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Correspondence
Stability of an Asynchronous Swarm With

Time-Dependent Communication Links

Veysel Gazi, Member, IEEE

Abstract—In this correspondence, we consider a simple model of N
interacting agents with fixed or time-dependent communication links. We
allow for asynchronous operation and time delays in the information flow.
We show that the convergence of the states of the agents to a common
value will be achieved, provided that old information is uniformly purged
from the system. The considered model finds an application not only in
swarming but also in other fields, including synchronization and distrib-
uted decision making or consensus seeking.

Index Terms—Asynchronous, consensus, distributed agreement, dy-
namic neighborhood topology, multiagent systems, stability, swarms,
synchronization.

I. INTRODUCTION

Many social organisms aggregate in groups and have the ability to
perform cooperative and coordinated behavior as a group: schools of
fish or herds of animals can orient their motion in the same direction,
and thousands of fireflies can synchronize their flashing. Such a spec-
tacular behavior is achieved in a distributed manner despite the fact
that each individual in the group has access to only local information.
Principles developed from studying such naturally distributed systems
could be very useful in characterizing and analyzing mechanisms for
coordination and control of networked control systems and multiagent
systems such as groups of unmanned aerial vehicles or autonomous
robots.

The information flow constraints can have a considerable impact on
the system stability. Recent years have witnessed significant research
focused on the effect of information flow on systems composed of
multiple interacting entities (agents). Some examples include [1]–[4].
Jadbabaie et al. [1] considered a simple model of n interacting par-
ticles with time-dependent bidirectional communication links. They
showed that the 1-D system state (the heading in their case) will con-
verge to the same value, provided that the union of the communication
graphs is uniformly jointly connected. Ren and Beard [4] extended the
results to unidirectional communication and relaxed the connectivity
assumption to the assumption that the union of the communication
graphs has a spanning tree. Independently, Moreau [2] considered
a more general nonlinear interaction model and showed that, under
unidirectional communication, consensus will be achieved if, for any
uniformly bounded time interval, there is an agent that is connected
to all other agents (equivalent to the spanning tree assumption of [4]),
whereas, for bidirectional communication, the same will be achieved
without uniformity in connectedness. Later, in [3], the same author
relaxed the uniformity in the connectedness assumption for the unidi-
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rectional case as well but assumed uniformity in the communication
cycles in the graph. The results in [2] and [3] are based on convexity
analysis and are more general than those in both [1] and [4]. Another
relevant reference is the work in [5], where the authors consider a
group of unicycles and show that the rendezvous problem is solvable
(i.e., a controller that achieves stabilization to a point exists) if and only
if the communication graph has a globally reachable node or basically
a spanning tree (in contrast to the work in [1]–[4], where the analysis
is based on a specific control law). However, they consider only the
fixed-communication-topology case.

Other relevant articles include [6]–[8]. Fax and Murray [6] em-
phasize the role of information flow and graph Laplacians and derive
Nyquist-like criterion for stabilizing vehicle formations. Olfati-Saber
and Murray [7] describe consensus protocols for networks of dynamic
agents with fixed and switching communication topologies and show
that the connectivity of the network is key in reaching consensus.
They determine a class of directed communication graphs, which
guarantee reaching average consensus, and they establish connection
with the Fiedler eigenvalue of the graph Laplacian and the speed of
convergence. Moreover, they also consider time delays and channel
filtering affects. Sepulchre et al. [8] study connections between models
of coupled phase oscillators and kinematic models of swarms (groups
of self-propelled particles) and design control laws for stabilizing
collective motions of groups.

Most of the aforementioned papers (with the exception of [7],
which considers bounded and equal time delays in continuous time)
and, in particular, [1]–[4] consider synchronous motion and perfect
information. In other words, all the agents move simultaneously and
every agent knows the exact state of its neighbors (i.e., the agents with
which it can currently communicate). However, distributed multiagent
systems inherently operate in an asynchronous manner with possible
imperfect information due to delays in communication and/or sensing.
Moreover, these properties can have a considerable impact on the
system stability as well. Therefore, any realistic model of such systems
should possess these properties.

Asynchronous models for modeling swarms have also been con-
sidered in the literature [9]–[11]. Liu et al. [9] consider 1-D discrete-
time asynchronous models for both stationary and mobile swarms and
prove asymptotic convergence under total asynchronism conditions
and finite-time convergence under partial asynchronism conditions
(i.e., total asynchronism with a bound on the maximum possible time
delay). For the mobile swarm case, they prove that cohesion will be
preserved during motion under conditions expressed as bounds on
the maximum possible time delay. In [10], the work in [9] has been
extended to the multidimensional case by imposing special constraints
on the “leader” movements and using a specific communication topol-
ogy. In [11], we considered a similar model to the one in [9]. In
particular, we used the representation of a single swarm member as in
[9] and a different mathematical model for the interagent interactions
and motions in the swarm as well as different tools for analysis.
Other recent references dealing with asynchronous algorithms for
cooperative coordination and control include [12]–[15]. The work
in [12] deals with optimal distribution (or coverage) of the agents
in a region, whereas those in [13]–[15] deal with the rendezvous
[13] or the gathering (i.e., rendezvous in finite time) problem [14],
[15]. Beni [16] showed that asynchronous swarms may exhibit “richer
behavior” compared to their synchronous counterparts. In particular,
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he determined that asynchronous systems of swarms converge to the
same fixed points as their synchronous counterparts, and moreover, the
asynchronous systems may reach fixed points that are unreachable for
the synchronous ones. In a recent work, we empirically investigated
the effects of asynchronism, time delays, and neighborhood size for
systems of self-propelled particles [17] and analyzed the stability of
an asynchronous system under cyclic pursuit [18].

In this correspondence, we present a model of an asynchronous
system of N interacting agents via fixed or dynamic communication/
interaction links. The model also includes possible time delays (which
could be due to delays in communication or sensing). We show that
convergence to a common state (or consensus) will be achieved,
provided that old information is uniformly purged from the system. We
employ techniques from [19] to prove the stability of an asynchronous
interacting swarm in an n-dimensional space. The model extends
the work in [1]–[4] and finds application not only in swarming but
also in other fields, including synchronization and distributed decision
making or consensus seeking. Although the setup of the problem here
has similarities to the ones in [9]–[11] (all are based on [19]), it also
has important differences: 1) in [9]–[11], a specific leader–follower-
based communication topology is specified a priori, and the results
are derived based on that topology only; on the contrary, here, a
leaderless swarm is considered, and only a connectedness property
of the communication topology is specified; 2) as a difference from
[9]–[11], we also allow for a dynamically changing communication
topology.

Recently, Angeli and Bliman [20] provide an extension of the result
by Moreau [2] by relaxing the convexity assumption and allowing
for a known and bounded time delay. The results here have been
independently obtained and are also different from those in [20]. In
particular, our system operates in an asynchronous manner, whereas
the system considered in [20] is synchronous. Moreover, the analysis
here is based on different mathematical tools. Other more recent works
similar to this correspondence are [21] and [22]. Fang et al. [21]
summarize the recent results on synchronous consensus protocols,
briefly discusses asynchronous protocols, poses some open questions,
and shows some simulation-based preliminary results on asynchronous
protocols using a custom Java-based simulator. No results in the
form of this correspondence are presented. Aside from discussing
the current results in the literature, reference [22] presents some
new results for systems/protocols with delays as well. Asynchronous
motion is not considered in [22]. The authors also claim that most
of the recent results obtained in the literature (e.g., those in [1]–
[4]) are special cases or could be approached from the point of their
earlier work on parallel and distributed computation. They point out
the power of the asynchronous convergence theorem in [19] and state
that it can be used or modified accordingly to address many of the
problems/cases considered in the literature. In this correspondence,
we take that exact approach (i.e., use the results in [19]) to prove
the convergence for the asynchronous case with time delays. (We also
noticed the usefulness of the results in [19] during our studies on 1-D
asynchronous swarms [11].) We would like to stress that the results
in this correspondence have been independently obtained and before
the works in [21] and [22]. A preliminary version of the current
correspondence was presented in the Systems and Control Theory
Workshop in Gebze, Kocaeli [23].

II. SWARM MODEL

Consider a multiagent system (a swarm) consisting of N individuals
with states denoted by xi ∈ R

n, which could be position, orientation,
synchronization frequency, or some other physical variable depending
on the problem. It could also represent some other information (e.g.,

cognitive variables) to be distributively agreed upon by the agents.
Assume that each agent can communicate only with a fixed or time-
dependent (i.e., dynamic) subset of the swarm called its neighbors.
In applications, this subset may be determined based on the distance
between the agents (due to, for example, the finite range of com-
munication or sensing), based on the physical layout or topology of
the environment (walls may cause agents to be out of sight, etc.), or
by some other (e.g., heuristic, probabilistic, or ad hoc) means. Given
agent i, we denote with Si(t) the set of its neighbors and with Ni(t)
the number of its neighbors at time t. In other words, Ni(t) denotes the
number of elements in set Si(t). We assume that each agent updates
its state by

xi(t + 1) =
1

wi(t)


wii(t)x

i(t) +
∑

j∈Si(t)

wij(t)x
j
(
τ i

j (t)
)



∀t ∈ T i (1)

where xi(t), i = 1, . . . , N , represents the state of member i at
time t, the variables wij(t), 1 ≤ i, j ≤ N , are the weighting factors,
and wi(t) = wii(t) +

∑
j∈Si(t)

wij(t), i = 1, . . . , N . The set T i ⊆
T = {0, 1, 2, . . .} is the set of time indexes at which member i updates
its state. At the other time instants, member i is stationary, i.e.,

xi(t + 1) = xi(t) ∀t �∈ T i. (2)

It is assumed that the weighting factors satisfy wmin ≤ wij(t) ≤
wmax for some wmin > 0 and wmax < ∞ for all i, j, and all t. The
variables τ i

j (t), j ∈ Si(t), i = 1, . . . , N , are used to represent the
time index of the state information of j ∈ Si(t) to which member i
has access to. They satisfy 0 ≤ τ i

j (t) ≤ t for t ∈ T i, where τ i
j (t) = 0

means that member i has not yet obtained any information about
member j (it still has the initial state information), whereas τ i

j (t) = t
means that it has the current state information of member j. The
difference (t− τ i

j (t)) ≥ 0 can be viewed as a sensing delay or a
communication delay in obtaining information about agent j by agent
i. Note that this definition can represent both of the following cases:
1) The agents are memoryless, and when, at time t, agent j becomes
a neighbor of agent i, it performs (relative) position sensing of agent j
but gets an old distance due to the time delay in sensing. 2) The agents
have memory and keep record of all its past neighbors, and when, at
time t, agent j becomes a neighbor of agent i, it may perform sensing
of the state of agent j with some probability or uses the old recorded
information about it. The first case may arise in, for example, robot
gathering algorithms such as those considered in [13]–[15], whereas
the second may serve as a crude representation of interactions in
social networks (and adaptation of attitudes or beliefs, for example).
(See [24] for more information on social networks.)

Note that j ∈ Si(t) does not necessarily mean that i ∈ Sj(t). In
other words, we assume unidirectional communication. Moreover,
even if j ∈ Si(t) and i ∈ Sj(t) simultaneously hold, this does not
imply that τ i

j (t) = τ j
i (t). In other words, even if two members i and

j are mutually neighbors of each other at a given time instant, it does
not mean that they have the current or equally outdated information
about each other, implying that they do not necessarily communicate
information to each other simultaneously. In fact, it is assumed that
they can obtain information about each other, as well as update their
states at totally independent time instants.

The elements of set T (and therefore of T i) should be viewed not as
actual times but as indexes of the sequence of ordered physical times
T = {t0, t1, t2, . . .}, where ti < ti+1, at which the updates generated
by all the agents occur (similar to the times of events in discrete-event
systems). In other words, the elements of set T are integers that
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can be mapped into the actual times (i.e., the times of the events)
{ti|ti < ti+1}, and the physical time intervals (ti+1 − ti) between
subsequent indexes (events) are not necessarily uniform. Sets T i are
independent from each other for different i. However, it is possible to
have T i ∩ T j �= ∅ for i �= j (i.e., it may happen that, sometimes, two
or more members simultaneously update their states). Note that the
set T is only needed for analysis purposes, and in order to implement
the iteration in (1), it is not required for the agents to know it.
Similarly, the agents do not need to know neither the sets T i nor the
set of physical times T . One can view these sets as the global times
viewed/observed by an external observer, while the agents operate on
their local independent clocks. In other words, there is no need for a
global clock or a means for synchronization for the implementation of
equation (1).

We would like to emphasize here that the model in (1) is also
suitable for applications in which the relative positions/states can be
measured, instead of actual positions/states. To see this, note that, by
taking wij(t)=1, 1 ≤ i, j ≤ N , and rearranging, (1) can be written as

xi(t + 1) = xi(t) +
1

Ni(t) + 1

×
∑

j∈Si(t)

[
xj

(
τ i

j (t)
)
− xi(t)

]
∀t ∈ T i.

In addition, note that (1) can be used for a high-level representation
of the rendezvous or gathering problem in asynchronous multivehicle
systems, such as those considered in [13]–[15]. In particular, con-
sider a networked system of agents that have continuous-time vehicle
dynamics and have sensing/communication, computation and motion
capabilities. Assume that they operate on the (infinite) sequence of
behaviors wait–sense–compute–move. Let agent i be located at xi(t)
at time index t. After performing a sensing of its current neighbors,
during its compute state/behavior, it computes using (1) the new
waypoint (position point or path point) xi(t + 1). Then, it moves
(using some local control) in some (unspecified but finite) amount of
time to its new position (the move behavior), waits for some amount of
time, and performs new neighbor position sensing. Note that, during
the wait, sense, and move behaviors, no new waypoints are computed,
which corresponds to (2). The agent does not need to know at which
time instant the other agents move, and there is no need for a global
clock. The asynchronism in the system comes from the fact that the
times for the completion of the behaviors and, in particular, of the
move behavior is not necessarily uniform. The model in (1) provides
a high-level view of such systems, and the results developed in this
correspondence will hold for such systems as well. However, here, we
are not concerned with the low-level vehicle dynamics and control of
the agents. The only requirement is that they should be designed such
that the agents move to their next computed waypoints in some finite
(unspecified) amount of time.

The swarm model in (1) is different from the ones considered in
[1]–[4] in two main aspects: 1) the agents update their states in
asynchronous manner and 2) they do not necessarily have the exact
information about the states of the other agents. Therefore, we believe
that it is more suitable for describing the operation of distributed
multiagent systems since these features are natural properties of such
systems. Synchronous operation is difficult to implement even in arti-
ficial multiagent systems such as swarms of robots since it requires a
global clock to which all the agents must be subjected to, undermining
the distributed (decentralized) nature of the problem.

In [1]–[4], it was shown that all the states converge to a common
value, i.e., as t → ∞, we have

lim
t→∞

xi(t) = xc (3)

for some constant vector xc ∈ R
n and for all i. (Actually, in [1], [3],

and [4], 1-D state xi ∈ R was considered, but the results hold for xi ∈
R

n as well.) The question is whether the same will be achieved here
despite the asynchronism and the time delays.

We will use a directed graph to represent the interaction (informa-
tion flow) topology. Let G(t) = (N ,A(t)) denote the information flow
or interaction graph of the system at time t, where N = {1, 2, . . . , N}
is the fixed set of nodes and A(t) ⊂ N ×N denotes the set of directed
arcs (or information flow links) at time t. Agent i ∈ N denotes the ith
node or vertex of the graph, whereas the arc (i, j) ∈ A(t) represents a
directed information flow link from agent i to agent j at time t. In other
words, if (i, j) ∈ A(t), then agent j can receive or obtain information
from agent i at instant t, implying that i ∈ Sj(t). Note once more that
the information flow is unidirectional, meaning that (i, j) ∈ A(t) does
not imply that (j, i) ∈ A(t).

Agent i is said to be connected to agent j if there is a directed
path from i to j. In other words, there is a sequence of arcs (i1, i2),
(i2, i3), . . . , (ip−1, ip), such that i = i1 and j = ip. A directed tree is
a directed graph in which every node, except the root, has exactly one
incoming edge (arc). If the tree connects all the vertices of the graph,
then it is called a spanning tree. Note that, if a graph has a spanning
tree, then there is at least one agent that is connected to all the other
agents.

In this correspondence, we assume that the communication topology
can be time dependent. As in [4], denote the set of all possible in-
teraction graphs as Ḡ = {G1, . . . ,GM} = {Gp|p = 1, . . . ,M}. Note
that Ḡ is finite, and for each t, we have G(t) ∈ Ḡ. The union of a
set of graphs {Gi = (N ,Ai)} ⊂ Ḡ with the same vertex set is the
graph defined as ∪Gi = (N ,∪Ai). We say that a sequence of graphs
{G(t)} has a spanning tree over an interval I if the graph ∪t∈IG(t)
has a spanning tree. Let P = {1, . . . ,M} and σ: T → P denote the
switching sequence (of the communication graphs). In addition, given
a switching sequence σ(t), denote the corresponding sequence of
communication graphs as {Gσ(t)} = {Gp(t) = (N ,Ap(t))}. In this
correspondence, we will build on the results in [1]–[4]. Therefore, we
have the following assumption:
Assumption 1: The switching sequence σ(t) is such that there

exists a constant I ≥ 0 such that, for every interval I of length I ,
the corresponding sequence of communication graphs {Gσ(t)} has a
spanning tree.

In the case of synchronous motion and perfect information,
Assumption 1 is sufficient for achieving consensus [2], [4]. However,
in the case of asynchronism and time delays, there is a need for extra
conditions imposed on the information updates or the delay time.

In the next section, we briefly discuss the system under total
synchronism and set up the stage for the main result of this correspon-
dence: the convergence of the asynchronous system in (1) and (2).

III. SYSTEM UNDER TOTAL SYNCHRONISM

We start with the following assumption.
Assumption 2: (Synchronism, No Delays): Sets T i and times τ i

j (t)
satisfy T i = T for all i and τ i

j (t) = t for all i and j ∈ Si(t).
This assumption states that all the swarm members will move at

the same time instants. Moreover, every member will always have the
current state information of its neighbors. Under this assumption, the
motion dynamics of the system become

xi(t + 1) =
1

wi(t)


wii(t)x

i(t) +
∑

j∈Si(t)

wij(t)x
j(t)


 (4)

for all t ∈ T and all i.
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It was shown in [2]–[4] that, under Assumption 1, for the synchro-
nous system with the dynamics in (4), condition (3) is satisfied. Here,
we will use this result to prove the convergence for the asynchronous
system. First, we briefly introduce the notation that will be used in the
next section.

Define set X(t) ⊂ R
n as

X(t) = {x ∈ R
n|m(t) ≤ x ≤ M(t)}

where

m(t) = min
i=1,...,N

{xi(t)}

M(t) = max
i=1,...,N

{xi(t)}.

Here, m(t) and M(t) are vectors of dimension n, and the inequality
sign and the min and max operators are operated elementwise. We
would like to emphasize that the values of m(t) and M(t) and,
therefore, the sets X(t) depend on the initial configuration x(0) of
the system as well as the switching sequence σ(t).

Note that {m(t)} is nondecreasing and {M(t)} is nonincreasing
along the solutions of (4). In other words, we have m(t + 1) ≥ m(t)
and M(t + 1) ≤ M(t) for all t, implying that X(t + 1) ⊆ X(t) for
all t. This is because of the convexity of the weighted averaging in
(4). By taking a convex combination between a set of numbers/points,
the minimum value cannot decrease, and the maximum value cannot
increase. Therefore, the mapping consisting of the concatenation of all
(4) for all i is a contraction mapping [25] in R

N×n. These were shown
(or implied) in [2]–[4]. Since m(t) and M(t) are bounded, their limits
exist, and from the results in [2]–[4], we know that they are equal. In
other words, we have

lim
t→∞

m(t) = m = M = lim
t→∞

M(t).

This final value is the one defined as xc in (3). Note that it also depends
on x(0) and σ(t).

In addition to the fact that m(t) is nondecreasing and M(t) is
nonincreasing it is guaranteed that an increase in m(t) or a decrease in
M(t) will occur in a few time steps, the number of which is bounded
by the maximal information flow path in the communication graph
(which is always less than N ) and the uniformity in connectivity
parameter I in Assumption 1. Then, it is guaranteed that, for all t,
either m(t + IN) > m(t) or M(t + IN) < M(t), which implies
that X(t + IN) ⊂ X(t). Note that, in practice, based on the switching
sequence σ(t), usually it may happen that X(t + η) ⊂ X(t) for some
η < IN , and IN is the worst case interval for which the preced-
ing condition is guaranteed for any switching sequence satisfying
Assumption 1.

Let Y (k) = X(kIN). Then, Y (k + 1) ⊂ Y (k). In addition, define

Ȳ (k) = Y (k) × Y (k) × · · · × Y (k)︸ ︷︷ ︸
N copies of Y (k)

and let Yc = xc × xc × · · · × xc. Then, from the preceding discus-
sion, we have

Yc ⊂ · · · ⊂ Ȳ (k + 1) ⊂ Ȳ (k) ⊂ · · · ⊂ Ȳ (0) ⊂ R
N×n.

In other words, since (3) holds, under the dynamics in (4), the state of
the system converges to Yc (for some xc). In particular, any sequence
{yk} such that yk ∈ Ȳ (k) converges to Yc. These properties will be
very useful in the proof of the asynchronous system, to which we
return in the next section.

IV. MAIN RESULT

In this section, we return to the asynchronous system in (1) and (2).
We start with an assumption that allows the members to move at totally
independent time instants. However, it also guarantees that the mem-
bers will perform measurement/communication with their neighbors
and a state update/move in, at most, B time steps for some finite B. In
other words, there is uniformity in the measurement/communication
as well as the update/move times, or basically, the time delay and the
times between two moves are uniformly bounded. Note that the value
of bound B does not need to be known by the agents. It is needed for
analysis purposes, and it is sufficient for it to exist. The analysis here is
based on the work on the parallel and distributed computation in [19].
Assumption 3: There exists a finite positive constant B such that,

for every agent i and for all t ≥ 0, two conditions hold.

1) At least one of the elements of {t, t + 1, . . . , t + B − 1} be-
longs to T i.

2) Given the switching sequence σ(t), for every j ∈ Si(t), we have
t−B < τ i

j (t) ≤ t.

Note that the preceding assumption is a very reasonable assumption.
Basically, it states that any agent performs a move in, at most, B time
steps and that the information about the neighbors (used by the agent
during the determination of its next state/waypoint) is outdated by,
at most, B time steps, and assuming such bounds is very realistic.
In other words, if there are agents that do not perform update/move
for an unbounded amount of time or do not perform position sensing
of their neighbors, they are not effectively part of the swarm. Con-
sider again a networked system of agents that have continuous-time
vehicle dynamics and operate on the (infinite) sequence of behaviors
wait–sense–compute–move. As mentioned before, for such a system,
xi(t) means the next waypoint which is computed during the compute
state, and no computation is performed during the other states. Simi-
larly, it performs neighbor position/state sensing only during its sense
state, and no sensing is performed at the other states. For such a system,
Assumption 3 means that the sequence wait–sense–compute–move is
completed in a finite amount of time. Therefore, the low-level control
and communication/sensing algorithms should be designed such that
this is guaranteed and the agent computes its next waypoint based only
on the agents that it has sensed (or communicated with). The systems
satisfying Assumption 3 are referred to as the partially asynchronous
systems in [19].

Note that, since sets T i are infinite and there are only a finite number
of agents in the swarm, some of them may become neighbors of i
only finitely many times, while others become its neighbor infinitely
many times as t → ∞. Assumption 3 can be relaxed to state that, given
the switching sequence σ(t), agent i regularly updates its (perceived)
information about members j, which become its neighbors, i.e., j ∈
Si(t), infinitely often as time goes to infinity (and therefore its state
affects the update in (1) as time goes to infinity).

Under Assumption 3, using the result for the synchronous case and
a result from [19], one can show that, as t → ∞, we have x(t) → Yc

for some Yc, implying that (3) is satisfied.
Theorem 1: For the N -member swarm in (1), if Assumptions 1 and

3 hold, then, (3) is satisfied as t → ∞, i.e., the swarm member states
will asymptotically converge to a common value xc for some xc ∈
Y (0) = X(0).

Proof: The result directly follows from the asynchronous conver-
gence theorem in [19]. For convenience, we will adapt and present the
proof here. It is based on induction. Let us denote the concatenation
of the states of all the agents as x(t) = (x1(t), x2(t), . . . , xN (t)) ∈
R

N×n. Initially, at t = 0, we have x(0) ∈ Ȳ (0) by hypothesis. Given
that x(t) ∈ Ȳ (k) for some tk and for all t ≥ tk, we will show that
there exist a time tk+1 such that x(t) ∈ Ȳ (k + 1) for all t ≥ tk+1.
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Then, in the light of the discussion for the synchronous case in the
preceding section, we have the result. Let

xpi(t) =
(
x1

(
τ i
1(t)

)
, x2

(
τ i
2(t)

)
, . . . , xN

(
τ i

N (t)
))

denote the “perceived” system state by agent i. We use this notation
for convenience. Here, if j ∈ Si(t), then xj(τ i

j (t)) is the perceived
state of neighbor j; otherwise, if j �∈ Si(t), we take xj(τ i

j (t)) = xj(t)
since it does not affect the state update of agent i in (1).

By Assumption 3, since, for every i and j ∈ Si(t), we have t−
B < τ i

j (t) ≤ t, it is guaranteed that, after time t̄k = tk + B, we have
τ i

j (t) ≥ tk for all t ≥ t̄k for all agents i and for all j ∈ Si(t). In other
words, all agents perform sensing of (or communication with) all of its
neighbors (arising due to the switching sequence σ(t)) by time t̄k or
in, at most, B steps after time tk—this is guaranteed by Assumption 3.
Note that the perceived minimum by individual i

mpi(t) = min
i=1,...,N

{
xj

(
τ i

j (t)
)}

≤ m(t)

cannot decrease and the perceived maximum

Mpi(t) = max
i=1,...,N

{
xj

(
τ i

j (t)
)}

≥ M(t)

cannot increase. The inequalities mpi(t) ≤ m(t) and Mpi(t) ≥ M(t)
hold due to the facts that m(t) is nondecreasing (m(t− 1) ≤ m(t)
for all t) and M(t) is nonincreasing (M(t− 1) ≥ M(t) for all t), and
the facts that the perceived mpi(t) and Mpi(t) correspond to older
information. Therefore, since x(t) ∈ Ȳ (k) for t ≥ tk and τ i

j (t) ≥ tk
for t ≥ t̄k = tk + B and for all j ∈ Si(t), we have mpi(t) ≥ m(tk)
and Mpi(t) ≤ M(tk) for all t ≥ t̄k, implying that

xpi(t) ∈ Ȳ (k) ∀t ≥ t̄k.

In other words, for t ≥ t̄k, the agents “perceive” that the state of the
system belongs to Ȳ (k). Therefore, for all t ≥ t̄k, we have xpi(t) ∈
Ȳ (k) for all i. Define tk+1 = t̄k + INB = tk + (1 + IN)B, where
I is the length of the uniform connectivity interval in Assumption 1,
N is the number of individuals (which is greater than the length of
the maximal path in the communication graph), and B is the bound
in Assumption 3. Then, from the motion dynamics in (1) and the fact
that xpi(t) ∈ Ȳ (k) for all i and for all t ≥ t̄k in light of the discussion
about the synchronous case in the preceding section, it is guaranteed
that xi(t) ∈ Y (k) for all t ≥ tk+1, implying that

x(t) ∈ Ȳ (k + 1)

for all t ≥ tk+1, which completes the proof. �
This result is important because it states that the stability of the

system will be preserved (i.e., all the agent states will converge to
the same value), even though we have an asynchronous state update
mechanism and imperfect information due to time delays on top of
the time-varying or switching communication topology. The main
arguments of the proof are based on a convexity-type condition and
the contraction properties of the iteration (due to the averaging in the
agent motion dynamics). The speed of convergence is bounded below
by a constant, which depends on the value of µ = (1 + IN)B since it
is guaranteed that contraction will occur in, at most, µ time steps.

A special case of this result occurs when the communication topol-
ogy is fixed. If this is the case, Assumption 1 basically becomes the
following:
Assumption 4: The interaction graph G = (N ,A) has a span-

ning tree.

The corresponding result can be stated as follows:
Corollary 1: For the N -member swarm in (1), if the interaction

graph is fixed and if Assumptions 3 and 4 hold, then (3) is satisfied
as t → ∞, i.e., the swarm member states will asymptotically converge
to a common value xc for some xc ∈ Y (0) = X(0).

V. EXTENSION TO GENERAL NONLINEAR DYNAMICS

The asynchronous convergence theorem in [19], on which the
results of this correspondence are based, is a general result that is not
limited to linear iterations and can be applied to nonlinear iterations as
well. In fact, as previously mentioned, the two main arguments of the
proof of convergence in the linear case are a convexity-type condition
and the contraction properties of the iteration. Therefore, as long as
these properties are preserved, the results will still hold. Consider the
asynchronous version of the nonlinear system considered in [2]. In
other words, consider the nonlinear system in which individual i moves
according to

xi(t + 1) = fi

(
t, x1

(
τ i
1(t)

)
, . . . , xN

(
τ i

N (t)
))

∀t ∈ T i (5)

and it is stationary otherwise. This iteration can also be represented by
fi(t, xpi(t)), where xpi(t) ∈ X̄ ⊂ R

N×n is the perceived state of the
system by agent i at time t, and the time dependence in fi is due to the
time-dependent communication topology. For simplicity, it is assumed
that f : N × X̄ → X̄ is continuous. Here, X̄ = XN , with X ⊂ R

n. In
addition, assume that Assumption 1 is satisfied. Furthermore, let the
following convexity assumption from [2] be satisfied:
Assumption 5: Associated to each directed graph (N ,A) with node

set N = {1, . . . , N}, each agent i, and each state x ∈ X̄ there is a
compact set ei(A)(x) ⊂ X that satisfies four conditions:

1) fi(t, x) ∈ ei(A(t))(x), ∀t ∈ T ; ∀x ∈ X̄ .
2) ei(A(t))(x1, . . . , xN ) = {xi} whenever the states of agent i

and agents j ∈ Si(t) are equal.
3) ei(A(t))(x1, . . . , xN ) is contained in the relative interior of

the convex hull of the states of agent i and agents j ∈ Si(t)
whenever the states of agent i and agents j ∈ Si(t) are not equal.

4) ei(A)(x) depends continuously on x.

Under this assumption, Moreau [2] showed that the synchronous
version of the nonlinear system (5) will result in the convergence of
the states of all the agents to the same value. Assumption 5, together
with Assumptions 1 and 3 also guarantee that the asynchronous system
in (5) will converge as well. To this end, define the convex hull of the
agent states as X(t). In other words, define

X(t) = conv{x1(t), . . . , xN (t)}

and Y (k) and Ȳ (k) as before. From the results in [2], we know that,
under Assumption 1, for the synchronous case, there is a sequence of
sets Ȳ (k) satisfying Yc ⊂ · · · ⊂ Ȳ (k + 1) ⊂ Ȳ (k) ⊂ · · · ⊂ Ȳ (0) ⊂
R

N×n, and any sequence {yk ∈ Ȳ (k)} converges to Yc. Using ar-
guments that are similar to those in Theorem 1, one can prove the
following result for the nonlinear system in (5):
Theorem 2: For the N -member swarm in (5), if Assumptions 1

and 3 hold, together with Assumption 5, then, (3) is satisfied as
t → ∞, i.e., the swarm member states will asymptotically converge
to a common value xc for some xc ∈ Y (0) = X(0).

VI. SIMULATION RESULTS

In this section, we provide numerical simulation examples. We
chose n = 3, (i.e., R

3). To achieve asynchronism at each time step,
the swarm members are set up to sense their neighbor states and to
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TABLE I
PSEUDOCODE

TABLE II
RANDOM NEIGHBORHOOD

update their own state with some probability. In particular, we defined
two threshold probabilities 0 < p̄sense < 1 and 0 < p̄move < 1. At
each time instant t, for each individual i, a total of (Ni(t) + 1)
random numbers, which include pij

sense(t), j = 1, . . . , Ni(t), and one
pi
move(t), are generated with uniform probability density in the interval

[0, 1]. Then, if pij
sense(t) > p̄sense, then member i receives the current

state of its neighbor j ∈ Si(t). Otherwise, it keeps the old state infor-
mation of agent j. Similarly, if, at step t, we have pi

move(t) > p̄move,
then individual i updates its state according to (1). Otherwise, it keeps
its current state according to (2). In other words, the agents move based
on the pseudocode shown in Table I. Note that this implementation
is not a real discrete-event-based asynchronous system. Instead, it
mimics such systems and is sufficient for illustrating/verifying the
theoretical results obtained in this correspondence. There could be
various procedures for determining the neighbors of the agents both
in the fixed and dynamic topologies. One procedure is to assign the
neighbors randomly, and this is exactly the procedure that we used
here. The pseudocode for that is shown in Table II. In particular, a
total of N × (N − 1) random numbers were generated before the
main loop for the fixed topology case and at each time step t for
the dynamic topology case (i.e., different random numbers pij

nbr(t) for
every possible pair (i, j), j �= i). In addition, we defined p̄nbr, and if,
at time t, for a pair (i, j), j �= i, we have pij

nbr(t) > p̄nbr, then agent
j is assigned as a neighbor of agent i for time t, i.e., j ∈ Si(t). Since
pij
nbr(t) is independent and possibly different from pji

nbr(t), j ∈ Si(t)
does not imply i ∈ Sj(t) or vice versa.

Fig. 1 shows a simulation of a system with fixed communication
topology for N = 100 members. We chose the initial states of the
agents randomly in the interval [0, 1]. Moreover, we assigned the
(fixed) neighbors of the agents also randomly with a probability of
0.1 (i.e., p̄nbr = 0.9). In addition, for these simulations, we used

Fig. 1. States of the agents (fixed topology).

Fig. 2. Distance between agent states (fixed topology).

p̄sense = 0.5 and p̄move = 0.5. As seen from the figure, all the agent
states converge to the same value. The three distinct lines in the figure
are due to the fact that the agent states evolve in R

3 (i.e., xi ∈ R
3),

and all three coordinates are plotted on the same plot. Fig. 2 shows the
plot of the sum of the distances between the states of the agents

e(t) =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

∥∥xi(t) − xj(t)
∥∥

with respect to time. As predicted by the analysis, it is seen to converge
to zero. Other fixed neighborhood topologies that we experimented
with are the fully connected and the cyclic (ring) neighborhood
topologies (results not shown here). The fully connected neighborhood
topology converges very fast. In the ring topology, on the other hand,
the convergence is much slower since the length of the path in the
spanning tree there is much longer. The only point here is that the
spanning tree assumption should be satisfied. For the fully connected
and ring topologies, it is always satisfied; however, for the random
neighborhood, for large values of p̄nbr, it might not be satisfied, and
for these cases, convergence is not guaranteed.

For the dynamic topology case, in addition to the asynchronism
and time delays at each time step, the neighbors of the agents were
randomly reassigned based on the procedure shown in Table II. Figs. 3
and 4 show the plots of the agent states and the sum of the distances
between them, respectively. For these simulations, we again used the
same probability values p̄sense = 0.5, p̄move = 0.5, and p̄nbr = 0.9.
As one can see, once more, the states of all the agents converge
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Fig. 3. States of the agents (dynamic topology).

Fig. 4. Distance between agent states (dynamic topology).

to a common value. For this case, however, convergence is slower
compared to the corresponding fixed topology case.

Although we did not explicitly impose a bound B on the time delay
and the time between two subsequent moves (recall Assumption 3),
effectively such a bound exists in the preceding simulations despite
the fact that, with the preceding type of implementation, theoretically
infinite delays are also possible. In particular, in the simulations, by
choosing the values of p̄sense, p̄move, and p̄nbr, one can change the
speed of convergence (of the implemented simulation algorithm). In
fact, decreasing p̄sense, p̄move, or p̄nbr leads to faster convergence
(since it results in higher probabilities to sense, move, and become
neighbors), whereas increasing p̄sense, p̄move, or p̄nbr leads to slower
convergence. This is because decreasing p̄sense and p̄move implies that
the agents will move and sense more often (implying that, effectively,
bound B in Assumption 3 will decrease). In other words, the values
of these parameters determine the resulting effective value of bound
B, which, on the other hand, affects the speed of convergence. De-
creasing p̄nbr, on the other hand, leads to a more connected com-
munication/interaction topology (implying that, effectively, bound I
in Assumption 1 will decrease). Note from the proof of Theorem 1
that both B and I affect the worst case time for the set to contract.
The plots in Figs. 5–7 investigate these effects. For the simulation in
Fig. 5, the probability threshold for the agents becoming neighbors
was decreased from p̄nbr = 0.9 to p̄nbr = 0.5 (while keeping p̄sense =
0.5 and p̄move = 0.5). As one can see from the figure, the system
converges (i.e., consensus is achieved) much faster, as expected. For
the simulation in Fig. 6, the probability threshold for the agents to
move was decreased to p̄move = 0.2 (while keeping p̄sense = 0.5 and

Fig. 5. States of agents (p̄nbr = 0.5, p̄sense = 0.5, and p̄move = 0.5).

Fig. 6. States of agents (p̄nbr = 0.9, p̄sense = 0.5, and p̄move = 0.2).

p̄nbr = 0.9). This resulted in only very slight difference, compared
to the simulation in Fig. 3, and substantial increase in convergence
speed is not achieved. This is probably because, even though the
agents move more often, they still use the same amount of outdated
information, which prevents the increase in the convergence speed.
For the simulation in Fig. 7, the probability threshold for the agents
to sense was decreased to p̄sense = 0.2 (while keeping p̄move = 0.5
and p̄nbr = 0.9). This also resulted in a faster convergence compared
to the case in Fig. 3. Note that the synchronous case considered in
the literature corresponds to the case with p̄move = 0 and p̄sense =
0 (move at each step with always the current information), which
converges much faster, compared to the corresponding asynchronous
case (for both the fixed and dynamic topologies) with time delays
considered here. Note also that the speed of convergence is not affected
by the dimension of the state space n (since actually each dimension is
independent and they do not affect each other). In contrast, the number
of agents can affect the convergence rate, as expected from the bound
obtained in the proof of Theorem 1. In particular, a higher number N
of agents may result in slower convergence.

In addition, in the probabilistic neighborhood (that we used for
illustration here), there are other possible methods for defining the
dynamic neighborhood topology. One such method is the nearest
neighbor rule

Si(t) =
{
j|j �= i, ‖xi(t) − xj(t)‖ ≤ δ

}
.

We experimented with that neighborhood as well (results not shown
here). We would like to emphasize that the objective here is not to
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Fig. 7. States of agents (p̄nbr = 0.9, p̄sense = 0.2, and p̄move = 0.5).

perform a comprehensive simulation study for many different cases;
instead, it is to illustrate the theoretical results obtained in the preced-
ing sections. In addition, all the simulations that we performed for all
the cases (including those not shown) support the theoretical results
obtained in this correspondence.

VII. CONCLUDING REMARKS

In this correspondence, we present an n-dimensional discrete-time
asynchronous swarm model, which can also include sensing or com-
munication delays. We show under the assumption that old information
is uniformly purged from the system that asymptotic convergence of
the states of all the agents to the same value is achieved despite the
presence of delays and asynchronism, thus extending some earlier
results that appeared in the literature. The discussed model appears
to be more natural or suitable for multiagent systems since it does
not require global clock for synchronization. Future research could
focus on analyzing the stability and performance of the system under
sensing errors and uncertainties in addition to the asynchronism and
time delays.
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