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Executive Summary

This report intends to identify the types of risk found in fire scenarios, how can those
risks be measured, and how to estimate a risk map from scattered measurements.
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Chapter 1

Risks in fire scenarios

There are a large number of risks associated to a fire scenario; however, these can
be separated and classified into different groups such as explosion, hazardous gases,
smoke, temperature and flame.

1.1 Hazardous gases

Many chemicals routinely located in warehouses or industrial buildings can produce
toxic, flammable or explosive fumes or vapour by leaking from some containers or
reacting with another chemical during a fire. A leaking gas, or vapour evaporating
from a spilled liquid, can potentially create a hazardous cloud that travels far down-
wind from its release point. Usually, the chemicals can be liquid or gas, depending
on the temperature of the environment. Knowing this, it is possible to understand
how the gases can get into the atmosphere, and how quickly they do so. Another
important aspect is related to the toxic and/or flammable/explosive characteristics
of the chemical. Basically, a chemical is considered toxic if it can poison people who
breathe it; it is considered flammable if it can ignite and burn easily.

1.2 Explosion

As mentioned above, a gas can be hazardous if its concentration in the air reaches
a dangerously high level. A toxic gas can be hazardous if its concentration becomes
intense enough to poison the people who breathe it. Exposure duration is important
for toxic substances: people who breathe a toxic gas for a longer period of time are
more likely to be harmed or to sustain worse injury. Similarly, a flammable gas
can be hazardous if its concentration reaches the flammable range. This flammable
range is the range of concentration of a gas in the air that will burn or explode
if ignited. That range is place between the lower explosive limit (LEL) and the
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1. RISKS IN FIRE SCENARIOS

upper explosive limit (UEL). In relation to the risk, the LEL (also known as lower
flammability limit) is more important than the UEL mainly because it is the lowest
concentration of a flammable vapour in the air at which an explosion or combustion
can occur.

1.3 Temperature

In physics and thermodynamics, temperature can be defined as a physical property
of a system that underlies the common notions of hot and cold. Usually, something
that feels hotter generally has the higher temperature. Specifically, temperature is
a property of matter. Many physical properties of materials including the phase
(solid, liquid, gaseous or plasma), density, solubility, vapour pressure and electrical
conductivity depend on the temperature. Temperature also plays an important role
in determining the rate and extent to which chemical reactions occur. Temperature
is a key element in the determination of the flammable or explosive limits. Another
important aspect is the commonly called material’s auto ignition or ignition temper-
ature. This is the temperature at which a material self-ignites without any obvious
sources of ignition, such as a spark or flame.

1.4 Flame

A flame can be described as the visible (light-emitting) part of a fire. It is caused
by a highly exothermic reaction (e.g. combustion). Flame, as a state of matter, is
classified as plasma - partially ionized gas. The colour and temperature of a flame
are dependent on the type of fuel involved in the combustion, for instance, when a
lighter is held to a candle. The applied heat causes the fuel molecules in the wick
to vaporize. In this state, they can then readily react with oxygen (a key element
in combustion) in the air, which gives off enough heat in the subsequent exothermic
reaction to vaporize yet more fuel, thus sustaining a consistent flame. Therefore,
the presence of flames in any scenario represents a real risky situation that might
be potentially dangerous.

1.5 Smoke

Smoke is the collection of airborne solid and liquid particulates and gases emitted
when a material undergoes combustion, together with the quantity of air that is
entrained or otherwise mixed into the mass. It is a very common product of fires
(including stoves, candles and fireplaces). Smoke inhalation is perhaps the primary
cause of death in victims of indoor fires. Smoke kills by a combination of thermal
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D2.2.5 Reference algorithms for estimating risk maps in fire scenarios

damage, poisoning and pulmonary irritation caused by carbon monoxide, hydrogen
cyanide and other combustion products. The composition of smoke depends on the
nature of the burning fuel and the conditions of combustion. Different chemicals
will produce different smokes’ compositions, ranging from the material that can
be commonly found in houses to industrial buildings or warehouses. As mentioned
before, oxygen plays an important role in fire. A fire with high availability of oxygen
burns at a high temperature but with a small amount of smoke produced.

Guardians/2009/D2.2.5/v1.0 January 20, 2009 3



Chapter 2

Risk assessment

From the fire risks described in the previous chapter, the explosion risk is the most
critical and harder to estimate, so this chapter is mostly focused on the problem of
estimating the Lower Explosive Limit (LEL) of gas mixtures.

2.1 Estimating LEL

Many manufacturing processes involve flammable chemicals, making the safety and
risk assessment one of the major concerns when working in such environments. The
flash point of a flammable liquid is the lowest temperature at which it can form an
ignitable mixture with air. It is related to the lower flammability limit which is the
minimum concentration of fuel in the fuel-air mixture (as can be seen in Figure 2.1).

Auto 

Ignition 

Flash 

Point 
Temperature 

Upper Limit 

Lower Limit 

Vapor 

Pressure

Flammable 

Region 

Concentration 

of Fuel 

Figure 2.1: Inflammable limits.

In cases which involve processes where mixtures under different conditions of
temperature, pressure and oxygen concentrations are used, it is necessary to deter-
mine the flash point. The flash point can be used to assess the level of risk over the
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D2.2.5 Reference algorithms for estimating risk maps in fire scenarios

time because it is the temperature at which sufficient vapour is generated to bring
the concentration of flammable vapour above the lower flammability limit.

Most of the predictive theoretical methods used to determine the flash points
of mixtures are based on the Le Chatelier equation together with a vapour-liquid
equilibrium model calculation of the vapour composition when liquids are involved.

2.1.1 Predictive methods for flash point of substances

A nonlinear exponential correlation was proposed by Satyarayana and Rao [1] for
the estimation of the flash point of organic compounds and petroleum fractions as a
function of their boiling temperature capable of predicting the flash point with less
than 1% average absolute error. The resulting correlation is:

Tf = a+
b
(
c
Tb

)2

e
− c

Tb(
1− e−

c
Tb

)2 (2.1)

where Tf denotes the flash point temperature in K; Tb is the normal boiling
point in K, and a, b and c are constants. These constants are evaluated by nonlinear
regression using the Gauss-Newton iteration method.

Hshieh [2] developed a correlation of closed cup flash points with normal boiling
points for silicone and organic compounds. The silicone compounds correlation:

Tf = −51.2385 + 0.4994Tb + 0.0004Tb
2 (2.2)

A correlation for organic compounds was developed using data for 494 com-
pounds. The result is:

Tf = −54.5377 + 0.5883Tb + 0.00022Tb
2 (2.3)

where Tf and Tb are in ◦C. The correlation coefficient is 0.966 and the standard
error of estimate is 11.66◦ C.

Prugh developed an alternative for the calculation of flash point of pure compo-
nents [3]. The method consists in the prediction of vapour pressure curves and LFL
of organic compounds solely on the basis of their normal boiling points and chemical
structures. He calculated the stoichiometric concentration of the vapour in the air
needed to calculate the flash point from the value of the normal boiling point.

Flash points of pure compounds can also be obtained from Quantitative Structure
Property Relationships (QSPR), which are correlations that relate the flash point
value with molecular descriptors [4].
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2. RISK ASSESSMENT

2.1.2 Predictive methods for flash point of mixtures

Mathematically, the flash point is the temperature at which the saturated vapour
pressure is equivalent to the LFL composition:

LFLi =
P sat
i,fp(Tf )

P
(2.4)

where P sat
i,fp(T ) is the saturated vapour pressure at the flash point temperature and P

is the ambient pressure. Thermodynamically, the relation between an ideal vapour
and a non-ideal liquid is represented by the equilibrium condition presented in the
following equation, which represents the Le Chatelier rule for the flammable vapour-
air mixture of two components:

y1

LFL1

+
y2

LFL2

= 1 (2.5)

where y1 and y2 refer to the vapour mole fraction of components 1 and 2, and LFL1

and LFL2 refer to the lower flammability limit of component 1 and 2. The flash
point of a binary mixture can be estimated by the model developed by Liaw:

x1γ1P
sat
1

P sat
1,fp

+
x2γ2P

sat
2

P sat
2,fp

= 1 (2.6)

where xi ,γi , Pi , and P sat
i,fp are the liquid mole fraction, liquid phase activity co-

efficient, vapor pressure at temperature T and vapor pressure at Tf of the mixture
component, respectively.

Affens and McLaren [5] developed a graphical method to calculate flash points of
multi-component hydrocarbon mixtures from the flash points and concentrations of
the individual components. This method is based on the assumption that the vapour
pressure-temperature relationships are known and that the systems obeys the laws
of Raoult, Dalton, and Le Chatelier. This method works well for hydrocarbon
mixtures.

Wu and Finkelman [6] calculated the flash point of different binary mixtures
using the equations of Le Chatelier and Walsham. Some of the mixtures considered
were ethanol-toluene, hexane-ethanol and ethanol-n-propanol.

White [7] reduced Affens and McLaren’s model to a simpler equation by ignoring
the temperature effect upon LFL. This equation is used to estimate the flash point
of jet-fuel mixtures.

Gmehling and Rasmussen [8] have shown that the UNIFAC group contribution
method is applicable for the flash points prediction of binary and multi-component
liquid mixtures. The method consists in determining the flash point temperature
based on the partial pressure of the components. It uses Zebatekis’s equation to
calculate the temperature and Antoine’s equation for the pressure.
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Wickey and Chittenden [9] implemented a method for calculating the flash points
of petroleum mixtures. Their method is based on the use of flash point indices for
the components in the mixture in proportion to their volume fractions.

2.1.3 Predictive methods for flammability limits in substances

Flammability limits provide the range of fuel concentration (normally in percentage
volume), within which a gaseous mixture can ignite and burn. Below the lower
flammability limit, there is not enough fuel to cause ignition. Similarly, with fuel
concentrations greater than the Upper Flammability Limit (UFL), there is insuffi-
cient oxygen for the reaction to propagate away from the source of ignition. As an
example of the equations for the estimation of flammability limits in air, those of
Jones are frequently cited [10]:

LFL = 0.55Cest (2.7)

UFL = 3.5Cest (2.8)

where Cest is the stoichiometric concentration of the flammable product for complete
combustion in air.

The estimate for a general compound CHO is obtained by considering complete
combustion to carbon dioxide and water:

CnHxOy +
(
n+

x

4
− y

2

)
O2 → nCO2 +

(x
2

)
H2O (2.9)

The concentration in air is calculated by correcting the oxygen calculated from
the above equation for the accompanying nitrogen.

Another empirical relation frequently used for the prediction of the LFL in air
is that of Spakowski [11]:

LFL× (−∆Hcomb) = 4.354× 103 (2.10)

where (−∆Hcomb) is the standard heat of combustion, and expressed as kJ/mol.

2.1.4 Predictive methods for flammability limits in mix-
tures

Given the flammability limits of each of the components in a mixture, the lower
flammability limit of a mixture may be calculated by Le Chatelier’s rule [12]:

MLFL =
100

Σ Ci

LFLi

(2.11)
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2. RISK ASSESSMENT

whereMLFL is the mixture lower flammability limit (vol.%); Ci is the concentration
of component i in the gas mixture on an air-free basis (vol.%); and LFLi is the lower
flammability limit for compound i in the mixture (vol.%).

Melhem [13] developed a method for the estimation of flammability limits for
chemical mixtures based on chemical equilibrium. The impact of the mixture initial
temperature and pressure is implicitly accounted for. His methodology uses the
concept of a threshold theoretical flame temperature, which is the temperature at
which the combustion reaction is able to generate sufficient heat to produce a self-
sustaining (propagation) reaction.

Another method is the neural network method implemented by Zhen, Fan and
Zuo used to estimate the explosion limits of flammable gas mixture containing H2,
CH4 and CO.

8 January 20, 2009 Guardians/2009/D2.2.5/v1.0



Chapter 3

Risk mapping

A risk map is a floor plan of the workplace which pinpoints various hazards that can
cause any risk. It is similar to a blueprint which gives a visual representation of the
location of workplace hazards. The risk mapping findings can be used to identify
and prioritize hazards. Risk mapping provides written records of workplace hazards
and gives labour/management representatives a better view of problems. Figure 3.1
shows a risk map representing the smoke concentration in an enclosed area.

In a general view, a risk map helps to identify the existence of risks in an area,
helping to find solutions or take steps to reduce the risk:

� It will help to identify major hazards

� It will provide authorities and local organizations with information for decision
making and planning.

� It can record the effects of any previous disasters.

� It can identify possible solutions to be followed in the case of a disaster.

A broad class of environmental sensing applications requires observing environ-
ments that display significant heterogeneity in both space and time. As an example,
in terms of the amount of a special type of gas or smoke in an area, observation
is useful for answering the questions pertaining to the multi-dimensional area gas
modelling. These require high granularity measurements of density of the gas in
different points of the under-study area. A spatial field will be partially observed
at selected sites and the goal is to infer the field at unobserved sites. This is the
problem of spatial estimation, sometimes called spatial prediction.

9



3. RISK MAPPING

Figure 3.1: A risk map

3.0.5 Spatial estimation

Conventional interpolation methods (Piecewise constant, Linear, Polynomial, Spline),
incorrectly assume that data varies linearly between sampled points. Gradients en-
countered at region boundaries often invalidate the assumption of linearity. Thus,
renditions of data that are computed using conventional linear methods are accom-
plished using a model that is not valid over the entire data domain. Furthermore,
these methods do not provide a measure of the estimation error that they introduce
to the interpolated data set.

Kriging is a method for converting the data into an estimate of the field together
with a measure of error or uncertainty. A Kriging estimate of the field at an un-
observed location is an optimized linear combination of the data at the observed
locations. The coefficients of the Kriging estimate and the associated error measure,
both depend on the spatial configuration of the data, the unobserved location rela-
tive to the data locations, and spatial correlation or the degree to which one location
can be predicted from a second location as a function of spatial separation. The
method has close links to Wiener optimal linear filtering in the theory of random
functions, Gandin objective analysis in meteorology, spatial splines and generalized
least squares estimation in a spatial context. Kriging methods have been studied
and applied extensively since 1970 and have been adapted, extended, and general-
ized. For example, Kriging has been generalized to classes of nonlinear functions
of the observations, modified to increase robustness extended to take advantage of
covariate information, adapted for fields whose statistical properties are spatially
evolving, and placed into a formal Bayesian framework.

10 January 20, 2009 Guardians/2009/D2.2.5/v1.0



D2.2.5 Reference algorithms for estimating risk maps in fire scenarios

Kriging is a procedure for spatial prediction at an unobserved location, using
data at observed locations, optimized with reference to a specific error criterion. The
criterion is the squared prediction error at the unobserved location - averaged over
a conceptual class of spatial prediction problems that have the same configuration
of observed and unobserved locations. The specification of this averaging class is
the model under which the optimization is carried out and the estimation error is
reported.

The usual model under which Kriging calculations are made is that of a spa-
tial stochastic process that generates spatial fields over the geographical region of
interest. A stochastic process model is selected with characteristics that reflect
characteristics of the available data. With this averaging model, the stated Kriging
properties are purely conceptual - they refer to average prediction errors that would
be seen if the same Kriging procedure were applied to the same prediction problem
on spatial fields generated repeatedly by the selected stochastic process. Locations
of the observed sites within the geographical domain are fixed under this averaging
model, but not the values of the observations themselves.

When randomness is deliberately introduced into observation sites, such as strat-
ified random sampling for example, it is common to use the fixed-field averaging
model with movable site configurations. If the goal is to estimate an area average
value, then the assigned estimation errors will be operationally similar for the fixed
field and stochastic field averaging models, even though the stochastic field model
will treat the results of the randomized observation sites as fixed locations. How-
ever, for estimating (predicting) field values at specified sites, as in interpolation
and mapping, an averaging model that uses only randomization of the observation
sites would not be meaningful for the computation of estimation error, and a more
complete method like Kriging will be required.

In other words, one can say, Kriging is an optimal interpolator based on regres-
sion against observed z values of surrounding data points, weighted according to
spatial covariance values.

It would seem reasonable to estimate φu by a weighted average
∑
λαφα , with

weights λα given by some decreasing function of the distance, dα , from u to data
point α.

All interpolation algorithms (inverse distance squared, splines, radial basis func-
tions, triangulation, etc.) estimate the value at a given location as a weighted sum
of data values at surrounding locations. Almost all assign weights according to
functions that give a decreasing weight with increasing separation distance. Kriging
assigns weights according to a (moderately) data-driven weighting function, rather
than an arbitrary function, but it is still an interpolation algorithm that in the
following cases provides very similar results to the other interpolators [?]:

� If the data locations are fairly dense and uniformly distributed throughout

Guardians/2009/D2.2.5/v1.0 January 20, 2009 11



3. RISK MAPPING

Figure 3.2: Kriging

the study area, you will get fairly good estimates regardless of interpolation
algorithm.

� If the data locations fall in a few clusters with large gaps in between, you will
get unreliable estimates regardless of interpolation algorithm.

� Almost all interpolation algorithms will underestimate the highs and overesti-
mate the lows; this is inherent to averaging and if an interpolation algorithm
didn’t average it wouldn’t be considered reasonable.

Kriging

All kriging estimators are variants of the basic linear regression estimator Z∗(u)
which is defined as:

Z∗(u)−m(u) =

n(u)∑
α=1

λαZ(uα)−m(uα)

with u, uα the location vectors for estimation point and one of the neighboring
data points, indexed by α; n(u) the number of data points in a local neighborhood

12 January 20, 2009 Guardians/2009/D2.2.5/v1.0
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used for estimation of Z∗(u); m(u),m(uα) the expected values (means) of Z(u) and
Z(uα); λα(u) the kriging weight assigned to datum Z(uα) for estimation location u;
same datum will receive different weights for different estimation location; Z(u) is
treated as a random field with a trend component, m(u), and a residual component,
R(u) = Z(u)−m(u).

Kriging estimates residual at u as a weighted sum of residuals at surrounding data
points. Kriging weights, λα, are derived from covariance function or semivariogram,
which should characterize the residual component. The distinction between trend
and residual is somewhat arbitrary; it varies with scale.

The goal is to determine weights, λα, that minimize the variance of the estimator

σ2
E = V ar{Z∗(u)−Z(u)} under the unbiasedness constraint E{Z∗(u)−Z(u)} =

0.

The random field (RF) Z(u) is decomposed into residual and trend components,
Z(u) = R(u)+m(u), with the residual component treated as an RF with a stationary
mean of 0 and a stationary covariance (a function of lag, h, but not of position, u):

E{R(u)} = 0

Cov{R(u), R(u+ h)} = E{R(u)R(u+ h)} = CR(h)

The residual covariance function is generally derived from the input semivari-
ogram model, CR(h) = CR(0)− γ(h) = Sill− γ(h). Thus the semivariogram is feed
to a kriging program that should represent the residual component of the variable.

Kriging variants

There are three main kriging variants: simple, ordinary, and Kriging with a trend.
Their main difference consists in their treatment of the trend component, m(u).

� For simple kriging, we assume that the trend component is a constant and
known mean, m(u) = m.

� For ordinary kriging, rather than assuming that the mean is constant over the
entire domain, we assume that it is constant in the local neighborhood of each
estimation point, that is that m(uα) = m(u) a for each nearby data value,
Z(uα), that we are using to estimate Z(u).

� Kriging with a trend (the method formerly known as universal kriging) is much
like ordinary kriging, except that instead of fitting just a local mean in the
neighborhood of the estimation point, we fit a linear or higher-order trend in
the (x,y) coordinates of the data points. A local linear (a.k.a., first-order)
trend model would be given by m(u) = m(x, y) = a0 + a1x+ a2y.

Guardians/2009/D2.2.5/v1.0 January 20, 2009 13



3. RISK MAPPING

Kriging advantages

� Helps to compensate for the effects of data clustering, assigning individual
points within a cluster less weight than isolated data points (or, treating clus-
ters more like single points)

� Gives estimate of estimation error (Kriging variance), along with estimate of
the variable, Z, itself (but error map is basically a scaled version of a map of
distance to nearest data point, so not that unique)

� Availability of estimation error provides basis for stochastic simulation of pos-
sible realizations of Z(u)

14 January 20, 2009 Guardians/2009/D2.2.5/v1.0



Chapter 4

Conclusions

Deliverable 2.2.5 has been produced on schedule. However, the methods described
in this document have not yet been implemented in the GUARDIANS project. This
implementation is foreseen for the last year of the project, and it is expected that
enhancements and improvements will arise when the work related to this deliverable
is implemented in the GUARDIANS system.
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