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Summary

The GUARDIANS robot swarm is self-organising and can be seen as a hybrid of a (heterogeneous)

swarm, a mobile ad-hoc network and an (evolving) topological map of the environment. The Map Build-

ing process is not a separate activity, but an inherent by-product of the GUARDIANS self-organising

system. The robots are equipped with sensors and enhanced with a wireless communication network.

The GUARDIANS approach to map building is a novel approach of distributing robots on site that takes

advantage of a cooperating robot team (with respect to a single robot) allowing us to accurately deter-

mine robot positioning and guide deployment in a pre-determined manner. This in turn leads not only

to a topological representation of the environment in the form of topological graph but also to its initial

metric representation as the edges of the topological graph are assigned with lengths. This gives us a

pretty good sketch of the environment which can be further developed to a full metric map and used

as the basis of building ad-hoc mobile wireless communication and sensor networks. The presented

algorithms take into consideration also sensor limitation.

The algorithms are tested on a group of Khepera III robots, specially upgraded to fulfill the needs of

our approach. This document is an extended and updated version of the RISE 2010 paper [1].

Multi-robot team : Self-organising system, topological representation, relative positioning, cooperative

map building, ad-hoc communication network

1 Introduction

In the GUARDIANS project1 scenario the robots are autonomous and assist fire-fighters in search and rescue

operations in an industrial warehouse in the event or danger of fire [14]. The tasks of the robots can be

roughly split into two partially overlapping categories. In the first category the robots directly assist the fire-

fighters, namely by guiding or accompanying a fire fighter and indicating possible obstacles and locations

of danger. The second category comprises the tasks for a robot team acting without a human squad-leader,

such as on site deployment, positioning as beacons and maintaining communication. The robots also need to

be able to gather relevant environmental information. In this paper we focus on the tasks for GUARDIANS

robots in the second category, and propose a new approach for on site deployment of robots for setting up a

communication network and building a map of the environment.

Maintaining communication faces two major problems. The first is that the metal cages present in a

warehouse render radio reception problematic. The second problem is that of position detection or locali-

sation. For indoor environments GPS is not generally available and simultaneous localisation and mapping

(SLAM) has to be based on other sensors. However, because of smoke conventional light based sensors

may not produce useful data, in particular vision sensors such as cameras. The radio signal for the wireless

1GUARDIANS, Group of Unmanned Assistant Robots Deployed in Aggregative Navigation supported by Scent Detection, EU
FP6 ICT 045269
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communication will not be disturbed by smoke and serves as a coarse fall back. For communication various

wireless technologies are available including Wireless LAN, Bluetooth and ZigBee.

In our approach we assume that the use of the LRF is still possible. Such assumption has sense even in

the presence of smoke as smoke starts developing close to the ceiling and the robots involved such as Erratics

or Khepera III are low or very low in height. The main use of the LRF is two-fold: for robot detection and

for distance estimation, which eventually yields accurate localisation and positioning of robots; detection

is backed up by wireless communication. However, the idea behind the approach is generic, and the LRF

can be substituted by other sensors or sensor system, such as the system based on infrared developed in

[15]. Besides the LRG and WiFi, odometry is also taken into consideration. The supplementary, more

conventional use of the LRF is for obstacle avoidance and building metric maps. However, the main result of

our approach is a topological representation of the environment; the robots play active roles in constructing

such a representation, being ‘dynamic nodes’ in the representation as well as acting as landmarks. One novel

feature is that the topological map is the first to be built, that can later be upgraded to a more detailed metric

representation. In robotic literature topological approaches are, in general, not viewed as independent, as

topological maps are built on the top of grid-based map or feature-based maps by partitioning them into

coherent regions [10].

Our algorithms have been implemented in C++. We use Player/Stage middleware [18] for validation and

testing in simulation environments. Player, which is a distributed device repository server for robots, sensors

and actuators, can control either a real or ‘simulated’ robot thus allowing direct application of developed

algorithms to real-life scenarios. The robots used for experimentation are Khepera III, produced by the

partner K-Team. The robot has been specially upgraded for installing the LRF, Hokuyo; both models URG-

04LX and URG-04LX-UG0 can be used [6]. The set-up for a real-life implementation is in the final stage

of developing.

We also developed a TCP/IP suite for wireless communication, which is independent of Player.

2 Related work

The problem of global self-localisation when noa priori information about the environment is known, is

considered as one of the most difficult in robotics. This problem is related to the famous SLAM problem of

a robot simultaneously localising and building a map of the environment. Most existing work on the subject

focuses on a single robot only, and the approaches are mainly probabilistic in their nature due to uncertainty.

In the last decade, several works appeared that tackle the problem of cooperative multi-robot localisation

[5, 16, 8].

These works fall mostly into the three categories. The first category is related to the multi-SLAM

problem when robots build the map separately and then the obtained maps are fused in a global one. The

second category is related to on site robot distribution. The third category that partially overlaps with the
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first two is when the advantage of the use of several robots is applied in full strength: the robots are used as

temporary landmarks for mutual recognition and hence, for more accurate representation of the environment.

Our approach belongs to the third category. Our robots represent a self-organising system, and can act

as permanent or temporary beacons, whilst other robots are mobile. We also achieve on site distribution

consisting of nodes connected by virtual edges, thus describing the environment by means of a graph. The

nodes in these graphs are either virtual or real (robots) and their positions are calculated by applying our

well-defined schema of robot movement and detection. Depending on the number of robots some robots can

become static beacons that can be used for building a robust ad-hoc communication network. Our approach

is ‘in tune’ with the methods proposed in [13] and [16].

In our approach four or five robots are sufficient for accurate topological representation of the envi-

ronment. Three robots are actually required in order for reliable detection of each robot position, but four

robots provide a more robust system, as one robot becomes a stationary beacon and may be used as a point

of reference.

We also propose a robot detection approach, based on the robot shape and size, as well as taking into

consideration that robots are ‘dynamic’ objects. This detection system can be further improved by labelling

each robot with a special retro-reflective tag that can be detected by a laser range finder by analysing the in-

tensity of the reflected laser beam. A similar approach was used in the works of Howard et al. on multirobot

simultaneous localisation and mapping (see, for example, [8]).

3 Schema of topological map building in the GUARDIANS project

3.1 A brief historic perspective

The theoretical consideration behind our approach to topological map building is described in detail in [2].

In this schema there are ten proposed layers:-

1. Initial topological layer: This layer is determined by nodes and their connections in the ad-hoc wire-

less communication network formed by the swarm. It represents a topological graph, edges of which

reflect wireless links between robots.

2. Initial (global) metric layer: In addition to the communication capability, the ad-hoc network of the

GUARDIANS can provide position data to support localization of the mobile robots and humans (re-

lation with WP3). This layer is determined by localizing the positions of robots within the dynamic

triangular network built by the swarm and adding the distance measurements to the edges. The topo-

logical graph of the previous layer will become a geometric graph, possibly with some uncertainty in

some of its regions.

3. Local (metric) maps layer: Local 2D metric maps (occupancy grids, possibly irregular), obtained on
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Figure 1: A full triangulation with obstacles. The dotted robots are beacons, striped robots represent possible
beacons. The thicker solid lines indicate the boundary of the environment, covered by the built network.

the base of the sensorial information gathered by its node in the sensor networks (individually by each

robot).

4. Skeleton layer. Here possibilities to obtain skeletons directly from the network built by robots, or to

use local (global) metric maps, were planned to be explored. The two initial layers provide a partition

of the environment, and this partition can be used for skeletonisation to indicate possible routes for

navigation, which can significantly reduce costs and uncertainty in skeletonisation algorithms.

5. (Global) Topological map: is built by integrating structures, obtained in the previous layers, namely

layers 1 and 4.

6. Global 2D metric map: is obtained by the fusion of local maps.

7. 3D local maps of the environment (combination of sensorial maps and geometric maps).

8. Global sketch of the environment : This layer is a fusion of the global topological map and local

metric (mostly 2D) maps at the points of interest (such as obstacles, opening etc).

9. 3D global representation of the environment: Fusion of 3D local maps

10. Semantic layer: this layer is to enhance the maps of the environment with semantic information

The main layers in the schema are the first two, as their construction provides enough information about

the environment.

After the distribution of the robots in the environment the network layout can indicate the boundaries of

the environment as well as obstacles present, as schematically represented in Fig. 1.

In this document we describe in detail how these layers can be constructed. We also give indications of

how (some) higher layers can be built on the top of the initial two layers.
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Our approach is a combination of guided positioning and distribution strategies. The main sensors used

are the Laser Range Finder (model Hokuyo) and WiFi. Each robot, therefore, has two fields of view, one

related to the LRF and the second - to WiFi. The sensing ranges of the aforementioned sensors differ

considerably. The LRF Hokuyo sensing range is within 4 or 5.6 meters depending on the model, whereas

the transmission range of a reliable radio signal (IEEE 802.11) is 30m or more.

Initially we thought of using only the strength of the radio signal, to distribute the robots on the site.

(b)(a)

Figure 2: Robot deployment on a site: (a) Initial configuration, (b) Final distribution

Several algorithms have been implemented with Player/Stage. The algorithms are concerned with de-

ployment of robots/nodes as fast as possible while achieving maximised coverage and keeping the net-

work/graph formed by robots connected. An algorithm based on the Clique intensity method [4] has been

implemented and compared with the Trivial algorithm [3]. In the first algorithm wireless signal intensity

is used as a rough approximation of distance to assist a large number of small robots to disperse (without

knowing the relative location of neighbouring robots). This method is applicable in the ‘worst case sce-

nario’, when most sensors fail, and only radio signals and tactile sensors are functional. The performance

of the algorithm regarding time and area coverage was similar to the trivial algorithm for the same number

of robots. The Trivial algorithm is used for area coverage benchmark but does not guarantee connection

between robots.
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In Figure 2 a result of the algorithm based on the clique intensity method, applied to 12 robots, is

presented.

Nevertheless, despite encouraging simulation results, the distribution based solely on radio signal in-

tensity has several flaws. The first one is that the strength of a radio signal is not a precise measure, and

therefore the estimated positions might be not reliable. Another flaw is that the graph/network formed by

robots is non-uniform. One reason for this is that for collision avoidance the potential artificial field method

was used.

Positioning based solely on radio signal is therefore employed only as a fall back. The LRF is used as

the main sensor ‘responsible’ for position detection now, and all our robots are equipped with the Hokyuo

model of LRF.

Also as we have already mentioned, in the aforementioned algorithm we apply artificial potential forces

to guide robot distribution. This method is widely used, but has the drawback of local minima which

requires complex analysis. Robot distribution as a result of this method, although not strictly speaking,

may appear random and unpredictable. We applied successfully an artificial potential field method for robot

formation and maintenance which is related to the first category of tasks in the GUARDIANS project, and

provided geometric analysis of the method. However, for our requirements one group of robots should stay

together, whereas in the second category of tasks the robots should disperse in an unknown environment.

For these reasons a discrete graph-theoretic approach was taken, which is completely ‘in tune’ with the

GUARDIANS schema of topological map building. Coordination of robots whilst correcting for odometry

errors then becomes more manageable and cooperative exploration algorithms have been developed.

3.2 Main concepts behind the schema

The idea to use the robots as the nodes of the graph has lead to the following strategy. The (unknown) site

is initially covered by a virtual triangular grid (triangular tiling), depicted in Fig. 3

The grid can be seen as infinitely spanning in all directions, and the GUARDIANS robot, while exploring

the site, will make the local part of the grid ‘real’.

Each robot forms an attainable visibility domain (AVD), determineda priori. As it will become clear

later, the radius of this domain is equal to at most half (or smaller, such as one third) of the sensing range of

the measurement sensor to be used. In our case this sensor is the LRF, but it can be substituted by another,

suitable sensor. This domain is depicted in Fig. 4.

As one can see, the domain is in the form of a hexagon, where the black node indicates the robot, and

white dots are nodes in the grid that the robot can ‘sense’. The ‘sensed’ nodes are also the grid nodes to

which the robot can also move. It is not necessary that the robot visits all ‘sensed’ nodes, but the ‘sensed’

nodes mean that this part of the environment is explored. Initially, the AVD is virtual, but after robot’s

deployment on the site it becomes ‘real’ (see Fig. 5).

The actual range of the Hokuyo LRF is 240 degrees, but as the robot can turn, we consider the AVD as
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Figure 3: Virtual triangular grid.

Figure 4: Visibility domain of a robot

Figure 5: Domain of a robot on the site.
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Figure 6: Explored part of the site.

360 degrees. Moreover the node behind the ‘rear’ of the robot is often the node already visited. The robot

moves along the edges of the grid to available nodes, and while it moves the part of the environment visited

transforms into a (topological) graph referred to as theinitial topological sub-map of the environmentor

ITSM (see Fig. 6).

The robot is indicated by the black disk, and the explored (either ‘sensed’ or visited) nodes are indicated

as white circles with a black dot inside.

The ITSM is being expanded while the robot moves.

If the robot encounters an obstacle, then all the incident edges of the node whose location ‘falls’ on the

obstacle, are removed. However the node itself is kept as it may happen that its position will be ‘behind’

the obstacle and therefore can be explored later on. However, if the node as it will turn out later during the

process of exploration, is really ‘within’ the obstacle it will be also removed from the AVD and from the

ITSM (Fig. 7).

Figure 7: Explored part of the site with an obstacle present.
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Figure 8: Robots guided distribution. Initial step.

Only those edges and vertices of the point lattice considered explored (either by occupation or laser

sensing) become real (i.e physically instantiated within memory). As robots within the infinite point lattice

move around they extend the real graph by a field of given radius. Importantly, the robots also use laser

to detect obstructions and remove edges between vertices to indicate that robots cannot move to adjoining

vertices. This is the main structure and principle governing the manoeuvrability of the collective.

3.3 Guided distribution and positioning

In the previous subsection we described the movement strategy for robots. In this subsection we upgrade

this strategy to a group of robots that additionally allows for accurate robot positioning and localisation. The

main step is depicted in Fig. 8.

The first two robots (black discs), take the initial positions by the entrance to the site. The distance

between robots is predefined (the radius of the AVD). The third (anonymous) robot (depicted as the grey

disc) enters the site and moves to the apex of the equilateral triangle, the base of which is formed by the first

two robots. The first two robots are stationary and referred in what follows assentinels.

Recognition of the anonymous robot is carried out by the two sentinels, following which the new robot

is informed of its position (calculated relative to the sentinels), and the new robot is instructed to manoeuvre

to its new position, periodically requesting laser data from the sentinels as required. The whole process

operates over wireless TCP/IP communication.

The robots finally form a triangular cell, and their AVD are fused (Fig. 9).

The next step is similar in that one of the base robots will move, initially on command of the new

sentinels, and then autonomously on its own (requesting sentinel laser data when necessary as before).

Decision over which sentinel will move next depends on collision information gathered by the sentinels and

relies on the general underlying algorithm (see section 4.4) Suppose it is the left sentinel. Now the previous

10



Figure 9: Robots guided distribution. Forming a triangular cell.

Figure 10: Robots guided distribution. Next step.

right sentinel and the apex robot become the new sentinels and the procedure regarding the movement of the

(previous) sentinel is identical to the initial step. A new anonymous (fourth) robot assumes position of the

left sentinel. This is depicted in Fig. 10

The procedure is now as follows. The robots will explore the environment by propagating the triangular

cell formed by three robots either to the right, or up, depending on the structure of the environment. When

the possibility to move to the right is exhausted, the robots first move up and then again, depending on the

‘sensed’ environment, will move again right, or go to the left. The fourth robot stays as the beacon for

maintaining the wireless communication. The fifth robot can enter the site and take the initial position of

the second robot. As we see the three robots can move in the described manner and ‘swipe’ the site while

our set up ensures accuracy in robot localisation (see Fig. 11).

The map of the environment is formed by the boundary nodes of the fused AVD of the robots. If there
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Figure 11: Robots guided distribution. Moving around.

Figure 12: An example of the topological map, built by the robots.

is no obstacle, the map will represent a simple polygon. An example is given in Fig. 12.

3.4 Triangular system

The proposed triangular grid provides us also with a nice coordinate system. Each node can be addressed

by two numbers: (i) the number of the horizontal line where the node is situated, and (ii) the number of the

position of the node in the line (i.e. row, column coordinates). Both numbers can be negative as well. An

example of labelling is given in Fig. 13.
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Figure 13: Grid coordinate system.

3.5 Corners and obstacles

Fig. 14 depicts the strategy when robots encounter a corner, for example. An obstruction arises when a

robots laser range identifies a collision in a direction (and distance) known not to correspond to a robot

within the graph. In such circumstances, the edge connecting the robots real node with the virtual node is

removed. Thus, that area of the graph is no longer navigable from the robots current position (by any other

robot finding itself in that position). On encountering a corner, the robot collective co-operate to propagate

upwards, until they are able to move left again. This results in a snaking movement of the robots which is

dependent upon the obstacles within the environment.

The general strategy for graph construction is to remove edges from the graph where collisions occur

in directions known not to contain robots. Robots examine a pre-defined small range of laser data in the

directions of the graph edges (where the laser range allows) in order to do this. This approach allows new

robots to construct the correct graph which later robots can use to successfully navigate the environment.

4 Algorithms and its testing on simulation data

For development purposes and testing algorithms on simulation data, the popular Player/Stage open source

robotics environment was employed, although later development of in-house classes may deprecate this

necessity to address efficiency and speed. The purported benefits of Player/Stage are the seamless transition

from simulation to practice, although preliminary investigations suggest this may not be the case. The

whole system was written in C++ on Debian Linux using the Eclipse Galileo IDE, with some later usage of

Windows 7 and Microsoft Visual Studio 2010 IDE (Express Edition).
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Figure 14: Corner strategy.

4.1 TCP/IP Communications suite

The backbone of any cooperative system is some means of communication, without which information could

not be exchanged. Communications are achieved via a TCP/IP class written specifically for the system and

based on Beej’s Guide to Network Programming [20]. This is a standard TCP/IP server/client consisting

of a main listener thread function. This thread listens out for and establishes new client connections and

also listens for incoming messages, which it either (i) pushes to the general message queue, or (ii) acts upon

directly before autonomously transmitting requested information back to the sender. The latter function of

the listener thread is concerned with non-intensive trivial data processing such as position and laser range

requests. This mechanism enables simple requests such as these to be processed behind the scenes leaving

the main program to act upon more processor intensive data processing instigated by messages arriving at

the general message queue. A non-trivial message might, for example, enter the main function into a "move

robot to new position using sentinels" sub-function which would give the non-trivial function full control.

This would put further non-trivial processing requests on hold (via the queue), but still allow trivial requests

to be processed via the listener thread which, of course, runs all the time. It should be noted here that the

Boost threading library [21] was used because, unlike the standard C "pthread" library, it is claimed to be

thread-safe; the C pthread functions caused problems.

4.2 Inauguration of Robots into the Team/Collective

The presented system deals mainly with three robots working in cooperation. However, further develop-

ments will see the cooperation of many robots. To achieve this a mechanism for recognising and introducing

anonymous robots into the collective is required. Consider a number of robots each having their own unique

ID, and two sentinel robots whose positions and orientations are well known. When the current collective
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requires addition of another robot, it must recognise the presence of the robot, mutually agree upon a posi-

tion of the anonymous robot (since the new robot will be unaware of its position), and iteratively guide itself

into position. This function requires communication between all three robots and can be implemented in a

number of ways depending on which robot(s) are in control. The approach adopted here is for the sentinels

to indicate the necessity of another robot, mutually compute its position, and then pass control over to the

new robot to manoeuvre itself into position whilst periodically requesting laser range data from the sentinels

to correct for errors. The pseudo code for recognizing the identity of an anonymous robot is given below:-

• From the higher-level algorithm (presented in 4.4), the collective recognises it must inaugurate a

novel anonymous robot into the collective.

• The sentinels rotate such that their laser ranges begin at a 90 degree angle to the chord joining the two

sentinels. The sentinels then expect any collision within a, say, 70 degree range of the laser starting

indexes to be a robot. This may be thought of a detection region in which anything is classed as a

robot.

• Given the known positions, orientations, and laser data of the sentinels it is possible to compute the

position of the object within the detection region.

• The distances to the detected object and the reverse angle of incidence are broadcast to all anonymous

robots not in the collective.

• The anonymous robot matching these parameters is that within the detection region and the anony-

mous robot is identified.

• The sentinels then transmit a message to the new robot telling it to move into its new position (the

new position will be a node within the graph) whilst using laser to correct itself.

The aforementioned steps are illustrated by two snapshots of its implementation in PLayer/Stage, pre-

sented in Fig. 15 and Fig. 16.

4.3 Robot Manoeuvre with Error Correction

Robot manoeuvre with error correction follows robot inauguration, but is actually independent of robot

inauguration. This is because manoeuvrability is also required of robots within the graph as the collective

explores the graph further, hence the separate treatment in this subsection. However, the pseudo code which

follows may be read as an extension to that in the previous subsection.

• On receiving the ‘manoeuvre into position’ command a robot orientates itself to the destination and

travels to the new position. It should be noted that speed accelerates and decelerates according to the

gradient of a parabola, thus minimizing sharp changes in speed.
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Figure 15: Robots guided distribution. Initial step. STAGE snapshot.

Figure 16: Robots guided distribution. Inauguration of a new robot. Final step. STAGE snapshot
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• Every half distance travelled, the new robot stops and requests laser data from the sentinels between

which it travels so that it can compute its inherent and expected position. If the two positions do

not match, then the new robot compensates by reorientating before moving off. This step is repeated

until...

• The robot reaches its destination within a pre-defined tolerance. It then transmits an arrival message

back to the sentinel(s).

4.4 A General Algorithm

The aforementioned processes are mainly concerned with implementation of real robots (simulation and

practice), in particular to compensate for localisation errors due to odometry. However, an overall algorithm

has not yet been described with which a team of three robots can successfully explore an unknown envi-

ronment. The algorithm to do this can be written as a recursive or non-recursive function. The recursive

function is a little simpler, but the non-recursive version is presented here because it is the most scalable (due

to storage of variables and function arguments when recurring) Three robots within the infinite triangular

point lattice are allowed to move in one of six directions (depending on the presence of the corresponding

edges within the graph). These directions are referred to as NORTH-EAST (NE), NORTH (N), NORTH-

WEST (NW), SOUTH-WEST (SW), SOUTH (S), and SOUTH-EAST (SE). A well-founded ordering is

imposed on the directions to allow precedence over others, e.g.

S > SE > NE > SW > NW > N.

Using these movements a team of three robots can fully explore any triangular point grid we are likely to

encounter. The algorithm pseudo code is presented after which a short descriptive step through is given. All

variables are underlined in Courier New font:

• [Start] Clearclique_list

• Construct list of local cliques of size 2,clique_list (local to thecurrent_node )

• Clearexpansion_directions_list

• Consider expansion rules for each clique inclique_list (with respect to the graph) and store

in expansion_directions_list . Each element ofexpansion_directions_list con-

tains a direction, the ‘from’ node, and the ‘to’ nodex = (dir, from, to)

• for eachx∈expansion_direction_list

– if x compromises next move then
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∗ markto asvisited

∗ removeto from junction_stack

∗ removex from expansion_direction_list

– endif

• next

• if expansion_direction_list is not empty,

– sortexpansion_direction_list according to well founded ordering

– actualize the expansion direction (x )

– current_node = to

– removeto from junction_stack

• else

– at this point a dead-end has been reached. Manoeuvre to the location at the top of thejunction_stack

(removing nodes fromjunction_stack as we go)

– current_node = juncture node (from top ofjunction_stack )

• endif

• goto[Start]

Figure 17: Possible expansion directions

The algorithm works by taking thecurrent_node , and producing a list of cliques of size 2 surround-

ing it. A clique of size 2 consists of two nodes if those nodes contain a robot, so for a team of three robots

there will be a maximum of 3 cliques of size 2. Using these cliques it is then possible, along with the local
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Figure 18: Robots guided distribution. Exploration of the site. Snapshot 1

Figure 19: Robots guided distribution. Exploration of the site. Snapshot 2

graph, to determine which expansion directions are permitted for each clique. Example expansion directions

are given in diagram 17 where robots are shown as blue circles.

In all there are six possible expansion potentials to choose from corresponding to N, NE, etc. The first

task is to deal with compromising expansion directions, i.e. those directions for which were we to move

to them would result in zero possible expansion directions. Such directions should be marked as visited

and removed from theexpansion_direction_list . The associated node is also removed from the

junction_stack to avoid returning to that position in future.

If at this point theexpansion_direction_list is not empty, then the priorital expansion direc-

tion is actualized, otherwise we have reached a dead end and must return to the most recent junction. Several

snapshots of the algorithm implementation in simulation environment are given in Fig. 18, 19 and 20.
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Figure 20: Robots guided distribution. Exploration of the site. Snapshot 3

Future work aims at developing this approach further to include multiple robots for which it will be

necessary torectify previous graph topology (according to pre-defined graph constraints) after actualizing

expansion directions between cliques of robots of size three.

4.5 Building the map

Exploring the environment the robots simultaneously build not only a topological graph of the environment

but also its geometric realisation. The process of building the geometric graph of the environment is depicted

in Fig. 15, 16, and 21.

Figure 21: Robots guided distribution. Continuation of exploration and map building. STAGE snapshots.
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5 Implementation on real robots

In order to test and validate our approach miniature Khepera III robots are used. The robot size allows us

to test the algorithms in environments of varying complexity, but the robots are still compact enough to be

used in the laboratory. On the other hand, the robots are sufficiently powerful to apply to them sophisticated

algorithms. Detailed descriptions of the robots and the sensors are given below.

5.1 Robots and sensors

Figure 22: Khepera III specifications

The Khepera III robot [12] is based on 10 years of expertise in miniature robotics. Features available on

the platform can match the performances of much bigger robots: velocity max of 5m/s for a robot diameter

of 130mm. Khepera III has a weight of 690g with a payload of 2kg. Upgradable embedded computing

power using the Korebot II system [11] can be added (800 MIPS 624MHz PXA270 processor, 128MB

Ram, 32 MB Flash). The robot base includes an array of 9 Infrared Sensors for obstacle detection (0.5-25

cm) as well as 5 Ultrasonic Sensors for long range object detection (0.2-4.0 m). It also provides an optional

front pair of ground Infrared Sensors for line following and table edge detection. The robot motor blocks

are Swiss made quality mechanical parts, using very high quality DC motors for efficiency and accuracy.
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Figure 23: KoreBot II module

The replaceable battery pack system provides a unique solution for almost continuous experiments (1.5h),

as an empty battery can be replaced in a couple of seconds. Khepera III robot is depicted in Fig. 22.

Through the KoreBot, the robot is also able to host standard Compact Flash extension cards, supporting

WiFi, Bluetooth, extra storage space, and many others. A Player/Stage driver for this robot was developed

in a previous work during the Guardians project [17].

Korebot II (see Fig. 23) uses an Arm processor which can be easily interfaced with the robot components

to build a complete system and to develop a working scenario. Using KoreBot, which runs an embedded

Linux distribution, the robot can perform many tasks including:-

1. Communicate with a base-station or other robot using WIFI, Ethernet or Bluetooth.

2. Operate any USB device such as a webcam, audio device, Laser Range finder, etc.

3. Install and run Linux packages such as Player.

5.2 Installation of Arm-Linux 2.6 cross-compiler and tool-chain

Installing Arm-Linux 2.6 cross-compile and the tool-chain is a key step in developing algorithms for the

Khepera III robot. A cross compiler is a compiler that needs to be installed on a normal PC in order to

develop and create an executable code for the Khepera III robot. So, all algorithms and programs need to

be cross-compiled specifically for the robot before they can be used and run on the robot environment. A

tool chainis the set of programs and tools that are used to create programs and packages for the robot. For

example if we want to cross compile a Player package in order to install it on the robot, we have to use the

tool-chain which enables us to generate robot compatible software.
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Installing the cross-compiler and tool-chain require downloading and installing many packages and

software. For simplicity, we address only the main software required to install the tool-chain and cross-

compiler which can be obtained from:

1. OpenEmbedded; a software framework to create Linux-distributions aimed on embedded devices [22].

2. Angstrom distribution; a Linux cross compiler for embedded devices [23].

3. Bitbake; used to build packages, and as the basis for the OpenEmbedded project [24].

Full packages and instructions needed to install cross-compiler and tool-chain are provided by K-team

on their ftp website, http://ftp.k-team.com.

5.3 Installation of Player Driver for Khepera III robot

The Player project is open source software enabling easy control of many sensors and robots. It provides

a variety of functions, procedures and proxies which can read data from, send data to, and control many

robots and sensors. Also, the Player project provides a TCP/IP control between a server, sensor or robot,

and a client which is usually a PC or base station. Using Player means using the same set of commands for

many different platforms. The only thing needed to be changed is what is called the configuration file.

The Player configuration file acts as an interface between player commands and actual hardware. In

other words it interprets the Player commands to be understood for a specific hardware or platform.

Player is originally designed to be installed and run on a standard PC, and not on an embedded environ-

ment such as Khepera III robot. Therefore, a cross-compiled version of the Player project is required for the

GUARDIANS project.

Using the tool-chain and cross-compiler descried earlier, along with help from K-Team S.A., Player

software and Khepera configuration files were successfully installed on the robot. A full-detailed instruction

of how to install Player driver is available at http://ftp.k-team.com.

5.4 LRF

Each robot is equipped with Hokuyo LRF to get information about the environment as well as for robot

localisation and positioning.

Hokuyo company has laser range finder (LRF) sensors with two small models available for small mobile

robotics (URG-04LX /URG-04LX-UG0, depicted in Fig. 24).

For an electrical consumption less than 0.5 Amperes at 5 Volts, a serial/usb connection for data transfer

and even power supply by USB with the second model above, it provides a measurement range of 0.6-4.1

[m] on a circular aperture of240◦ with a measure point every0.36◦ and a 0.1s refresh rate with a range error
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Figure 24: Two models of Hokuyo LRF. Left: URG-04LX, Right: URG-04LX-UG0

Figure 25: Khepera III and Hokuyo’s LRF in Player/Stage.

of 1% resp. 3% (see Fig. 25). Hokuyo provides a software programming guide and a library for this sensor

[7]. Player/Stage provides a driver for the LRF sensor named ‘urglaser’ [19].

An electronic board was developed for integrating LRF sensor on the Khepera III robot. Besides the

communication data to the robot, it also contains a battery system for the sensor power supply with an

autonomy of about 2.5 hours.

The robot can be controlled remotely by a Player/Stage client and its sensors monitored on it. A Khepera

III robot equipped with a Hokuyo LRF (situated on the top) is pictured in Fig. 26. The ultrasonic sensors (

range 0.2-4m) can be seen in the second from the bottom ‘ring’. The IR sensors, covering the nearest range

around the robot are also displayed (next to the bottom).

At the software level, several software modifications were needed to enable the robot to communicate

with the new hardware. Firstly, the Player driver was updated to include the new sensor. An updated
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Figure 26: Khepera III and Hokuyo’s LRF.

configuration file was also needed so that all laser commands could be interpreted and sent to the sensor.

These modifications were important to enable full control of the new device using the Player project software

only.

For direct control of the laser sensor using the KoreBot module, cross-compiling the Hokuyo libraries

was necessary. Cross-compiling the device libraries and API provided by the manufacturer are carried out

by using the arm-angstorm cross-compiler and the bitbake software discussed earlier.

5.5 TCP/IP suite for communication. Real robots

In order to achieve efficient on site distribution the robots communicate by an ad-hoc wireless network. This

network is built by the robots and represents a part of the self-organising GUARDIANS robotic system.

Each robot is equipped with a WiFi flash card (IEEE 802.11b/g, Ambicom WL500G-CF). A purpose built

threaded TCP/IP class was developed to handle communication independent of Player/Stage. This class acts

as a general message and data transmission server/client, but also serves to relay routine robot queries which

are often required by higher level functions. These routine functions include requests and commands for

robot positioning and orientating, odometry settings, laser ranges, and so on. Automating such requests ‘be-

hind the scenes’ results in cleaner and clearer implementations of the more advanced higher-level functions

such as sentinel/anonymous robot identification and co-operative sentinel/robot/laser manoeuvring.

A network ID needs to be assigned to all robots and a unique IP address is given to each robot on that

network. Full instructions of how to establish an ad-hoc network are available at http://ftp.k-team.com.

An ad-hoc network between the robots was successfully established with the help of University of Pader-

born/Germany, a partner in the GUARDIANS project.

The TCP/IP communication software has been cross-compiled so the robots can send and receive mes-
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sages, share sensor information, and exchange position information

6 Experimental set-up

6.1 Robot detection and recognition

Robot recognition using the laser sensor is one of the major challenges in this project. Each robot has to

identify other robots and distinguish them among obstacles that could be found around the robot. Once the

robots identify other robots, one can figure out its own position based on the positions of the other robots

using the triangulation method described earlier.

As mentioned earlier in this paper, the use of light based sensors, such as cameras, is not reliable due to

low visibility. So, in this section, laser based robot detection is developed and tested as will be explained

shortly.

Because of the small size of the LRF sensor, it will be difficult to detect such a small shape. So, an extra

shape of a larger size is designed and fixed onto the robots as shown in Fig. 27.

(a) (b)

Figure 27: Khepera III robots with extra shape for laser detection (a) Front view. (b) Rear view.

Our robot detection approach is carried out using the so-called ‘two scans’ method. Firstly, the scanning

robot scans the surrounding environment using its LRF sensor. Then, this robot broadcasts a message

using the TCP/IP socket asking all other robots to move forward by a short distance, 10cm in our example.

Afterwards, the scanning robot scans the environments for the second time. Because only the robots have

moved between the two scans, the absolute difference between these scans will emphasise the location of

these robots leading to detection of the robots and illumination of all obstacles.

The proposed algorithm has been tested to recognise the robots as shown in Fig. 28.

In Fig. 28 the actual experimental setup is presented; the robot near the edge of the area is the scanning
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Figure 28: Experimental set up.

Figure 29: 2D laser scan.

robot which scans the arena to detect the other robot. Figure 29 shows a 2D laser scan of the environment

(local map) of the scanning robot.

Figures 30 and 31 show the laser measurements (distances taken) of the first and second scan respec-

tively.

Figure 32 shows the absolute difference between the two profiles shown in previous figures. Clearly, this

difference eliminates all of obstacles as they remain static between the two scans. Only the difference in the

positions of the robot has non zero values. Finding the robot position is carried out by selecting the central

index of the non-zero values. In our particular example, the central index is found at 465 which means that

the robot is located 51cm away from the scanning robot and at an angle of 40 degrees which matches the

physical angle and distance between robots.

Recall that our strategy for robot movement requires that only one robot moves at a time, which simpli-

27



Figure 30: First scan measurements graph.

Figure 31: Second scan measurements graph.

Figure 32: Difference graph of the scan measurements.
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fies the recognition process even further. However, our approach is more general, and allows recognition of

several robots in the vicinity of the scanning robot. Actually, the method can be used also without commu-

nication, but communication provides robustness if there are moving obstacles as well. In the latter case not

only one robot scans the environment, but the other robots as well. Based on the obtained differences in the

scans and communicated approximate positions each robot can detect other robots in its AVD.

7 Conclusion

We have proposed an approach that consists of cooperative positioning system (CPS) that accurately de-

termines robot positions through cooperative control of individual robots in the group, construction of the

topological map of the site and an ad-hoc wireless communication network. The topological map of the

environment is obtained together with itsgeometric realisation, yielding in due course the first two layers of

the proposed hierarchical schema of map building in GUARDIANS. Further layers, such as local 2D maps,

can be sufficiently easily built on the top of the first two, as the positions of grid nodes are established. Skele-

tons can also be constructed; actually, shortest path algorithms to return to the previously visited positions

represent examples of skeletons.

A practical set-up for a real-life scenario is also described and guided distribution has been demonstrated

on Khepera III robots.

Current and future work is directed on tackling the following problems:

• Generalisation of guided distribution for a group of three robots to a group ofn robots. Here we

envisage two sub-directions: (i) one concerns developing guiding strategies of moving the group in

formation, (ii) another may focus on splitting the group in several subgroups such that each subgroup

would explore only a part of the environment in order to make more efficient exploration.

• At present we consider a triangular grid of a fixed size. In future we are planning to generalise the

method to a flexible grid. Depending on the enviromental data obtained from robot sensors some parts

of the grid can expand and others contract to accommodate better the geometry of the site.

• Improvement of guided strategy (i.e. dynamic modification ofexpansion_directions ) to re-

duce the number of revisited nodes.
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