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In this paper, we present a stable and decentralized control strat-
egy for multiagent systems (swarms) to capture a moving target in
a specific formation. The coordination framework uses artificial
potentials to take care of both tracking and formation tasks. First,
a basic controller is designed based on a kinematic model. After
that, sliding mode control technique is used to force the agents
with general vehicle dynamics to obey the required motion. Fi-
nally, specific potential functions are discussed and corresponding
simulation results are given. [DOL: 10.1115/1.2764511]

1 Introduction

In recent years, it has become popular to study the biological
world and apply the derived principles to the design of engineer-
ing systems. The topic of distributed coordination and control of
multiple autonomous agents has gained lots of attention [1-3].
Cooperative agents can often be used to perform tasks that are too
difficult for a single one to perform. Instead of the traditional
trajectory tracking problem, people began to study coordinated
tracking [4,5]. Tasks can be performed more efficiently by con-
trolling the group to move in formation. Possible applications
could range from autonomous robot assembly to unmanned aerial
vehicles (UAV) scout and counterwork.

The coordinated tracking problem is to find a coordinated con-
trol scheme for a group of agents to make them achieve and main-
tain some given geometrical formation; at the same time, the
agents viewed as a group have to track a target or a trajectory
(e.g., which may be required in order to execute a given task).
Thus, there is a trade-off between maintaining formation and ar-
riving at the final goal. Possible approaches for formation control
include leader-following and the virtual structure approaches
[6,7]. In both approaches, one agent, which could be real or vir-
tual, is designated as leader to perform the tracking task without
considering the followers, and the remaining agents only have to
stay from the leader within a desired offset, without considering
the target. However, these approaches are centralized and there-
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fore not robust; if the leader fails, the task would also fail. In that
case, decentralized formation control is preferred as discussed in
Ref. [8], where feedback control laws are used to keep the forma-
tion during tracking process.

In this paper, we consider a control strategy based on artificial
potential functions and sliding mode control. Artificial potential
functions have been widely used for robot navigation and control
including multiagent coordination [6,9,10]. The potential function
is created to encode the interaction rule for the group. In order to
perform the task in a decentralized way, in this paper, we consider
a potential function composed of two parts. The interconnection
part makes the agent constrained by its neighbor to maintain a
group structure, while pursuer-target potential function is intro-
duced to direct the group behavior, which is to catch up with the
target. The specific form of potential function is defined according
to the desired geometric formation.

We show that by appropriate choice of the potential function,
one can always guarantee that eventually the target will be sur-
rounded or “enclosed” by the tracking agents. One advantage pro-
vided by being able to surround and track a target with an arbi-
trary formation is that, in both military and civilian applications,
vehicles typically have sensors that can only work—or work
best—when pointed at the target from a certain angle.

The sliding mode control technique has the important properties
of suppressing disturbances and model uncertainties. It becomes
attractive for two main advantages: (i) the dynamic behavior of
the system may be tailored by the particular choice of switching
function, and (ii) the closed-loop response becomes totally insen-
sitive to a particular class of uncertainties. This idea has already
been successfully used to implement engineering aggregating
swarm [11] and tracking moving targets [12]. In this paper we
extend the work to the case of multiple agents tracking or
capturing/enclosing a moving target (possibly) in a formation. Ini-
tial version of this paper can be found in Ref. [13].

The paper is organized as follows: In Sec. 2, we define a gen-
eral potential function and develop the control algorithm for the
“kinematic” model. In Sec. 3, we consider a general fully actuated
dynamic model of the agents and derive a new controller based on
the sliding mode control method. In Sec. 4, specific potential
functions are applied to the problem and results are presented and
discussed. Finally, conclusions are made in Sec. 5.

2 Basic “Kinematic Model”’

Consider a multiagent system (i.e., a swarm) consisting of N
individuals in an n-dimensional Euclidean space. To begin with,
we model the individuals as points and ignore their dimensions.
Moreover, we assume synchronous motion and no time delays.
Let x;,x, € R" denote the position vector of individual i and the
target, respectively. Also, temporarily assume that the motion dy-
namics for the agents are given by

X =u; (1)
which we call the kinematic model. Later, we will show how the
derivations in this section can be extended to the case in which the
agents have fully actuated dynamics. Our objective is to make the
entire group aggregate around the target and move together with it
possibly in a specific formation regardless of the target’s move-
ment. This is a simple case of the coordinated tracking problem.

We can design a controller in a simpler form if %, is available
[12]. However, assuming that X, is known is a strong assumption
since the current velocity of the target is unknown in most circum-
stances. It is more realistic to assume that [[%/|<+y, for some
known 7,>0 since any realistic agent has a bounded velocity. It is
assumed that the agents are able to move faster than the target and
there is no explicit upper bound on the velocity of the agents. We
also assume that the relative position of the target x, is known and
each agent knows the exact relative positions of all the other
individuals.
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With the assumptions above, we choose the control laws such
that each agent is moving based on the equation

X=u;=— aniJ(x,x,) -B sgn[Vx,J(x,x,)] (2)

for all i=1,...,N where >0 and 8= 1, are positive constants,
sgn(-) is the signum function operated elementwise for a vector
yeR" and J: R"™Nx R"—R is a potential function (to be defined
below). It is specified by the multiagent system designer based on
the desired structure and/or behavior of the swarm. Such potential
functions are being used for swarm aggregations, formation con-
trol, and multiagent coordination and so on [11,14]. Note also that
in the above equation, we implicitly defined x"=[x],.. x5
e R™N.

In order to satisfy both the tracking and formation control
specifications, we consider potential functions J(x,x,), which are
composed of two parts: the interagent interactions (or formation
control) part and the agent-target interaction (or tracking) part. In
particular, we consider potential functions of the form

N-1 N

KTEth("X x)+Ke 2 2 Jyli-x - ©)

i=l j=i+l

where J;(|x;-x,]) is the potential between agent and target, while

Jij(lxi-x}]) is the potential between agents in the group. With
such a form, each agent takes care of the tracking task by itself
and keeps certain distances between itself and its neighbors. For
the tracking part, it is required that J(|x;—x,]) has a unique mini-
mum at a particular distance from the target so that the individuals
catch up with the target and encircle/enclose it. As for the forma-
tion part, J;(||x;-x/|}) is required also to have a unique minimum
at the desired distance between the agent based on the formation
expected to be achieved. Note that J;(|x;~x,{) can be different for
different pairs. (The same could be the case for J;,(|[x;~x/) as well
although we used the same J;,(||x;—x,|)) for all i in this paper.) The
coefficients K7 and K weigh the relative importance of tracking
versus formation keeping.

When the task is achieved, which means each agent reaches the
desired distances from both target and other agents, J equals to a
desired minimum. The potential function defined in Eq. (3) is
based on relative positions instead of absolute positions. Hence, in
terms of the states, J has a family of minima for the same forma-
tion, for example, due to rotations and translations.

Assume J;(|lx;—x,) satisfies the following.

(a) There exists corresponding function A:R*—R such that
VyJidllvlD = yh" (vl &

(b) There exist unique distances 6; at which we have
h(lylh=0

Assume Jij(|[x;—x;]) satisfies the following.

(a) The potentials J;;(|}x;—x) are symmetric and satisfy

Vx,-'lij("xi -xf)=- ijjij("xi -x) (5)
(b) There exists corresponding function g/:R*—R such that
VyJilvlD = e (lyl) (6)
(c) There exist unique distances & j at which we have
g¥(lylh=o0.
Then,
N ,
inJ(x,x,) = Kr(x; - x)h"(x; - x/) + Kp E (x;— Xj)gij(“xi - Xj”)
jel i

(7)
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.l =N
v Jxx) ==K (k- xh(x-xl)  (8)
i=1
By observing the equalities in Egs. (7) and (8), the equality in
Eq. (8) can be rewritten as

Ev J(x.x,) +KF2 E

i~ xj)gij(”Xi - xj“)

=1 j=l,j#i
)
Moreover, since we have
N N
E 2 (x;— Xj)g‘j(\lxi - xj”) =0 (10)
i=l j=1,j#i
which follows from Eq. (5), we obtain
v, J(x.x,)= EV J(x,x,) (11)
The time derivative of function J is given by
J= 2 xJ(X, x) )%+ [Vy Jxx, 7%, (12)

Substituting the agent dynamics in Eq: (2) and the condition in
Eq. (11) in the J equation, one obtains
N

- 2 [inj(x,x,)]T{an,J(x,x,)

i=1

N
+ Bsgn[Vy Jxx)] - 2 [VyJ(xx)],

i=]

012 IV, J(x, x| - BE IV, (x. )+ %E V5 J(x.x,)

i=1
(13)

Since we have 8= ¥, the time derivative of J is bounded by

N
J<-aX |V, Jxx)| (14)

i=1

This equation implies that as time tends to infinity, we have J
—0, which indicates J converges to a constant value implying
that the system converges to a configuration corresponding to a
minimum of J.

This is because from LaSalle Yoshizawa theorem, Eq. (14) im-
plies that lim,_,wE,'-iIHinJ(x,x,)||2=0, implying ||V, J(x,x)[ —0
for all i. Also, from Eq. (11), we see that we also have
[V J(x,%)[|=0. In other words, as t—, we have (x.x,)

—0C{(x,x,)|J=0}, where
Q={(x,x)|V, J(x,x) =0,V, J(x.x) = 0,i=1, ... N}

If the potential function we choose has one unique minimum,
we will achieve our goals. Unfortunately, most potential functions
may have multiminima. If the distance between any pair of ob-
jects including agents and target ([x;—x, and |[x;—x ) is the de-
sired one (&, and &), the potential function J reaches its global
minimum, which corresponds to our tracking and formation ob-
jectives. However, there are other feasible configurations different
from the desired one, at which the potential function J achieves a
local minimum. Therefore, in general, unless the initial configu-
ration of the agents is “close enough” to the global minimum, it
might be the case that J converges to such a local minimum re-
sulting in a different configuration.
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Then, from Eq. (8), we have (x,x,) in () satisfying

N .
- KTE (x;- xr)hit("xi - Xt") =0
i=1

Rearranging this equation, we obtain

N

N
2 xh(x - %) =x,. 2 h(x; - x,) (15)
i=1

i=]

which is guaranteed to be achieved as t— . This is an important
observation because it provides a relation of the position of the
target to the position of the agents at equilibrium and allows the
designer to appropriately choose the h¥(||x;~x,|) (the tracking part
of the potential function).

First of all, note that at the desired formation, since ||x;—x|
=6, for all i, we have h'(|x;=x/|)=0 for all i and Eq. (15) is
satisfied. In this case, agents catch up with the target and compose
the expected formation with it.

Second issue to note is that if 2”(|x;—x,]) are chosen such that
SN B(Ix;~x])=0 is feasible (excluding the case at the desired
formation), then the position of the target X, cannot be specified
(meaning that it could be anywhere in the state space). To avoid
this situation, one can choose h*(|ly|)>0 for all y except |ly|
= §,,. Then, assuming that S k*(|x;-x/) # 0, we obtain

N
> xh (- x/))
i=1
XI ; N—
2 hit(nxi - xl")
i=]
Defining
hil .
= ("Xz Xr”) i=1,....N
> k(% - x)
i=1
we obtain

N
X = E YRS
i=1

With the choice of h”(|ly||) =0 for all y, we see that 0< 7, <1 for
all i and Efi,n,-:l implying that as t—o, we will have x,
—conv{x;,X,, ...,Xy}, Where conv{x,,x,,...,Xy} is the convex
hull of the positions of the agents. In other words, by choosing
H(ly|) as above, one can guarantee that as t— o, the agents will
“surround” or enclose the target, which is an important result.

Although we have not explicitly addressed environmental ef-
fects and collision avoidance with obstacles in the environment
here, such issues can easily be incorporated within the framework
by adding a potential function based environmental model or po-
tential function based collision avoidance terms to the desired
agent motions.

Despite the beauty of the above results, there is one shortcom-
ing, which is that the model in Eq. (1) does not represent the
dynamics of realistic agents. The results derived are still of inter-
est since they serve as proof of concept for the behavior consid-
ered. Although they do not specify how that desired behavior
could be achieved in engineering applications with given agent
dynamics, they can serve as guidelines for designing such appli-
cations. In the next section, we discuss a control algorithm based
on sliding mode control theory, which could be applied for agents
with general fully actuated dynamics (such as omnidirectional
robots).

Journal of Dynamic Systems, Measurement, and Contro!

3 Sliding Mode Control for Agents With Vehicle Dy-
namics '
In this section, we consider that all the agents in the system

have the same dynamics, which could be described by the
equation

M(x)%; +fi(x;, %) = v (16)

where x; e R” is the position of the agent, M(x;) € R"™*" is the
mass or inertia matrix, and u; € R” represents the control inputs.
The function f;(x;,X;) € R" represents disturbances and other ef-
fects and we assume that

fi(x;.x) = ff(xiv’ki) +fi(x,,%,)

where f*(-, -) represents the known part and f{(, -) represents the
unknown part. For the unknown part, we assume that ||f’(x;,X;)|

<f,, where f, <o is a known constant. Moreover, it is assumed
that for all x;, the matrix M(x;) satisfies

Mly[? < yM(x)y < M]y|?

where M and M are known and y € R” is arbitrary. -

Given the dynamics above, we would like to choose the control
input u; to enforce the velocity of the agent to satisfy Eq. (2).
Then, the discussion in the preceding section guarantees that the
group catches up with the target, or at least encloses it, and forms
the desired shape. Here, we will use the sliding mode control
theory, following a procedure similar to that in Ref. [12].

Define the n-dimensional sliding manifold for agent i as

s;=%;+ aV, J(x,x) + Bsgn[Vy J(x,x)] (17)

Now, let us design the control input u; to enforce the occurrence
of sliding mode. If siTs'i< 0, the sliding manifold is asymptotically
reached. Differentiating the sliding manifold equation, we obtain

=%+ ST S+ TV )] (8)

Let us assume for now that ||d/dH{p sgn[inJ(x,x,)]}Hsfs and

||d/dt[an‘_J(x,x,)]|]$f, where J; and J are known positive con-
stants. Since the potential function is to be chosen by the designer,
he or she should make sure that ||d/ dt[aniJ(x,x,)]llsf is satis-

fied for some J. Moreover, notice that [ld/dr{8 sgo[V, J(x,x,) ]} is
unbounded at the instances at which sgn[inJ (x,x,)] is discontinu-
ous. This problem will be solved by using a low-pass filter and
will be discussed below.

By choosing

u; = - ug sgn(s;) + fJi(("b’.‘i) (19)

and
(1= - —
u0>M(-A;f,»+J+JS+£) (20)

we can guarantee that s's;<—e|s| for any €>0, which implies
that the manifold is reached in finite time.

Once the sliding manifold is reached, the system remains on
that manifold for all time. Then, the results discussed in the pre-
ceding section are recovered despite the model uncertainties in
Eq. (16). This result is achieved, thanks to the robustness proper-
ties of the sliding mode control method.

In order to derive the above result, we assumed that

|d/dt{B sgn[inJ(x,x,)]}Hsjs, which is not the case. This prob-

lem could be solved by passing the switching signal through a low
pass filter [12]. Define
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(21)

where u is a small positive constant. With proper choice of the
parameter . and using an approach similar to one of the sliding
mode observers based on the equivalent control method [15], we
have

ME=—1+ B sgn[inJ(X,Xx)]

7= {B sgn[Vx‘J(X,Xx)]}eq

where we used the subscript eq to denote the equivalent (effective
or average) value of the discontinuous signal. Therefore, although
Bsgn[Vx‘J(x,x,)] is not differentiable, its approximation z is
differentiable and can be used in the definition of the sliding
manifold.

Moreover, we have

(22)

d L 2B, -
g gonof b= 22T, )
dt i i
Therefore, the sliding manifold can be redefined as
Si new = X; + a’Vx‘](X,xt) +z (24)

Utilizing z in the sliding manifold makes the algorithm imple-
mentable. One issue to notice is that u has to be chosen properly
so that the low-pass filter is able to extract the actual “average” or
equivalent value of its input.

The agent vehicle dynamics here are assumed to be fully actu-
ated. The method could be extended to systems composed of
agents with nonholonomic constraints in the vehicle dynamics as
well. However, extending the procedure to such systems needs
further considerations and research and is out of the scope of the
current paper. In addition, although the method is decentralized in
the sense that each agent has a local controller and there is no
leader in the swarm, it is not scalable well since it is based on the
assumption that all agents know the positions of (or basically can
communicate with) all the other agents in the group. Communi-
cation bandwidth limitations and communication delays could be
explored in the future.

4 Potential Function Cases Discussion

As mentioned above, the algorithm may have different perfor-
mance based on the chosen potential function J(x,X,).

In this section, we illustrate how the choice of potential func-
tion influences the application by presenting several examples. We
set n=2 here, but the results should work for higher dimensions as
well.

Consider the group consisting of agents with the same dynam-
ics

M(x)%; + f(x;,%;) = u; (25)

and unity mass M;=1. Let fi(x;,%;)=[sin(0.27),sin(0.21)] be the
unknown uncertainty in the system. Assume that we know the
bounds M=0.5, M=1.5, and f;=1.

Assume the target dynamics as

%, =025
1

X, = sin(0.251)

We set the initial conditions of agents randomly within a circle
with R=5 near the origin and set the target initially at [5, 5],
which is located out of the agents.

Let N=4, our task is to make the four agents form a diamond
with the target in the midpoint. Let &;=2 be the distance between
agents, and the distance between the target and agents ;=1 or
8,=\3.

Case 1. For this case, we'chose the potential function as [16]
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The paths of the swarm

Fig. 1 The paths of the swarm members

N
1 5
J(x,x,) = KTE E(I‘xi -x |- &)
i=1

(26)

N-1 N .
+KF2 E [;(lixf-lelz—é?,-V]

i=] j=i+l L7

where &, and J;; as defined before.

It is obvious that J(x,x,) =0 is quadratic and has a global mini-
mum at J(x,x,)=0, which occurs when [[x;—x|=8; for all i and
|Ix;—x{|=&; for all pairs (i,j). Therefore, in light of the discus-
sions in the preceding sections, we would expect the formation
control and the capture of the target to be exactly achieved (which
is the case as seen below) provided that the initial conditions are
“close enough” to the desired configuration.

For the controller parameters, we use a=0.01,8=2.0, and ¢
=1. For the filter, we chose u=0.1. With the proper choice of the

agent initial conditions, we get /=0.4 and J,=40, which produce
the value of uy=124.5. _

For the simulations below, we let ;=1 and V3 as the desired
distance between the target and agent, and ;=2 for all / and j as
the desired distance between agents.

From Fig. 1, we can see that after a short period, the group
catches up with the target, and Fig. 2 shows that the target almost
stays at the midcenter of the diamond. The tiny error is due to the
existence of the filter.

Case 2. For this case, we chose the potential function as

N N-1 N
1 o
J(x,x) = KTE '2'(||Xi —x|?- &)+ KFZ E [_21“": - xj"2
i=1 i=1 j=it]
bc x|
1 g 3] ”
2 Cij

where the parameters a;j, by, and c;; depend on the desired rela-
tive distances &; of the individuals [11]. Here, a;;/2|x;~x |I% is the
attraction part between agents and bj;c;;/2 exp[-(|x;—x,{*)/¢;;] is

the repulsion part. The distance &;=1c;; In(b;;/a;;) is the distance
at which the attraction and repulsion balance [17,18], which also
defines the distance between the agents in the desired formation.
We notice that J has a minimum at J(x,x,)=0, which occurs when
|x;—x,|| = &, for all i and ||x;~x;||=§; for all pairs (i, ).

For the simulations, we let §;,=1 and V3, and 8;=2. We got the
controller parameter with the same procedure as in Case 1. From
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The final formation of the swarm

The final formation of the swarm
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Fig. 2 Zoomed out final position of the swarm

Fig. 3, we see that after a short period, the group follows the target
but does not achieve the formation we want. The target even goes
out of the group. Here, the system is locked at a local minimum,
which corresponds to an undesired configuration.

Now, redefine the potential function as

N N-1 N
1 ,
nx)= k3 s x5 )63 S
i=] i=1 jei+l
2, bici ( llxi—x[ﬂ:”
-xF+ exp| - (28)
2 Cij

J(x,x)=0 and h(ly|)=S (ly|?- 62)?* satisfies the condition
that h"(|y[)) >0 for all y except ||y||= 8,,. Therefore, with the same
parameters, we would expect that the agents would at least en-
close the target, regardless of initial conditions. From Fig. 4, we
can see that after a short period, the group tracks and encloses the
target.

It is well known that, practically, potential functions may have
many local minima. Therefore, usually when potential functions
are used for coordinated tracking in a formation, it is impossible
to derive with global results, but only local results can be ob-

The final formation of the swarm
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Fig. 4 Zoomed out final position of the swarm

tained. This problem has been observed in many other practical
implementations [9]. In particular, for the formation control prob-
lem we are considering, there may be several different families of
minima. The first family is at the desired formation and the other
families occur when the agents are at points at which the attrac-
tion and repulsion forces balance. This requires careful consider-
ation and more research. The beauty of the sliding mode control
method discussed here is that it is independent of the potential
function chosen as long as the boundedness assumptions are sat-
isfied. Moreover, the objectives are achieved despite the mode
uncertainties. )

5 Conclusions

In this paper we extended the work of [12] to the case of mul-
tiple agents tracking a target in a formation. We presented a pro-
cedure to implement coordinated tracking problem. Here, the po-
tential function for individual includes both the tracking term and
the formation term, so that each agent will react if any given agent
cannot keep up with the target. This method maintains a more
robust formation than the leader-follower model. We obtained the
stability proof based on the potential function in a general form.
Sliding mode control technique is used to apply the basic design
result to the group with general vehicle agents.

Results were obtained from three different potential functions.
Future research may focus on extending the procedure to systems
composed of agents with non-holonomic constraints as well as
handling the trade-off between robustness and communication
bandwidth.
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