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Abstract

In this article we consider the aggregation, foraging, and formation control of swarms whose agents

are moving in 2-dimensions with non-holonomic unicycle agent dynamics. We approach these problems

using artificial potentials and sliding mode control. The main contribution is extension of the recent

results (mainly for aggregation) in the literature based on a similar approach for simple integrator agent

dynamics models to a significantly more realistic and more difficult setting with non-holonomic unicycle

agent dynamics models. In particular, we design continuous-time control schemes via a constructive

analysis based on artificial potential functions and sliding mode control techniques. The effectiveness of

the proposed designs are demonstrated analytically as well as via a set of simulation results.

1. Introduction

Coordination and control of multi-agent systems including swarms have attracted considerable attention
recently, in parallel with the interest in applications of such systems in various areas involving groups of
robots, mobile sensors, manned or unmanned aerial, ground, space, or underwater vehicles, etc. [1–8]. Beside
the usual requirement of decentralized decision making, the swarm coordination and control problems and
approaches are significantly diverse depending on the considered agent dynamics, specific control goals and
strategies, inter-agent information structure, etc. A brief survey on such problems and approaches is given
in [9].

In this paper we consider the aggregation, foraging, and formation control of swarms whose agents are
moving in 2-dimensions with non-holonomic unicycle agent dynamics. We approach these problems using
artificial potentials and sliding mode control.
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Aggregation (or gathering together) is a basic behavior exhibited by many swarms in nature, including
simple bacteria colonies, flocks of birds, schools of fish, and herds of mammals. Such behavior of biological
swarms is observed to be helpful in meeting various tasks such as avoiding predators, increasing the chance
of finding food, etc. [10]. This can be explained by the relative appropriateness of an aggregated swarm
structure to meet these tasks collaboratively as compared to a non-aggregated setting. Because of the same
reason, aggregation is a desired behavior in engineering multi-agent dynamic systems as well. Moreover,
many of the collective behaviors seen in biological swarms and some behaviors to be possibly implemented in
engineering multi-agent dynamic systems emerge in aggregated swarms. Therefore, studying the dynamics
and properties of swarm aggregations is important in developing efficient cooperative multi-agent dynamic
systems.

Aggregation in biological swarms were initially modelled and simulated by biologists [11–14]. Inspired

by these works, a recent series of studies [15–22] has provided rigorous stability and convergence analysis
of swarm aggregations based on artificial potential functions both with continuous-time and discrete-time
formulations. Particularly, in [15,16] a biologically inspired n-dimensional (where n is arbitrary) continuous
time synchronous swarm model based on artificial potentials is considered and some results on cohesive
swarm aggregation have been obtained. Similar results based on artificial potentials and virtual leaders have
been independently obtained by Leonard and coworkers in [23,24] for agents with point mass dynamics. The

papers [19–21] focus on asynchronous swarm models with time delays for swarm aggregation in discrete-time
settings.

In [22], which has more emphasis on design than analysis as opposed to the papers mentioned in
the previous paragraph, a particular control strategy for swarm aggregations has been developed based on
artificial potential functions and sliding mode control, assuming simple integrator agent dynamics with model
uncertainties and disturbances. One particular contribution of this paper is extension of the results in [22] to
a significantly more realistic and more difficult setting with non-holonomic unicycle agent dynamics models,
again using the tools of artificial potential functions and sliding mode control, but in a slightly different way
than [22]. Moreover, we provide similar control schemes for foraging and formation control of swarms, under
the same assumption of non-holonomic unicycle agent dynamics and employing the same artificial potential
and sliding mode control tools.

Foraging can be considered as a constrained form of aggregation, where the environment affects the
motion or behavior of agents. The environment may have favorable regions (representing targets or goals)

to which the agents may want or need to move, and unfavorable regions (representing threads or obstacles)
which the agents may want or need to avoid. Hence, for a foraging task, the swarm coordination and control
scheme to be developed need to guarantee aggregation in the favorable regions while avoiding unfavorable
ones.

In this paper we consider formation control as a special form of swarm aggregation, where the final
aggregated form of the swarm is desired to constitute a particular predefined geometrical configuration that
is defined by a set of desired inter-agent distance values. This is achieved by defining the potential function
to achieve its global minimum at the desired formation. For this case, however, due to the fact that potential
functions may have many local minima, the results obtained are usually local. In other words, unless the
potential function is defined to have a single (unique) minimum at the desired formation, convergence to
that formation is guaranteed only if the agents start from a “sufficiently close” configuration or positions to
the desired formation.

Artificial potential functions have been used extensively for robot navigation and control, see e.g. [25,

26]. There exist a number of more recent studies on applications of artificial potentials to multi-agent
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system coordination and cooperative control [2, 27]. There is also a relevant literature on formation control

of autonomous vehicles [3,28–33] as well as control and analysis of flocking behavior [34–37], where artificial
potential functions are used together with a number of other techniques including some graph theoretical and
Lyapunov analysis based ones. Some of these works are based on point mass agent dynamics [2,27,31,33–36],

while others use non-holonomic agent dynamics [3, 28–30,37].

Sliding mode control [38], which is the main technique we use in our work in addition to artificial
potential functions, is an important technique that has been used extensively in various areas including
navigation of vehicles and mobile robots [39–44]. The wide use of this technique for various tracking control
problems is mainly because it is a robust technique which guarantees that the tracking is achieved in the
existence of uncertainties and disturbances in the system dynamics.

In [39–41], sliding mode control is used for navigation of holonomic robots and obstacle avoidance

in an environment modeled using harmonic potentials. In [42–44] the strategy is extended to navigation of
robots with non-holonomic dynamics as well. The strategy in these works is based on forcing the motion of
the robot along the gradient of the potential field representing the environment. In [22], a similar procedure
is applied for implementation of a class of engineering aggregating swarm models composed of robots with
fully actuated (holonomic) motion dynamics. As mentioned earlier, in this paper, we extend the study in [22]
to swarms consisting of agents with non-holonomic unicycle vehicle dynamics.

The rest of the paper is organized as follows. In Section 2, we present the non-holonomic agent
dynamics model we are assuming in our work and formally define the swarm aggregation problem to be
investigated. In Sections 3 and 4, we present our control design for the aggregation problem defined in 2
based on artificial potential fields and sliding mode control. We give formal definitions of the particular
foraging and formation control tasks we investigate in this paper and present our corresponding control
designs in Sections 5 and 6, respectively. In Section 7, we demonstrate the effectiveness and characteristics
of our designs via simulation examples. The paper is concluded with some final remarks in Section 8.

2. Swarm Aggregation Problem with Non-Holonomic Agents

Consider a system of N hon-holonomic mobile agents, e.g. robots, moving in R
2 that are labelled as

A1, . . . , AN . Assume that each agent Ai (i = 1, . . . , N ) has the configuration depicted in Figure 1 and the
equations of motion given by

ẋi = vi cos(θi),
ẏi = vi sin(θi),
θ̇i = wi,
v̇i = 1

mi
Fi,

ẇi = 1
Ii
τi

(1)

where xi and yi are the Cartesian coordinates, θi is the steering angle, vi is the linear speed, and wi is
the angular speed of Ai . The quantities mi and Ii are positive constants and represent the mass and the
moment of inertia of the agent Ai , respectively. The control inputs for the agent Ai are the force input
Fi and the torque input τi . Note that this model includes both kinematic and dynamic equations for each
agent, i.e., it includes the (linear and angular) velocity dynamics in addition to the agent kinematics. This
is equivalent to adding two integrators to the kinematic model.

In this article we are concerned with the problems of aggregation, foraging, and formation control for
the agents with the dynamics given in (1). In other words, we would like to design the control inputs ui1 = Fi
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Figure 1. The unicycle robot.

and ui2 = τi such that the system of N agents with the non-holonomic dynamics given in (1) and with

(possibly) arbitrary initial positions depending on the objective aggregate (gather together), successfully
forage by collectively moving to favorable regions and avoiding unfavorable regions of the environment, or
achieve a predefined desired geometrical shape (a formation).

First we start with the aggregation problem of the agents and investigate it in the following two
sections (Sections 3 and 4). The foraging and the formation control problems are investigated after that in

Sections 5 and 6, respectively. Denoting the position of each agent Ai (i = 1, . . . , N ) by pi = [xi, yi]� , we
can formulate the aggregation control problem as follows.

Problem 1 (Aggregation) Design the control inputs ui = [ui1, ui2]� for each agent Ai, i = 1, . . .N , such
that for some ε > 0 as t→ ∞ we have

pi → Bε(pc) (2)

where pc = 1
N

∑N
i=1 pi is the centroid of the swarm and Bε(pc) = {p ∈ R

2 : ‖p − pc‖ ≤ ε} is the disk with

radius ε around the centroid pc .

Note that this problem can be formulated also as

lim
t→∞

‖pi − pj‖ ≤ 2ε

for all i and j . Here the size of the swarm (or the gathering area) ε is a design parameter that can be
chosen by the system designer. Note that for the above problem definition it is assumed that the agents have
point dimensions (although moving with non-holonomic constraints). If the agents have certain predefined

occupation areas (size or dimension), then the swarm size ε cannot be chosen arbitrarily small and should
be consistent with the number of agents and the area each agent occupies. For such cases there is a need
to choose the potential function appropriately and it is possible to obtain lower bounds on the size of the
swarm which depends on the occupation areas of the agents [16].
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3. Artificial Potential Functions

In our approach to Problem 1, we use artificial potential functions in order to construct attractive-repulsive
relations among the agents. In other words, our design procedure is based on a potential function which
is selected such that the corresponding potential field is attractive for agent pairs with large inter-agent
distances (in order to result in aggregation) and repulsive for short inter-agent distances (in order to avoid

collisions between the robots). In our work, we use a particular potential function of the form considered

in [15–17].

In [15, 16] it was shown for a certain class of potential functions J(p) that if the agents move in the
space R

n based on

ṗi = −∇piJ(p), (3)

where J : R
nN → R is the potential function, p = [p�1 , . . . , p�N ]� ∈ R

nN is the lumped vector of the

positions pi ∈ R
n of the agents Ai (i = 1, . . . , N ), then aggregation in the form defined in Problem 1 will

be achieved. The potential functions considered in [15, 16] satisfy

∇piJ(p) =
N∑

j=1,j �=i

g(pi − pj), i = 1, . . . , N (4)

where g : R
n → R

n are odd functions (called attraction/repulsion functions) that represent the attraction

and repulsion relationships between the individuals. Moreover, it was assumed that for any p̄ ∈ R
n , g(p̄)

satisfies

g(p̄) = −p̄[ga(‖p̄‖)− gr(‖p̄‖)],

where ga(‖p̄‖) represents the attractive part which dominates on large distances and gr(‖p̄‖) represents the
repulsive part which dominates on short distances. One potential function which satisfies these assumptions
and was used in [15, 17] is

J(p) =
N−1∑
i=1

N∑
j=i+1

[
a

2
‖pi − pj‖2 +

bc

2
exp

(
−‖pi − pj‖2

c

)]
, (5)

for which (4) is satisfied with

g(pi − pj) = (pi − pj)
[
a− b exp(−‖pi − pj‖2

c
)
]

(6)

where a , b and c are positive scalars that need to be chosen appropriately. In particular, we need b > a in
order to achieve short range repulsion. Note that for the potential function in (5) the size of the gathering
region in Problem 1 is given by

ε =
b

a

√
c

2
exp

(
−1
2

)
.

Note also that the above value of ε is a very conservative bound obtained as a result of a Lyapunov analysis
and in reality the actual swarm size is much smaller than it. Therefore, beside the value of ε another
parameter that may give information about the size of the swarm could be the distances at which the
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attraction and repulsion between two individuals balance. For the potential function in (5) this happens at
the distance

δ =

√
c ln

(
b

a

)
,

which is obtained by equating (6) to zero.

In this article, we also utilize the potential function in (5). However, we would like to emphasize that
the procedure is not limited to that potential function only and can be used with other potential functions

as well. Note also that in our case p = [p�1 , . . . , p�N ]� ∈ R
2N and pi = [xi, yi]� ∈ R

2 for i = 1, . . . , N ).

4. Sliding Mode Control for Swarm Aggregation

As mentioned in Section 1, sliding mode control is a widely used technique in various application areas,
mainly because of its suppressive and robust characteristics against the uncertainties and the disturbances
in the system dynamics. The shortcomings (of the raw form of the sliding mode control scheme) on the other
hand are the so-called chattering effect and possible generation of high-magnitude control signals. Note that
these shortcomings may possibly be avoided or relaxed via integration and some filtering techniques.

In sliding mode control, a switching controller with high enough gain is applied to suppress the effects
of modelling uncertainties and disturbances, and the agent dynamics are forced to move along a stabilizing
manifold, which is also called a sliding manifold. The value of the gain is computed using the known bounds
on the uncertainties and disturbances.

In this section, we design a sliding mode control scheme to solve Problem 1 via forcing the motion
of each individual agent along the negative gradient of the potential J(p) in (5), i.e. forcing each agent to

obey equation (3) where J is as defined in (5). This will lead to recovering the aggregation behavior (of the

single-integrator dynamics) obtained in [15] for swarms consisting of agents with the non-holonomic agent

dynamics in (1).

Let

−∇piJ(p) =
[ −Jxi(p)

−Jyi(p)

]

denote the gradient of the potential at pi . In order to achieve satisfaction of (3) we need

−∇piJ(p) =
[ −Jxi(p)

−Jyi(p)

]
=

[
vi cos θi
vi sin θi

]
. (7)

In other words, we need

vi = ‖∇piJ(p)‖, θi = arctan
(
Jyi(p)
Jxi(p)

)
(mod360◦). (8)

Note that since the inputs in the agent model (1) are ui1 = Fi and ui2 = τi , i.e. vi and θi cannot
be applied directly, the terms

vid � ‖∇piJ(p)‖, θid � arctan
(
Jyi(p)
Jxi(p)

)
(mod360◦) (9)

need to be considered as desired set-point values for vi and θi , respectively.
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Our objective is to force the motion of the agents such that the differences (vi − vid) and (θi − θid)
converge to zero. With this objective in mind, similar to [42–44], let us define two sliding surfaces [38], one
for the translational speed vi and one for the orientation θi , respectively, as

svi = vi − vid (10)

sθi = c(θ̇i − θ̇id) + (θi − θid), (11)

where c > 0 is a positive constant. With these definitions, our objective becomes to design the control
inputs ui1 and ui2 so that svi → 0 and sθi → 0 asymptotically, since if they are achieved we will have

vi → vid and θi → θid . Note here that the existence of the additional term c(θ̇i − θ̇id) in (11) is because
of the double integrator relationship between θi and the applicable input ui2 = τi as opposed to the single
integrator relationship between vi and ui1 = Fi .

It is well known from the sliding mode control theory that if we have the reaching conditions

svi ṡvi ≤ −ε1|svi | (12)

sθi ṡθi ≤ −ε2|sθi | (13)

satisfied for some constants ε1, ε2 > 0, then svi = 0 and sθi = 0 will be achieved in finite time.

Now let us assume that |v̇id| ≤ α(p) for some known α(p) > 0. The properties of such α(p) depend
on the properties of the potential function, which is chosen by the designer. In other words, one can choose
the potential function such that such α(p) exists. For example, for the potential function in (5) one can

calculate (see the Appendix) α(p) as

α(p) = 2ᾱ(p) max
i∈{1,... ,N}


 N∑

j=1,j �=i

‖G(pi − pj)‖

 ,

where

ᾱ(p) = max
k∈{1,... ,N}

(‖∇pkJ(p)‖+ svk(0)) .

and

G(pi − pj) =

aI + b exp
(
−‖pi − pj‖2

c

)(
2
c
(pi − pj)(pi − pj)� − I

)
.

In order to achieve the satisfaction of (12) we choose the first control input ui1 = Fi as

ui1 = −Ki1sgn(svi ) (14)

using which the time derivative of svi becomes

ṡvi = −Ki1

mi
sgn(svi) − v̇id
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and we have

svi ṡvi = svi

(
−Ki1

mi
sgn(svi) − v̇id

)
= −Ki1

mi
|svi | − svi v̇id ≤ −

(
Ki1

mi
− α(p)

)
|svi | (15)

Then by choosing Ki1 according to

Ki1 ≥mi(α(p) + ε1) (16)

one guarantees that (12) is satisfied and sliding mode occurs (i.e., svi = 0 is satisfied) in finite time.

Similarly, for the second sliding surface choosing the control input as

ui2 = −Ki2sgn(sθi) (17)

the time derivative of sθi becomes

ṡθi = −cKi2

Ii
sgn(sθi )− cθ̈id + ωi − θ̇id (18)

and we have

sθi ṡθi = sθi

(
−cKi2

Ii
sgn(sθi )− cθ̈id + ωi − θ̇id

)
≤ −

(
cKi2

Ii
− c|θ̈id| − |θ̇id| − |ωi|

)
|sθi | (19)

By choosing Ki2 as

Ki2 ≥ Ii
c

(
c|θ̈id|+ |θ̇id|+ |ωi|+ ε2

)
(20)

one can guarantee that (13) is satisfied and the second sliding surface sθi = 0 in (11) will as well be reached
in finite time.

In order to be able to compute the value of sθi one needs the time derivative of θid . Taking its
derivative with respect to time we obtain

θ̇id =
d
dt

(
Jyi

Jxi

)
1 +

(
Jyi

Jxi

)2 =
d
dt (Jyi) · Jxi − d

dt (Jxi) · Jyi

(Jxi)
2

(
1 +

(
Jyi

Jxi

)2
) =

d
dt (Jyi) · Jxi − d

dt (Jxi) · Jyi

(Jxi)
2 + (Jyi)

2 (21)

For the potential function in (5) we have

d
dt (Jxi) =

∑N
j=1,j �=i

[
−

[
a− b

(
1− 2(xi−xj)2

c

)
exp

(
−‖pi−pj‖2

c

) ]
(ẋi − ẋj)

+
[
b

2(xi−xj)(yi−yj)
c exp

(
−‖pi−pj‖2

c

) ]
(ẏi − ẏj)

]

and

d
dt (Jyi) =

∑N
j=1,j �=i

[
−

[
a− b

(
1− 2(yi−yj)

2

c

)
exp

(
−‖pi−pj‖2

c

) ]
(ẏi − ẏj)

+
[
b

2(xi−xj)(yi−yj)
c exp

(
−‖pi−pj‖2

c

)]
(ẋi − ẋj)

]

which follow from (27) in the Appendix and are used in (21) to compute θ̇id . Note also that |θ̇id| and |θ̈id|
(which is also a computable value) are needed in order to determine the controller gain Ki2 .
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One drawback here is that to implement the control algorithm for agent Ai one needs not only the
position but also the velocity of its neighbors (which are all the other agents in the particular setting here -

but this is not necessarily required to be the case in general).

We would like to also emphasize that although not explicitly considered here the procedure based on
the sliding mode control technique discussed above will guarantee proper behavior even in the presence of
uncertainties in the mass mi and the inertia Ii of the robots and additive disturbances/uncertainties to the
linear and angular speed dynamics which constitute very realistic assumptions.

Once the sliding mode occurs on all the surfaces (which happens in finite time) and the equation

in (3) is also satisfied, based on the results in [15] we know that Problem 1 will be solved. One issue to note,
however, is that after occurrence of sliding mode we reach vi = vid but not necessarily θi = θid . In fact,
after occurrence of sliding mode we have θi → θid exponentially fast and the speed of convergence depends

on the slope of the sliding surface −1
c
. Therefore, one needs to choose c as small as possible in order to

achieve faster convergence and avoid any instabilities. Note also that decreasing the parameter c will require
increasing the controller gain Ki2 .

5. Social Foraging

Aggregation in natural swarms usually occurs during social foraging. Social foraging has some inherent
evolutionary advantages and even simple bacteria are able to exhibit such behavior [45]. In [17] a simple
model of a foraging swarm consisting of agents with simple single-integrator dynamics was considered in
different environments modeled with potential functions (which we refer here as the resource profile). The

results in [17] were later extended in [18] to agents with point mass dynamics and sensing errors/uncertainties.
In this section we show that using the sliding mode control techniques discussed in the preceding sections
the social foraging model in [17] can be implemented on swarms consisting of non-holonomic agents with

vehicle dynamics in (1). We define the social foraging problem as follows.

Problem 2 (Social Foraging) Consider a swarm with N agents A1, ..., AN moving in environment E ⊂ R
2

whose resource profile is represented by a continuously differentiable function σ : R
2 → R . Assume that areas

where σ(p̄) < 0 represent favorable regions (representing nutrients in biological systems and targets or goals

in engineering applications) whereas areas with σ(p̄) > 0 represent unfavorable regions (representing toxic

substances in biological systems and threads or obstacles in engineering applications). Design the control

inputs ui = [ui1, ui2]� for each agent Ai, i = 1, . . .N , such that for all t the swarm does not disperse (or

stays cohesive), i.e., there exists R <∞ such that

‖pi − pj‖ ≤ R,

for all t and for all pairs (i, j) and move toward favorable regions and avoid unfavorable regions.

Depending on the environment or the considered application the resource profile σ(·) may have

different shapes or properties. In this article we consider one of the profiles considered in [17]. In particular,
we consider a multi-modal Gaussian type of profile of the form

σ(p̄) =
N∑

i=1

Bσi exp
(
−‖p̄− xσi‖2

ci

)
(22)
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where Bσi ∈ R represents the strength, xσi ∈ R
2 represents the center, and ci ∈ R

+ represents the spread

of the ith Gaussian. Note that at the point pi = xσi the potential function σ(p̄) has an extremum (i.e.

either a maximum or a minimum which depends on the sign of Bσi ). Here each Gaussian with Bσi < 0
may represent a target and that with Bσi > 0 may represent an obstacle and the magnitude of Bσi may
represent the priority or strength of that target or obstacle, whereas xσi may be the position and ci the size
of that object. One particular profile of this shape is shown in Figure 2.

Figure 2. A Multi-Modal Gaussian environment potential (a resource profile).

In order to solve Problem 2 the total potential function is defined such that it includes the environment
potential at the positions of the agents together with the inter-individual interactions potential in (5). In

other words, the new potential function J(p) becomes

J(p) =
N∑

i=1

σ(pi) +
N−1∑
i=1

N∑
j=i+1

[
a

2
‖pi − pj‖2 +

bc

2
exp

(
−‖pi − pj‖2

c

)]
(23)

Taking the gradient of the environment potential σ(·) in (22) at position pi we obtain

∇piσ(pi) = −
N∑

i=1

2Bσi

ci
(pi − xσi) exp

(
−‖pi − xσi‖2

ci

)
, (24)

which will appear in (3) together with (4) and (6). The time derivative of ∇piσ(pi), which is needed in

order to calculate θ̇id in (21), can be obtained as

d

dt

(
∇piσ(pi)

)
= −

N∑
j=1

2Bσi

ci
exp

(
−‖pi − xσi‖2

ci

) [
I − 2

ci
(pi − xσi)(pi − xσi)

�
]
ṗi. (25)

Then the same procedure based on the sliding mode control technique presented in the preceding sections is
applied without any modification and results similar to those in [17] are obtained for the swarm consisting

of agents with non-holonomic dynamics in (1). This solves Problem 2, provided that the system parameters

are chosen appropriately (as noted in [17]).
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6. Formation Control

In this section we show that the procedure discussed in the previous sections can be extended to the formation
control problem as well by defining pair-dependent inter-agent interactions. Formation control (i.e., achieving

a predefined shape or formation and maintaining it during motion) is a relevant problem that has been

considered extensively in the multi-agent coordination literature [3, 28–31, 33] and can be defined in our
setting as follows.

Problem 3 (Formation Control) Design the control inputs ui = [ui1, ui2]� for each agent Ai, i = 1, . . .N ,
such that given a predefined geometrical formation with a set of desired inter-agent distances dij , as t→ ∞
we have

lim
t→∞

‖pi − pj‖ = dij,

for all pairs (i, j) .

One method for achieving formations is using potential functions [16,22,30–32] and that is the approach
we use. The usual approach is to define a potential function which has its global minimum at the desired
formation and then design the control strategy so that the agents move along the negative gradient of the
potential. However, one shortcoming of this approach is that, unless the potential function is defined such
that it has a unique minimum at the desired formation, it may have several local minima and therefore it is
not possible to globally guarantee acquisition of the formation and the results obtained are usually local. In
this article we use the potential function (5) with pair dependent parameters aij , bij , and cij (which suffers

from the above mentioned local minima problem). In other words, we have

J(p) =
N−1X
i=1

NX
j=i+1

�
aij

2
‖pi − pj‖2 +

bijcij

2
exp

�
−‖pi − pj‖2

cij

��
. (26)

Here the attraction and repulsion forces between agents Ai and Aj balance at

δij =

√
cij ln

(
bij
aij

)
.

By choosing the parameters aij , bij , and cij such that δij = dij , where dij is the desired inter-agent

distance between agents Ai and Aj at the desired formation one can guarantee that J(p) has its (not

necessarily unique) global minimum at the desired formation. Then, by using the procedure discussed in the
preceding sections one can guarantee that the desired formation is achieved provided that at the time when
sliding mode occurs on all the sliding surfaces the positions of the agents are “close enough” to the desired
formation. Note, however, that the procedure is not limited to the particular potential functions considered
here and can be used with other potential functions as well. In particular, by defining the potential function
as in [30] such that it has a unique minimum at the desired formation and using the sliding mode control
procedure discussed here one can globally guarantee achieving the desired formation.

7. Simulation Results

In this section we present simulation results to test the effectiveness of the method discussed. The potential
function that we used in the simulations is the function with linear attraction and exponential repulsion
given in (5).
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The sliding mode control method uses the sgn function to calculate the control inputs ui1 and ui2 .
Although this works very well in theory, in practice it may result in high frequency chattering (and numerical

problems during simulation). There are various methods for smoothing the sliding mode control input to
reduce the chattering. The analysis of such techniques is out of the scope of this article. Still however,
we used the tanh(γy) function instead of the the sgn(y) function in the simulations, where γ > 0 is a
smoothness parameter.

The values of the control gains Ki1 and Ki2 are also very important and they need to be chosen “high
enough” in order for the procedure to work properly. They also affect the reaching time to the respective
sliding surfaces. The constant parameter c > 0 used in the definition of the sliding surface (11) which is

used for orientation control determines the slope of the sliding line (−1
c is the slope) that controls the speed

of the exponential decay of (θi − θid) to zero after the sliding surface is reached. It provides also a smoother
rotation for the agent.

We performed several simulations with different number of agents. However, since the simulations
obtained for different parameters and agent numbers are in principle the same (do not differ qualitatively)
here we show only the ones for N = 10 and potential function parameters a = 0.01, b = 20, and c = 1.
For the aggregating swarm simulations the control input gains are chosen as Ki1 = Ki2 = 10 and the slope
parameter of the orientation sliding line/surface is chosen as c = 0.5. The smoothness/sharpness parameter
for the tanh function for both of the control inputs are chosen as γi1 = γi2 = 10. Without loss of generality
the mass and the inertia of all the agents are chosen equal and in particular mi = 1 and Ii = 1 for all
i = 1, . . . , N . The simulation results show that the agents aggregate as predicted by theory.
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Figure 3. Trajectories of the agents of a 10-agent swarm during the aggregation process.

Figure 3 shows the motion (the trajectories) for random initial positions and orientations. The agents
are plotted as polygons so that their orientations are explicitly shown. It is observed that the agents aggregate
quickly and after aggregation they start to reorient themselves since there the variation of the time-varying
potential function (which is due to the motion of the other agents in the group) is higher.

In Figure 4 we see the inter-member distances between robots. The curves specify the maximum,
minimum and average distances between the members of the swarm. The distance decreases exponentially
as expected and they converge to constant values similar to the results obtained before in [15]. For the
above values of the parameters a , b and c the distance at which the attraction and repulsion between two
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Figure 4. Inter-agent distances during the aggregation process.

individuals balance is δ = 2.7570.
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Figure 5. The x and y coordinates of the swarm center during the aggregation process.

In [15] it was shown that the centroid of the swarm will be stationary for all time. Here this is
guaranteed to be the case once sliding mode occurs on all surfaces and the orientations and the speeds of
all the agents converge to the desired values. Therefore, although initially the center may not be stationary,
after a while it must become stationary. Figure 5 shows the plot of the center movement. Keeping in mind
that we are working in 2-dimensional space, this plot shows the center movement in x -axis and y -axis. As
expected after a while the location of the center converges to a constant position and stays there during the
rest of the simulation.

Figure 6 is the plot of the average distance between the swarm members and the center of the swarm.
The value decreases exponentially during the simulation. It is stable and smooth.

Figure 7 shows the final positions of the swarm members (shown as circles) and the center location

movement (shown as stars). An interesting observation here is that at their final positions the swarm
members are distributed in almost a grid-like arrangement. Also one should note that the distances between
final positions of swarm members change for different values of attraction and repulsion parameters. For
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Figure 6. Average agent distance to the swarm center during the aggregation process.
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Figure 7. Final positions of the agents whose trajectories are given in Figure 3.

example, increasing the attraction parameter a or decreasing the repulsion parameter b results in decrease
in the inter-agent distances at the final positions.

Figure 8 illustrates the result of the application of the method to the formation control problem. For
this (formation control) simulation the control input gains are chosen as Ki1 = 50 and Ki2 = 100 and the

slope parameter of the orientation sliding line/surface is chosen as c = 0.05. In this simulation a group of
six agents are required to form an equilateral triangle formation. For this formation the desired inter-agent

distances dij are 1, 2, or
√
3 depending on the relative positions of the agents in the triangle. The final

positions of these agents are depicted in detail in Figure 9, where the stars show the center movement.
Figure 10 shows the paths of the agents for the foraging problem. For this (foraging) simulation the control
input gains are chosen as Ki1 = 20 and Ki2 = 40 and the slope parameter of the orientation sliding
line/surface is chosen as c = 0.05. In this simulation we used the environmental potential (resource profile)
in Figure 2. The contour curves in Figure 10 show the equipotential contours of the environmental potential.
As can be seen from the figure the agents tend to move towards the minima of the profile while staying
cohesive with close neighbors and avoiding maxima. Black circles indicate the initial positions of the agents
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Figure 8. Paths of the agents forming a triangle formation.
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Figure 9. Final positions of the agents forming a triangle formation.

while red circles denote the final positions.

8. Concluding Remarks

In this article we have developed a strategy for aggregation of a swarm of non-holonomic agents based
on artificial potential functions and the sliding mode control technique. The method is based on forcing
the motion of the agents along the gradient field of the potential function generated based on the inter-
individual distance requirements in the swarm aggregate. Later, using the same techniques, similar strategies
have been developed for foraging and formation control of swarms in the same setting. Corresponding
convergence results have been analytically established and demonstrated via simulations. The authors are
currently working on application of the same approach for tracking desired trajectories or moving targets,
and elaboration of the formation control results for different arbitrary desired formation geometries. A
particular focus of this ongoing study is maintenance of certain geometrical formations while the centroid
pc is required to track a certain trajectory. Possible future research directions include investigation of the
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Figure 10. Path of the agents moving in the profile.

problems in this paper when the sensing radius of the agents is limited, i.e. for the case where each agent
can sense the positions of the agents that are closer to it than a certain threshold. Another potential future
work is experimenting the developed control schemes in real-time laboratory settings.

Appendix

Derivation of α(p)

From (6) we have

ġ(pi − pj) = (ṗi − ṗj)
[
a− b exp

(
−‖pi − pj‖2

c

)]

+(pi − pj)
[
b
2
c
(pi − pj)�(ṗi − ṗj) exp

(
−‖pi − pj‖2

c

)]

= (ṗi − ṗj)
[
a− b exp

(
−‖pi − pj‖2

c

)]

+b
2
c
exp

(
−‖pi − pj‖2

c

)
(pi − pj)(pi − pj)�(ṗi − ṗj)

= G(pi − pj)(ṗi − ṗj)

where the 2× 2 matrix G(pi − pj) is defined as

G(pi − pj) = aI + b exp
(
−‖pi − pj‖2

c

) (
2
c
(pi − pj)(pi − pj)� − I

)

Then, from (4) and (6) and the expression above we have From (4),(6) and above, we have

d

dt
(∇piJ(p)) =

[
d
dt
(Jxi )

d
dt(Jyi )

]
=

N∑
j=1,j �=i

ġ(pi − pj) =
N∑

j=1,j �=i

G(pi − pj)(ṗi − ṗj) (27)
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for i = 1, . . . , N .

Next, we derive an expression for α(p) for which |v̇id| ≤ α(p): Using (9), assuming that the entries

of ∇piJ(p) are non-zero, and implying the fact that ‖∇piJ(p)‖ = ((∇piJ(p))T∇piJ(p))1/2 we have

|v̇id| =
∣∣∣∣‖∇piJ(p)‖−1(∇piJ(p))

T d

dt
(∇piJ(p))

∣∣∣∣
≤ ‖∇piJ(p)‖−1‖∇piJ(p))‖

∥∥∥∥ ddt (∇piJ(p))
∥∥∥∥ =

∥∥∥∥ ddt (∇piJ(p))
∥∥∥∥

Hence, using (27), we have

|v̇id| ≤
N∑

j=1,j �=i

‖G(pi − pj)‖‖ṗi − ṗj‖ ≤
N∑

j=1,j �=i

‖G(pi − pj)‖ (‖ṗi‖+ ‖ṗj‖)

≤ 2
N∑

j=1,j �=i

‖G(pi − pj)‖ max
k∈{1,... ,N}

‖ṗk‖ (28)

where ‖G‖ denotes the induced 2-norm of the matrix G .

Using (1), (9), (10) we have

‖ṗk‖ = vk = vkd + svk = ‖∇pkJ(p)‖ + svk

Assuming that the control law is chosen such that (12) is satisfied, we have svk (t) < svk (0) for any t ≥ 0.
Therefore, we have

‖ṗk‖ ≤ ‖∇pkJ(p)‖+ svk(0)

Substituting in (28), we obtain

|v̇id| ≤ α(p)

where

α(p) = 2ᾱ(p) max
i∈{1,... ,N}


 N∑

j=1,j �=i

‖G(pi − pj)‖

 ,

ᾱ(p) = max
k∈{1,... ,N}

(‖∇pkJ(p)‖+ svk(0))
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[45] D. Grünbaum, “Schooling as a strategy for taxis in a noisy environment,” Evolutionary Ecology, vol. 12, pp.

503–522, 1998.

168


