Classes | |
| struct | mimas::lmdif_t |
| Function-object for lmdif. More... | |
| struct | mimas::lmdif1_t |
| Function-object for lmdif1. More... | |
Functions | |
| lmdif_t::Vector | mimas::lmdif (const lmdif_t::Vector &A, void(*fnc)(int *m, int *n, double *x, double *fvec, int *iflag), int nb, int maxfev, double tolerance=1e-7, int mode=1, int factor=1, double epsfcn=0) |
| Levenberg-Marquardt algorithm. | |
| lmdif1_t::Vector | mimas::lmdif1 (const lmdif1_t::Vector &A, void(*fnc)(int *m, int *n, double *x, double *fvec, int *iflag), int nb, double tolerance=1e-7) |
| Levenberg-Marquardt algorithm. | |
The vector-classes of boost are used as datatypes.
Read on how to install MINPACK, if it is not included in your distribution.
| lmdif_t::Vector mimas::lmdif | ( | const lmdif_t::Vector & | A, | |
| void(*)(int *m, int *n, double *x, double *fvec, int *iflag) | fnc, | |||
| int | nb, | |||
| int | maxfev, | |||
| double | tolerance = 1e-7, |
|||
| int | mode = 1, |
|||
| int | factor = 1, |
|||
| double | epsfcn = 0 | |||
| ) | [inline] |
Levenberg-Marquardt algorithm.
(Full version)
| A | a vector containing a first approximation | |
| fnc | is the user-supplied subroutine which calculates the values of the functions in a special point | |
| nb | the number of functions | |
| maxfev | the number of iterations to do | |
| tolerance | termination occurs when both the actual and predicted relative reductions in the sum of squares are at most tol. | |
| mode | is an integer input variable. If mode = 1, the variables will be scaled internally. If mode = 2, the scaling is specified by the input diag. | |
| factor | is a positive input variable used in determining the initial step bound. | |
| epsfcn | is an input variable used in determining a suitable step length for the forward-difference approximation. |
| lmdif1_t::Vector mimas::lmdif1 | ( | const lmdif1_t::Vector & | A, | |
| void(*)(int *m, int *n, double *x, double *fvec, int *iflag) | fnc, | |||
| int | nb, | |||
| double | tolerance = 1e-7 | |||
| ) | [inline] |
Levenberg-Marquardt algorithm.
(Simplified version)
| A | a vector containing a first approximation | |
| fnc | is the user-supplied subroutine which calculates the values of the functions in a special point | |
| nb | the number of functions | |
| tolerance | termination occurs when both the actual and predicted relative reductions in the sum of squares are at most tol. |