu r r e n t p o s i t i o n ;

c u r r e n t p o s i t i o n . x = cent e r x ;

c u r r e n t p o s i t i o n . y = cent e r y ;

i n t x min = ato i (argv [5]) ;

i n t x max = ato i (argv [6]) ;

i n t x sub = ato i (argv [7]) ;

i n t y min = ato i (argv [8]) ;

198

APPENDIX E. TRACKING SOURCE CODE

i n t y max = ato i (argv [9]) ;

i n t y sub = ato i (argv [1 0]) ;

std : : vector< Feature > model = create mode l (model width , model height ,

center x , center y , model image , th r e sho ld) ;

#i f n d e f NDEBUG

d i s p l a y f e a t u r e s (model , &disp) ;

#end i f

// the c l a s s can t r e a t more complex model (s tack o f images) .

s t e n c i l t r a c k i n g t r a cke r (model , model width , model height ,

x min , x max , x sub ,

y min , y max , y sub) ;

t r a cke r . f i l l im a g e s p a c e () ;

whi le (t rue)

{

im ld . next () ;

std : : vector< Feature > c e n t e r e d f e a t u r e s =

g e t f e a t u r e s (model width + x max − x min ,

model he ight + y max − y min ,

c u r r e n t p o s i t i o n . x , c u r r e n t p o s i t i o n . y ,

current image , th r e sho ld) ;

#i f n d e f NDEBUG

d i s p l a y f e a t u r e s (c en t e r ed f e a tu r e s , &disp) ;

#end i f

Transformation r e s u l t = t ra cke r . t rack (c e n t e r e d f e a t u r e s) ;

f l o a t percentage = f l o a t (r e s u l t . votes) / t r a cke r . number o f f ea ture s ;

#i f n d e f NDEBUG

cerr<<" I n d i c a t o r of s u c c e s s is "<<percentage<<endl ;

#end i f

c u r r e n t p o s i t i o n . x +=

(in t) ((r e s u l t . i n t e r v a l s [0] . lower bound +

r e s u l t . i n t e r v a l s [0] . upper bound) / 2 .0) ;

c u r r e n t p o s i t i o n . y +=

(in t) ((r e s u l t . i n t e r v a l s [1] . lower bound +

r e s u l t . i n t e r v a l s [1] . upper bound) / 2 .0) ;

current image . s e tP i x e l (c u r r e n t p o s i t i o n . x , c u r r e n t p o s i t i o n . y , 255) ;

d i sp l ay << current image ;

}

} catch (except ion &e)

{

c e r r << " An e x c e p t i o n o c c u r r e d : " << e . what () << endl ;

re tVal = 1 ;

}

re turn retVal ;

}

199

Appendix F

Extended abstract on the

stencilled Hough transform

200

Shape information: using state space to select

discriminative configuration of points

Manuel Boissenin, Bala P. Amavasai, Jan Wedekind, Reza Saatchi

Microsystems and Machine Vision Laboratory,

Sheffield Hallam University, Pond Street, Sheffield S1 1WB, United Kingdom

http://www.shu.ac.uk/mmvl

Manuel.Boissenin@gmail.com

Abstract – A novel approach for the analysis of shape is

proposed. A shape is hither considered to be a set of points.

The idea consists in analysing a shape relatively to the set

of transformations the shape can undergo. The set of trans-

formation is also referred as state space. From this analysis

it is concluded that some points contribute more informa-

tion about the shape than others. A framework to define

and quantify the information contributed by set of points is

developed in here. By doing so, it is then possible to deci-

mate a set of points to obtain a reduced template of a shape.

The proposed method has positive consequences for track-

ing and recognition algorithms.

I Locating a shape on an image

The information implicitly contributed by a shape might

be defined according to the point configurations that are

needed to determine its characteristics (e.g. position and

scale).

By identifying a subset of points of a shape that charac-

terises a shape, an algorithm to locate and track an object

can be optimised to reduce the memory usage and improve

their speed performances. We focus on quantifying the in-

formation contributed from the relative position of uniden-

tifiable points, extracted with an edge detector for instance,

and the state space under consideration.

While studying this problem the following questions

arise: for a given set of points what criteria can be used

to determine a subset of points that uniquely characterises

the shape? Given a set of points, is it possible to quantify

the likelihood of the position of a shape that matches im-

age points? In other words, given a set of image points, is

it possible to evaluate the probability density function (pdf)

of the shape state? Can points extracted from an image be

determined to be part of a random set of points or of a given

shape? Is it possible to quantify the information contributed

by individual points to a set of points?

In order to answer these questions the following notation

are used:

• the shape S which is a set of points,

• the transformation space T , or state space, is another

set representing the possible transformation that the

shape can undergo.

• pi ∈ I , i = 1 . . . n, is a set of n points belonging to the

image I ⊂ R
2

Considering a set of points in the image space, we quan-

tify the transformations that are compatible with putting

into correspondance points from the shape with points of

the image. The smaller this set of transformations is, the

more information the set of point is contributing to the

knowledge of the shape state. Formally, we consider the

set {t|∀pi ∈ I,∃sj ∈ s ⊂ S, t(sj) = pi, t ∈ T}
This shift in perspective that consists in considering the

transformation space is the classical one that is used by

Hough transform [2] [4] [3] related algorithms. A point on

the image space is selected and according to the transfor-

mation space and the shape under consideration all possible

transformations that are compatible with bringing a point

of the shape in correspondence with the image point get a

vote. After considering a certain number of points in the

image space, the transformations getting almost the same

number of votes are transformations that bring the points

of S in correspondence with almost all the point of the im-

age that were considered. With additional considerations

we propose the following definition:

Definition 1 Let T be the transformation space, Bδ(p) a

sphere of the same dimension than T , of radius δ and of

centre p. P a set of points of the image, S the set of points of

the shape, C(P) the set of transformations compatible with

the points of the image. We define the quantity of transfor-

mations Q(P) contained in C(P) as:

C(P) := {t ∈ T |card(t(S) ∩ P) = card(P)}

QT
δ (P) := min card({Bδ(p)|p ∈ T, δ ∈ R,Bδ(p)∩C(P) 6= ∅})

(1)

A set of points P is said to uniquely characterises a shape

transformation relative to a transformation space T and with

an error δ if QT
δ (P) is equal to 1.

We now consider a set of points S extracted from a shape

and we consider that T is bounded. The following quanti-

fies the information contributed by a set of points of a shape

relative to a transformation space T and an accuracy of δ.

IT
δ (S) := sup

t∈T

QT
δ (t(S)) (2)

201

The number of configurations to consider becomes huge

very quickly: for k point configurations out of n points

of the shape the number of cases to consider is
(

n
k

)

, even

though, possibly, only a small set of points are sufficient to

represent the object and therefore k should be small, this

may be quite large. Monte Carlo methods and genetic al-

gorithms are good candidates to find configurations that are

close to optimal. Implementation details to evaluate I(S)
are given in the following section.

II Evaluation of the quantity of information con-

tributed by a set of points

A methodology to evaluate the quantity of information

contributed by a set of points P from an image is now dis-

cussed.

A bounded transformation space T is divided into small

hypercubes h ∈ H such that H is a partition of T . We note

t(S) := {t(s)|s ∈ S}. A is a 2-D array of the size of the

image. ai,j are the elements of A and correspond to the

points overlapped by the pixel on line i and column j noted

Ii,j .

For each set of points h ∈ H and for each t ∈ h, t(S)
is evaluated and a reference to h is stored in ai,j whenever

Ii,j ∩ t(S) 6= ∅. This operation is not completely trivial

to implement and needs some approximation to be done

in a reasonable amount of time, however time is not crit-

ical since these operations can be done offline. Once this

is done, ai,j contains the references to the hypercubes that

contain the transformations that shift a point of the shape to

the corresponding pixel Ii,j . We note hk
i,j , k = 1..nref the

hypercubes referenced in ai,j .

It is now shown that the number of references nref that

is contained by ai,j is equal to fQT
δ (Ii,j) with a ≤ f ≤ b

where (a, b, f) ∈ R
3, a and b are two constants that depends

on the size of the hypercubes and the error sphere.

All hypercubes are assumed to have the same size but the

demonstration holds with hyper-volumes of different size.

One just has to consider the extremal cases. If the minimal

number of spheres needed to cover one hypercube is m then

at worst the minimal number of spheres to cover all hyper-

cubes would be m · nref thus QT
δ (Ii,j) ≤ m · nref . If a

sphere can intersect at most p hypercubes then we need at

least
nref

p
spheres to cover all transformations that are in

the hypercubes and thus
nref

p
≤ QT

δ (Ii,j).

Lemma 1 ∃(a, b) ∈ R
∗2
+ , such that a · QT

δ (Ii,j) ≤ nref ≤
b · QT

δ (Ii,j)

The most unfavourable case being when a set of transfor-

mations, that can be covered by a unique sphere, lie on the

interface of multiple hypercubes. If the dimension of the

transformation space is n, the number of hypercubes that

cover the set of transformation can be as high as 2n. As a

consequence, in practise, not only must nref be considered

but also if the hypercubes are contiguous or not.

Therefore, it is possible to have an evaluation of the quan-

tity of the transformations compatible with a set of points P

by considering:

QT
δ (P) ∼ card(

⋂

k,
i,j|Ii,j∈P

hk
i,j) (3)

and as a consequence the quantity of information of a subset

of points S′ of a shape can be estimated by:

IT
δ (S′) ∼ sup

t∈T

card(
⋂

k,

i,j|Ii,j∩t(S′) 6=∅

hk
i,j) (4)

which is much more computationally expensive to evaluate.

In order to reduce computation it is suggested that sampling

the transformation space might give a good approximation:

by selecting a few transformations from each hypercube for

instance. Proofs, experiments and more theoretical studies

remain open to research.

III Conclusion

We proposed a measure to quantify the information con-

tributed by a subset of point of a shape. By shape we refer to

any set of points associated to a transformation space. We

then proposed an algorithm to evaluate this measure. The

algorithm allows to identify subsets of points of a shape

that characterise uniquely its state for a given transforma-

tion space (perspective transformations for instance). The

technique has been successfully combined with a tracking

algorithm that uses decimated template with significant im-

provement for its speed (by a factor of 6000 in a specific

instance) and memory usage. For reason of space, results

can not be developed here.

It has been argued that high curvature points [5][1] con-

veys more information on a shape than other points. The

presented framework, that takes into account the state space

of a shape, provides a way to quantify this.

References

[1] F. Attneave and M. Arnoult. The quantitative study of shape

and pattern perception. Psychological Bulletin, 53(6):452–

471, 1956.

[2] D. H. Ballard. Generalizing the hough transform to detect

arbitrary shapes. In M. A. Fischler and O. Firschein, editors,

Readings in Computer Vision: Issues, Problems, Principles,

and Paradigms, pages 714–725. Kaufmann, Los Altos, CA.,

1987.

[3] M. Greenspan, L. Shang, and P. Jasiobedzki. Efficient track-

ing with the bounded hough transform. In CVPR ’04: Com-

puter Vision and Pattern Recognition, pages 520–527, 2004.

[4] V. F. Leavers. Which hough transform? CVGIP: Image Un-

derst., 58(2):250–264, 1993.

[5] S. Loncaric. A Survey of Shape Analysis Techniques, Pattern

Recognition. Bd, 31:983–1001.

202

References

[1] Champaneria, A. Parallelizing the condensation algorithm for visual tracking.

[online, last accessed October 2007], 2002. http://beowulf.lcs.mit.edu/18.337-

2002/projects-2002/amay/partracker/doc/.

[2] Welch, G. and Foxlin, E. Motion tracking: no silver bullet, but a respectable

arsenal. IEEE Computer Graphics and Applications, pages 24–38, 2002.

[3] The MINIMAN project. [online, last accessed October 2007].

http://vision.eng.shu.ac.uk/mmvlwiki/index.php/Miniman.

[4] The MiCRoN project. [online, last accessed October 2007].

http://i60p4.ira.uka.de/tiki/tiki-index.php?page=MiCRoN.

[5] The Mimas library. [online, last accessed October 2007].

http://vision.eng.shu.ac.uk/mediawiki/index.php/Mimas.

[6] Greenspan, M., Shang, L., and Jasiobedzki, P. Efficient tracking with the

bounded Hough transform. In CVPR ’04: Computer Vision and Pattern

Recognition, pages 520–527, 2004.

[7] Blake, A. and Isard, M. Active Contours: The Application of Techniques from

Graphics, Vision, Control Theory and Statistics to Visual Tracking of Shapes

in Motion. Springer-Verlag New York, Inc. Secaucus, NJ, USA, 1998.

[8] Kass, M., Witkin, A., and Terzopoulos, D. Snakes: Active contour models.

International Journal of Computer Vision, 1(4):321–331, 1988.

[9] Malladi, R., Sethian, J. A., and Vemuri, B. C. Shape modeling with front

propagation: a level set approach. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 17(2):158–175, 1995.

203

REFERENCES 204

[10] Brown, Lisa, G. A survey of image registration techniques. ACM Comput.

Surv., 24(4):325–376, 1992.

[11] Viola, P. and Jones, M. Robust real-time object detection. International

Journal of Computer Vision, 2002.

[12] Jain, A. K., Mao, J., and Mohiuddin, K. M. Artificial neural networks: a

tutorial. Computer, 29(3):31–44, 1996.

[13] Ramamoorthi, R. and Arvo, J. Creating generative models from range images.

Proceedings of SIGGRAPH, 99:195–204, 1999.

[14] Zitova, B. and Flusser, J. Image registration methods: a survey. Image and

Vision Computing, 21(11):977–1000, 2003.

[15] Loncaric, S. A survey of shape analysis techniques. Pattern Recognition,

31(8):983–1001, 1998.

[16] Walker, K. N., Cootes, T. F., and Taylor, C. J. Automatically building appear-

ance models from image sequences using salient features. Image and Vision

Computing, 20(5):435–440, 2002.

[17] Cootes, T. F., Edwards, G. J., and Taylor, C. J. Active appearance models.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6):681–

685, 2001.

[18] Cootes, T. F. and Taylor, C. J. Statistical models of appearance for computer

vision. World Wide Web Publication, February, 2001.

[19] Piccardi, M. Background subtraction techniques: a review. In Proceedings

of the IEEE International Conference on Systems, Man and Cybernetics, vol-

ume 4, 2004.

[20] Sugrue, M. and Davies, E. R. Motion distillation for pedestrian surveillance.

The Sixth IEEE International Workshop on Visual Surveillance, 2006.

[21] Ronse, C. A lattice-theoretical morphological view on template extraction

in images. Journal of Visual Communication and Image Representation,

7(3):273–295, 1996.

REFERENCES 205

[22] Naegel, B., Passat, N., and Ronse, C. Grey-level hit-or-miss transforms–Part

I: Unified theory. Pattern Recognition, 40(2):635–647, 2007/2.

[23] Naegel, B., Passat, N., and Ronse, C. Grey-level hit-or-miss transforms–

Part II: Application to angiographic image processing. Pattern Recognition,

40(2):648–658, 2007/2.

[24] Soille, P. On morphological operators based on rank filters. Pattern Recogni-

tion, 35(2):527–535, 2002.

[25] Gasteratos, A. and Andreadis, I. Soft mathematical morphology: extensions,

algorithms and implementations. Advances in Imaging and Electron Physics,

110(1):63–99, 1999.

[26] Nachtegael, M. and Kerre, E. E. Connections between binary, gray-scale

and fuzzy mathematical morphologies. Fuzzy Sets and Systems, 124(1):73–

85, 2001.

[27] Baumann, D. and Tinembart, J. Mathematical morphology image analysis on

FPGA.

[28] Liu, L. Morphological hit-or-miss transform for binary and gray-tone image

processing and its optical implementation. Optical Engineering, 33:3447, 1994.

[29] Gope, C. and Kehtarnavaz, N. Affine invariant comparison of point-sets using

convex hulls and Hausdorff distances. Pattern Recognition, 40(1):309–320,

2007.

[30] Rucklidge, W. J. Efficiently locating objects using the Hausdorff distance.

International Journal of Computer Vision, 24(3):251–270, 1997.

[31] Bayro-Corrochano, E. and Ortegon-Aguilar, J. Lie algebra template tracking.

Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International

Conference on, 2, 2004.

[32] Fitzgibbon, A. W. Robust registration of 2-D and 3-D point sets. British

Machine Vision Conference, 2:411–420, 2001.

[33] Drummond, T. and Cipolla, R. Application of Lie algebras to visual servoing.

International Journal of Computer Vision, 37(1):21–41, 2000.

REFERENCES 206

[34] Borgefors, G. Hierarchical Chamfer matching: a parametric edge matching

algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence,

10(6):849–865, 1988.

[35] Breuel, T. M. Implementation techniques for geometric branch-and-bound

matching methods. Comput. Vis. Image Underst., 90(3):258–294, 2003.

[36] Breuel, T. M. Finding lines under bounded error. Pattern Recognition,

29(1):167–178, 1996.

[37] Wedekind, J., Boissenin, M., Amavavasai, B., and Caparrelli, F. Object recog-

nition and real-time tracking in microscope imaging. In Proceedings of the 2006

Irish Machine Vision and Image Processing Conference (IMVIP 2006), 2006.

[38] Mukundan, R. and Ramakrishnan, K. Moment Functions in Image Analysis:

Theory and Applications. World Scientific, 1998.

[39] Mukundan, R. and Ramakrishnan, K. Fast computation of Legendre and

Zernike moments. Pattern Recognition, 28(9):1433–1442, 1995.

[40] Hwang, S., Billinghurst, M., and Kim, W. Local descriptor by Zernike mo-

ments for real-time keypoint matching.

[41] de Rezende, P. and Lee, D. Point set pattern matching in d-dimensions.

Algorithmica, 13(4):387–404, 1995.

[42] Camera calibration toolbox for matlab. [online, last accessed October 2007].

http://www.vision.caltech.edu/bouguetj/calib doc/index.html.

[43] Welch, G. and Bishop, G. An introduction to the Kalman filter. ACM SIG-

GRAPH 2001 Course Notes, 2001.

[44] Julier, S. and Uhlmann, J. A new extension of the Kalman filter to nonlinear

systems. Int. Symp. Aerospace/Defense Sensing, Simul. and Controls, 3, 1997.

[45] Welch, G. and Bishop, G. The Kalman filter. [online, last accessed October

2008]. http://www.cs.unc.edu/˜welch/kalman/.

[46] Stenger, B., Mendonca, P., and Cipolla, R. Model-based hand tracking using

an unscented Kalman filter. Proc. British Machine Vision Conference, 1:63–

72, 2001.

REFERENCES 207

[47] Yoon, Y. A New Kalman-Filter Based Framework for Fast and Accurate Visual

Tracking of Rigid Objects. PhD thesis, Purdue university, 2006.

[48] Nummiaro, K., Koller-Meier, E., and Van Gool, L. An adaptive color-based

particle filter. Image and Vision Computing, 21(1):99–110, 2003.

[49] Okuma, K., Taleghani, A., de Freitas, N., Little, J. J., and Lowe, D. G. A

boosted particle filter: multitarget detection and tracking. European Confer-

ence on Computer Vision, 1:28–39, 2004.

[50] Arulampalam, S., Maskell, S., Gordon, N., and Clapp, T. A tutorial on particle

filters for on-line non-linear/non-Gaussian Bayesian tracking. IEEE Transac-

tions on Signal Processing, 50:174–188, February 2002.

[51] Rui, Y. and Chen, Y. Better proposal distributions: Object tracking using un-

scented particle filter. In CVPR (2), pages 786–793. IEEE Computer Society,

2001.

[52] Djurić, P. M. et al. Applications of particle filtering to selected problems in

communications: a review and new developments. IEEE Signal Processing

Magazine, September, 2003, September 2003.

[53] Doucet, A., Godsill, S., and Andrieu, C. On sequential Monte Carlo sampling

methods for Bayesian filtering. Statistics and Computing, 10(3):197–208, 2000.

[54] Isard, M. and Blake, A. Condensation – conditional density propagation for

visual tracking. International Journal of Computer Vision, 29(1):5–28, 1998.

[55] Comaniciu, D. and Meer, P. Mean shift: a robust approach toward feature

space analysis. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 24(5):603–619, 2002.

[56] Comaniciu, D., Ramesh, V., and Meer, P. Kernel-based object tracking. Pat-

tern Analysis and Machine Intelligence, IEEE Transactions on, 25(5):564–577,

2003.

[57] Collins, R. Mean-shift blob tracking through scale space. In Computer Vision

and Pattern Recognition (CVPR’03). IEEE, June 2003.

REFERENCES 208

[58] Bretzner, L. and Lindeberg, T. Qualitative multi-scale feature hierarchies for

object tracking. Journal of Visual Communication and Image Representation,

11(2):115–129, 2000.

[59] Lindeberg, T. Feature detection with automatic scale selection. International

Journal of Computer Vision, 30(2):79–116, 1998.

[60] Lepetit, V. and Fua, P. Monocular Model-Based 3-D Tracking of Rigid Objects.

Now Publishers Inc, 2005.

[61] Tomasi, C. and Kanade, T. Detection and tracking of point features. School

Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep. CMU-CS-

91–132, 1991.

[62] Birchfield, S. Derivation of Kanade-Lucas-Tomasi tracking equation. Unpub-

lished, May, 1996.

[63] Shi, J. and Tomasi, C. Good features to track. Computer Vision and Pat-

tern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer Society

Conference on, pages 593–600, 1994.

[64] Jin, H., Favaro, P., and Soatto, S. Real-time feature tracking and outlier

rejection with changes in illumination. Technical report, 2000.

[65] Sinha, S., Frahm, J. M., and Pollefeys, M. GPU-based video feature tracking

and matching. Workshop on Edge Computing Using New Commodity Archi-

tectures, 2006.

[66] Illingworth, J. and Kittler, J. A survey of the Hough transform. Comput.

Vision Graph. Image Process., 44(1):87–116, 1988.

[67] Leavers, V. F. Which Hough transform? CVGIP: Image Underst., 58(2):250–

264, 1993.

[68] Karabernou, S. M., Kessal, L., and Terranti, F. Erratum: Erratum to” Real-

time FPGA implementation of Hough transform using gradient and CORDIC

algorithm”[Image and Vision Computing 23 (2005) 1009-1017]. Image and

Vision Computing, 25(6):1032, 2007.

REFERENCES 209

[69] van Ginkel, M., Hendriks, C. L. L., and van Vliet, L. J. A short introduction

to the Radon and Hough transforms and how they relate to each other, 2004.

[70] Ballard, D. H. Generalizing the Hough transform to detect arbitrary shapes.

In Fischler, M. A. and Firschein, O., editors, Readings in Computer Vision:

Issues, Problems, Principles, and Paradigms, pages 714–725. Kaufmann, Los

Altos, CA., 1987.

[71] Stockman, G. C. and Agrawala, A. K. Equivalence of Hough curve detection

to template matching. Commun. ACM, 20(11):820–822, 1977.

[72] J. Princen, J. Illingworth, J. K. A formal definition of the Hough transform:

properties and relationships. Journal of Mathematical Imaging and Vision,

1:153 – 168, Jul 1992.

[73] Merlin, P. M. and Farber, D. J. A parallel mechanism for detecting curves in

pictures. IEEE Trans. Computers, 24(1):96–98, 1975.

[74] Chau, C.-P. and Siu, W.-C. Generalized Hough transform using regions with

homogeneous color. Int. J. Comput. Vision, 59(2):183–199, 2004.

[75] Fung, P. F., Lee, W. S., and King, I. Randomized generalized Hough trans-

form for 2-D grayscale object detection. Proceedings of the 13th International

Conference on Pattern Recognition, 2:511–515, 1996.

[76] Kälviäinen, H. Randomized Hough Transform: New Extensions. Lappeenranta

University of Technology, 1994.

[77] Gerig, G. and Klein, F. Fast contour identification through efficient Hough

transform and simplified interpretation strategy. Proceedings 8th International

Conference on Pattern Recognition, Paris, France, Oct, pages 27–31, 1986.

[78] Gerig, G. Linking image-space and accumulator-space: a new approach for

object recognition. Proceedings First International Conference on Computer

Vision (ICCV’87), Computer Society of the IEEE and International Associ-

ation for Pattern Recognition (IAPR), London, England, June, pages 8–11,

1987.

REFERENCES 210

[79] Li, H., Lavin, M. A., and Le Master, R. J. Fast Hough transform: a hierarchical

approach. Computer Vision, Graphics, and Image Processing, 36(2-3):139–

161, 1986.

[80] Kiryati, N., Kaelviaeinen, H., and Alaoutinen, S. Randomized or probabilis-

tic Hough transform: unified performance evaluation. Pattern Recognition

Letters, 21(13-14):1157–1164, 2000.

[81] Duda, R. O. and Hart, P. E. Use of the Hough transformation to detect lines

and curves in pictures. Communications of the ACM, 15(1):11–15, 1972.

[82] Bray, M., Koller-Meier, E., and Van Gool, L. Smart particle filtering

for high-dimensional tracking. Computer Vision and Image Understanding,

106(1):116–129, 2007.

[83] Jain, R., Kasturi, R., and Schunck, B. G. Machine Vision. McGraw-Hill, Inc.,

1995.

[84] Low, A. Introductory Computer Vision and Image Processing. Mcgraw Hill

Book Co Ltd, 1991.

[85] Smith, S. M. and Brady, J. M. Susan-a new approach to low level image

processing. Int. J. Comput. Vision, 23(1):45–78, 1997.

[86] Alexandrescu, A. Modern C++ Design: Generic Programming and Design

Patterns Applied. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 2001.

[87] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Ele-

ments of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[88] Kiczales, G. et al. Aspect-oriented programming. In Akşit, M. and Mat-

suoka, S., editors, Proceedings European Conference on Object-Oriented Pro-

gramming, volume 1241, pages 220–242. Springer-Verlag, Berlin, Heidelberg,

and New York, 1997.

[89] Veldhuizen, T. Using C++ template metaprograms. C++ Report, 7(4):36–43,

may 1995.

REFERENCES 211

[90] The Boost MPL library. [online, last accessed October 2007].

http://www.boost.org/libs/mpl/doc/.

[91] Köthe, U. Reusable software in computer vision. In B. Jähne, H. Haussecker,

P. G., editor, Handbook of Computer Vision and Applications, Volume 3: Sys-

tems and Applications, pages 103–132. Academic Press, 1999.

[92] Köthe, U. STL-style generic programming with images. C++ Report Maga-

zine, 12(1):24–30, January 2000.

[93] Boissenin, M., Wedekind, J., Amavasai, B., Caparrelli, F., and Travis, J. Fast

pose estimation for microscope images using stencils. IEEE Systems, Man and

Cybernetics Society, 2006.

[94] Isard, M. and Blake, A. Icondensation: Unifying low-level and high-level track-

ing in a stochastic framework. Lecture Notes in Computer Science, 1406:893–

908, 1998.

[95] Goldenshluger, A. and Zeevi, A. The Hough transform estimator. In Annals

of statistics, volume 32, pages 1908–1932, 2004.

[96] Rousseeuw, P. J. and Leroy, A. M. Robust Regression and Outlier Detection.

John Wiley & Sons, Inc., 1987.

[97] MMVL/SHU. Mimas, open source computer vision library. MMVL wiki pages

[online], 2008. http://www.shu.ac.uk/mmvl/mimas/.

[98] Wedekind, J. and Boissenin, M. Micron vision package, 2006.

http://vision.eng.shu.ac.uk/mediawiki/index.php/MiCRoN Microscope Visi-

on Software.

[99] Attneave, F. and Arnoult, M. The quantitative study of shape and pattern

perception. Psychological Bulletin, 53(6):452–471, 1956.

[100] Vacchetti, L., Lepetit, V., and Fua, P. Stable real-time 3-D tracking using

online and offline information. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 26(10):1385–1391, 2004.

[101] Optometrists network. http://www.vision3d.com/stereo.html, last accessed

October 2007.

REFERENCES 212

[102] Project - the self-reconfigurable camera array. [online, last accessed October

2007]. http://amp.ece.cmu.edu/projects/MobileCamArray/.

[103] Roy, S. and Cox, I. J. A maximum-flow formulation of the n-camera stereo

correspondence problem. In ICCV, pages 492–502, 1998.

[104] Kolmogorov, V., Zabih, R., and Gortler, S. J. Generalized multi-camera scene

reconstruction using graph cuts. In Rangarajan, A., Figueiredo, M. A. T., and

Zerubia, J., editors, EMMCVPR, volume 2683 of Lecture Notes in Computer

Science, pages 501–516. Springer, 2003.

[105] Kolmogorov, V. and Zabih, R. Computing visual correspondence with occlu-

sions using graph cuts. International Conference on Computer Vision, pages

508–515, 2001.

[106] Boykov, Y. and Kolmogorov, V. An experimental comparison of min-cut/max-

flow algorithms for energy minimization in vision. Pattern Analysis and Ma-

chine Intelligence, IEEE Transactions on, 26(9):1124–1137, 2004.

[107] Blake, A. Markov random fields, graph cut optimization and applications to

machine vision, may 2007.

[108] Kolmogorov, V. and Zabih, R. What energy functions can be minimized via

graph cuts? Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 26(2):147–159, 2004.

[109] Kolmogorov, V., Criminisi, A., Blake, A., Cross, G., and Rother, C. Bi-

layer segmentation of binocular stereo video. Computer Vision and Pattern

Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, 2,

2005.

[110] Rother, C., Kolmogorov, V., and Blake, A. ” GrabCut”: Interactive fore-

ground extraction using iterated graph cuts. ACM Transactions on Graphics

(TOG), 23(3):309–314, 2004.

[111] Rother, C., Kumar, S., Kolmogorov, V., and Blake, A. Digital tapestry. Proc.

Conf. Comp. Vision and Pattern Recog, 2005.

REFERENCES 213

[112] Scharstein, D., Szeliski, R., and Zabih, R. A taxonomy and evaluation of dense

two-frame stereo correspondence algorithms, 2001.

[113] Oggier, T. et al. An all-solid-state optical range camera for 3-D real-time

imaging with sub-centimeter depth resolution (SwissRanger). Proc. SPIE,

5249:534–545, 2004.

[114] Johnson, A. E. Spin-Images: A Representation for 3-D Surface Matching.

PhD thesis, Carnegie Mellon University, March 1997.

[115] Lowe, D. G. Object recognition from local scale-invariant features. Computer

Vision, 1999. The Proceedings of the Seventh IEEE International Conference

on, 2, 1999.

[116] Lowe, D. G. Distinctive image features from scale-invariant keypoints. Inter-

national Journal of Computer Vision, 60(2):91–110, 2004.

[117] Mikolajczyk, K. and Schmid, C. A performance evaluation of local de-

scriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence,

27(10):1615–1630, 2005.

[118] Ke, Y. and Sukthankar, R. PCA-SIFT: A more distinctive representation for

local image descriptors. Proc. CVPR, 2:506–513, 2004.

[119] Bay, H., Tuytelaars, T., and Van Gool, L. SURF: Speeded Up Robust Features.

Lecture Notes in Computer Science, 3951:404, 2006.

[120] Mikolajczyk, K., Leibe, B., and Schiele, B. Local features for object class

recognition. Proc. ICCV, 2:1792–1799, 2005.

[121] Perona, P. An invitation to visual recognition. Vmath, January 2005.

[video],last visited october 2007.

[122] Perona, P. An exploration of visual recognition. The internet archive, March

2007. [video].

[123] Fischler, M. A. and Bolles, R. C. Random sample consensus: a paradigm for

model fitting with applications to image analysis and automated cartography.

Communications of the ACM, 24(6):381–395, 1981.

REFERENCES 214

[124] Faucher, J. Camera calibration and 3-D reconstruction. Master’s thesis, EN-

SEIRB, 2006.

[125] Chang, M. M. Y. and Wong, K. H. Model reconstruction and pose acquisition

using extended Lowe’s method. Multimedia, IEEE Transactions on, 7(2):253–

260, 2005.

[126] Triggs, B., McLauchlan, P., Hartley, R., and Fitzgibbon, A. Bundle

adjustment–A modern synthesis. Vision Algorithms: Theory and Practice,

1883:298–372, 2000.

[127] Lowe, D. G. Robust model-based motion tracking through the integration of

search and estimation. International Journal of Computer Vision, 8(2):113–

122, 1992.

[128] Araujo, H., Carceroni, R. L., and Brown, C. M. A fully projective formulation

to improve the accuracy of lowe’s pose estimation algorithm. Coordinates,

10:0.

[129] Araujo, H., Carceroni, R., and Brown, C. A fully projective formulation to

improve the accuracy of Lowe’s pose-estimation algorithm, 1998.

[130] Wong, A. K. C., Rong, L., and Liang, X. Robotic vision: 3-D object recogni-

tion and pose determination. Intelligent Robots and Systems, 1998. Proceed-

ings., 1998 IEEE/RSJ International Conference on, 2, 1998.

[131] Mühlmann, K., Maier, D., Hesser, J., and Männer, R. Calculating dense

disparity maps from color stereo images, an efficient implementation. Inter-

national Journal of Computer Vision, 47(1-3):79–88, 2002.

[132] Brown, M., Drummond, T., and Cipolla, R. 3-D model acquisition by track-

ing 2-D wireframes. Electronic Proceedings of The Eleventh British Machine

Vision Conference University of Bristol, pages 11–14, 2000.

[133] Hill, J.-R. Linux goes 3-D: An introduction to Mesa/Opengl. [online, last

accessed October 2007], 1996. http://www.linuxjournal.com/article/0174.

[134] Galimberti, R. An algorithm for hidden line elimination. Commun. ACM,

12(4):206–211, 1969.

REFERENCES 215

[135] Woo, M., Neider, J., and Davis, T. OpenGL Programming Guide (Second

Edition). Addison Wesley, 1997. ISBN 0-201-46138-2.

[136] Sutherland, I. E., Sproull, R. F., and Schumacker, R. A. A characterization

of ten hidden-surface algorithms. ACM Comput. Surv., 6(1):1–55, 1974.

[137] Batchelor, B. G. and Whelan, P. F. Machine vision systems: Proverbs, princi-

ples, prejudices and priorities,”. Machine Vision Applications, Architectures,

and Systems Integration, 3:374–383.

