

 i

Implementation of Path Finding Techniques in
Homeland Security Robots

BY

Anand Veeraswamy

MSc in COMPUTER AND NETWORK ENGINEERING

FULL TIME
2004-2005

 ii

This report describes project work carried out in the school of engineering at

Sheffield Hallam University between June 2005 and September 2005.

The submission of the report is in accordance with the requirements for the award

of the degree of MSc in computer and Network Engineering, under the

auspices of the University.

 iii

I consider it an honour to present this thesis as a student of MSc in Computer and

Network Engineering of the School Of Engineering, Sheffield Hallam University,

Sheffield, UK. I express my heartfelt gratitude to the school for giving me this

opportunity.

I express my special thanks to:

• Dr Bala Amavasai who has been my inspiration for this project. He was like a

guiding light in an ocean of darkness. He was always there to help me out

whenever I knocked on his door despite his busy schedule.

• Mr. Jonathan Klein, the founder of Breve, who took the time to clear my

doubts, from the simplest to the most involved, promptly and efficiently. He is

responsible for the speed in which I became familiar with the Breve

environment.

• My mother, my first teacher in life and the best I have ever seen and the best I

will ever see.

• My father, whose philosophy of life has affected me and plays an important

part in my spiritual life.

• My brother, Selvaraj and his wife, Sylvia who supported and encouraged me

through my masters. Very special thanks to my brother who is my friend,

philosopher and guide.

• Kavin and Shirom, my brother’s children aged 2 and 4, the two little diamonds

in my life who add a sparkle to my life through their laughter and innocence.

• Shabbir, for his moral support and belief in me.

• My friends, who have encouraged me when I lacked confidence and instilled

courage to face the world when I lacked it. Special thanks go to my few select

friends who I consider to be my life long mates.

• Above all to GOD, who works through me as he does through all of us!

 iv

Path finding techniques is a vital sub task in mobile robotics that has been

subjected to extensive research. Navigation issues also assume a lot of importance in

homeland security applications. Among the various path finding techniques, the use

of search algorithms is a very promising area for research. Numerous search

algorithms exist. Using the Breve simulation environment, first the general search

algorithm and then the A* algorithm has been implemented. An improvement to the

A* algorithm has been implemented. In this thesis it has been proved through

experimental results that the performance of the A* algorithm improves drastically

after adding an additional heuristic.

Dynamic path finding techniques is an extension of normal path finding. It can be

quite challenging for a vehicle which already has set forth on a pre calculated safe

path to keep abreast of the changing environment and recalculate the safe paths during

the course of its movement. Dynamic path planning has been implemented in this

project with the vehicle checking for changes in the environment at every simulation

time step and recalculating paths if there is a change in the environment.

Ad-hoc sensor networks are used in homeland security. Ad-hoc sensor networks have

been modelled using the patch class in Breve and the path finding techniques have

been used in this environment. The path finding technique developed in this project

has been found to calculate safe paths for any given start node and target node and for

any given configuration of sensor (obstacle) placement. Time analysis of the various

algorithms implemented in this project has been presented. Homeland security has

also been discussed briefly.

 Table Of Contents

 v

Chapter 1: Introduction……………………………………………………………..1

1.1 Introduction………………………………………………………………………..1

1.2 Background………………………………………………………………………..1

1.3 Motivation……………………………………………………………………........2

1.4 Thesis Description……………………………………………………………........2

1.5 Methodology………………………………………………………………………2

1.6 Deliverables………………………………………………………………………..3

1.7 Thesis Foundation…………………………………………………………………3

1.7.1 Time/Schedule………………..………………………………………..4

1.7.2 Technical Limitations………………………….………………………4

1.7.2 Potential Hazards………………………………………………………4

1.8 Report Guideline…………………………………………………………………..4

1.9 Summary…………………………………………………………………………..5

Chapter 2: Relevant Theory and Analysis…………………………………………6

2.1 Introduction………………………………………………………………………..6

2.2 Search Algorithm………………………………………………………………….6

 2.2.1 General Search Algorithm……………………………………………………..6

 The Romanian Travel Example…………………………………………...7

 2.2.2 Uninformed Search Strategies……………………………………………..…8

 2.2.2.1 Breadth-first Search……………………………………………….8

 2.2.2.2 Depth-first Search………………………………………………...9

 2.2.2.3 Iterative Deepening Search……………………………………….9

 2.2.3 Informed (Heuristic) Search Strategies…………………………………….10

2.3 Cell Decomposition Methods…………………………………………………….13

2.4 Skeletonisation…………………………………………………………………...14

 2.4.1 Voronoi Graph…………………………………………………….14

 2.4.2 Probabilistic Roadmap…………………………………………….14

2.5 Path Planning Using Potential Fields……………………………………………15

 Table Of Contents

 vi

2.6 Path Planning Using Pheromones……………………………..............................15

2.7 Summary………………………………………………………………………....15

Chapter 3: The Breve Simulation Environment………….………………………16

3.1 Introduction...…...16

3.2 What is Breve……………………………………………….……………………16

3.3 Writing Simulations in Breve…………………………………………………….16

3.4 Use Of Plugins in Breve………………………………………………………….17

3.5 Versions of Breve………………………………………………………………...17

3.6 Features of Breve………….……………...……………………………………...17

3.7 Braitenberg Vehicles…………………………………………………………….17

 3.7.1 Braitenberg Vehicle Implemented in Breve…………………………..18

 3.7.2 Features of the Braitenberg Vehicle…………………………………..18

 3.7.3 Braitenberg vehicle with wheels and sensors…………………………18

 3.7.4 Introduction of Patches………………………………………………..20

3.8 Patch Class……………………………………………………………………….20

 3.8.1 Features of the Patch Class……………………………………………20

3.9 List Data Type……………………………………………………………………23

 3.9.1 List Operators…………………………………………………………23

3.10 Summary………………………………………………………………………..24

Chapter 4: Homeland Security……………………………..……...………………25

4.1 Introduction………………………………………………………………………25

4.2 What is Homeland Security………………………………………………………25

4.3 Scope of Homeland Security……………………………………………………..25

4.4 Navigation Techniques in Sensor Networks……………………………………..26

4.5 Sensor Network Modelled in Breve……………………………………………...27

4.6 Sensor Communications………………………………………………………….28

4.7 Sensor Deployment Techniques………………………………………………….31

4.8 Moving Sensors…………………………………………………………………..32

4.9 Summary…………………………………………………………………………32

 Table Of Contents

 vii

Chapter 5: Implementation and Results...…...33

5.1 Introduction...…...33

5.2 Design and Implementation of the Vehicle………………………………………33

 5.2.1……………………………………………………………………………...33

 5.2.2……………………………………………………………………………...34

5.3 Patches……………………………………………………………………………35

5.4 Light Objects Modelled as Obstacles…………………………………………….36

5.5 Getting the list of Patches Containing Obstacles………………………………...37

5.6 Implementation of the General Search Algorithm……………………………….38

 5.6.1 Time Complexity Analysis……………………………………………….39

 5.6.2 Space Complexity Analysis……………………………………………...39

 5.6.3 Advantages of this Algorithm……………………………………………40

 5.6.4 Disadvantages of this Algorithm…………………………………………40

5.7 Implementation of the A* Algorithm…………………………………………….40

 5.7.1 When two or more paths end in the same node take only the best path….40

 5.7.2 Time Complexity Analysis……………………………………………….41

 5.7.3 Space Complexity Analysis……………………………………………...42

 5.7.4 Advantages of the A* algorithm…………………………………………42

 5.7.5 Disadvantages of the A* algorithm………………………………………42

5.8 Adding an additional heuristic to the General Search Algorithm …..…………...43

 5.8.1 Time Complexity Analysis..43

 5.8.2 Space Complexity Analysis………………….…………………………..43

5.9 Adding the additional heuristic to the A* Algorithm…………………………….44

 5.9.1 Time Complexity Analysis……………………………………………….44

 5.9.2 Space Complexity Analysis……………………………………………...45

 5.9.3 Advantages of the Modified A* Algorithm……………………………...45

 5.9.4 Disadvantages of the Modified A* algorithm……………………………46

5.10 Dynamic Path Finding…………………………………………………………..46

5.11 Path Finding Used in Homeland Security Robots………………………………47

5.12 Placement of Obstacles…………………………………………………………49

5.14 The Longest Path Calculated by the Improved A* algorithm………………….52

5.14 Summary………………………………………………………………………..53

 Table Of Contents

 viii

Chapter 6: Conclusion and Further Work...…...54

6.1 Discussion………………………………………………………………………..54

6.2 Further Work……………………………………………………………………..55

 6.2.1 Sensor Deployment………………………………………………………...55

 6.2.2 Map Building……………………………………………………………….55

 6.2.3 SMA* Algorithm…………………………………………………………...55

 6.2.4 Cell Decomposition………………………………………………………..56

6.3 Conclusion………………………………………………………………………..56

Reference…………………………………………………………………………….57

Appendix A: Source Code Used in this Thesis……………………………………59

 List Of Figures

 ix

Chapter 1:

Figure 1.1 Simulation snapshot………………………………………………………..3

Chapter 2:

Figure 2.1: Romanian road map……………………………………………………….7

Figure 2.2 Search tree generated after a few iterations of the general search…………8

Figure 2.3: Order of expansion of the nodes in the Breadth-first search……………...9

Figure 2.4: Order of expansion of the nodes in Depth First Search(DFS)…………….9

Figure 2.5 Order of expansion in the Greedy Search………………………………...11

Figure 2.6 Order of expansion in the A* Search……………………………………..12

Figure 2.7: Skeletonisation Methods…………………………………………………14

Chapter 3:

Figure 3.1: Simulation Snapshot…………………………………..............................18

Figure 3.2: Two wheels and two sensors have been added to the vehicle…………...19

Figure 3.3: Final modified design of the vehicle and obstacle………………………20

 Figure 3.4: Shows a simple 4X4 patch……………………...……………………….21

 Figure 3.5: Given any patch it is possible to obtain its neighbouring

 patches……………………………………………………………….....22

Figure 3.6: The patch containing the obstacle has been deleted from

 the neighbour list………………………………………………………...23

Chapter 4:

Figure 4.1: Sensor Network………………………………………………………….27

Figure 4.2: Sensor Network Modelled in Breve……………………………………..28

Figure 4.3: Notional NSOF System Architecture …………………………………...30

Figure 4.4: Sensors dropped from airplanes…………………………………………32

Chapter 5:

Figure 5.1: Vehicle Design used in the Thesis……………………………………….35

 List Of Figures

 x

Figure 5.2: Shows the patches used in the simulation………………………………..37

Figure 5.3: The patch, vehicle and obstacle size are all same………………………..37

Figure 5.4: Shows the initial path found……………………………………………..46

Figure 5.5: Shows the introduction of a new obstacle……………………………….47

Figure 5.6: Shows the introduction of another new obstacle………………………...47

Figure 5.7: A safe path is found for the robot to navigate……………………………48

Figure 5.8: Another snapshot showing a safe path found……………………………48

Figure 5.9: A safe path but not the safest path is found……………………………...49

Figure 5.10: Safe path taken in a 12X12 matrix with obstacles places in a open square

fashion………………………………………………………………………………..49

Figure 5.11: Safe path taken in a 12X12 matrix with obstacles places in a open square

fashion………………………………………………………………………………..50

Figure 5.12: Safe path taken in a 12X12 matrix with obstacles places in a open square

fashion………………………………………………………………………………..50

Figure 5.13: Safe path taken in a 12X12 matrix with obstacles places in a open square

fashion………………………………..………………………………………………51

Figure 5.15: Safe path taken in a 12X12 matrix with obstacles places in a triangular

fashion………………………………………………………………………………..52

Figure 5.14: Shows the longest path calculated by the improved A* algorithm……..52

 Chapter 1: Introduction

 1

1.1 Introduction
The aim of the thesis is investigate and develop path finding techniques for

autonomous homeland security robots. The following issues will be addressed:

• enable robots to take the safest path to destination

• implement dynamic path finding techniques

• investigate existing path planning methods

• compare the performance of the different methods

• study the Breve simulation environment

• study the Steve language used in Breve

• design and create a model robot vehicle

• teach the robot to navigate in the artificial world

• use the patch class in Steve to replace the sensors used in [1].

1.2 Background

The problem of dynamic collision free path planning is vital to mobile robots and

robots used in homeland applications. An attempt was made to create more versatile

information systems by using adaptive distributed sensor networks [1]. Hundreds of

small sensors, equipped with limited memory and multiple sensing capabilities which

autonomously organize and reorganise themselves as ad hoc networks in response to

task requirements and to triggers from the environment. A collection of active sensor

networks can follow the movement of a source to be tracked, for example, a moving

vehicle. It can guide the movement of an object on the ground, for example, a

surveillance robot. Or it can focus attention over a specific area, for example, a fire in

order to localize its source and track its spread.

Path finding techniques can be grouped into local methods and global methods [2].

One well known local planning method is the potential field method. In this method

the robot follows the gradient of a force field. The field is generated by attractive

potentials from a start position towards a target and by repulsive potentials that point

away from obstacles. The potential field method has a low computational load. In

Chapter 1

Introduction

 Chapter 1: Introduction

 2

contrast, the global methods need complete information about the world and hence

would require relatively large computational load.

1.3 Motivation

Homeland robotics has assumed a great importance in the present age. Robots are

now being used extensively to rescue survivors from hazardous environments. For

e.g. when there is a fire robots can be made to go through the fire and rescue. A

serious limitation is the lack of sensors that can be mounted on the robots. In 1999,

both the American Association for Artificial Intelligence and the RoboCup Federation

for Artificial Intelligence and the RoboCup Federation started rescue robot

competitions to foster research in this humanitarian application of mobile robots. But

good theory does not necessarily lead to good practice. None of the algorithms

demonstrated by CRASAR or other groups at various rescue robot competitions or at

related DARPA programs were actually usable on robots that could withstand the

rigors of real rubble. As a result all the robots used at the WTC site had to be

teleoperated [3].

1.4 Thesis Description

The most basic form of tree/network search algorithm has been implemented which

does not have any heuristics and finds the first possible path. Next, the A* search, one

of the most well known search algorithms has been implemented. This algorithm

evaluates the nodes by combining g(n), the cost to reach the node, and h(n), the cost

to get from the node to the goal: f(n) = g(n) + h(n). Since g(n) gives the path cost from

the start node to node n, and h(n) is the estimated cost of the cheapest path from n to

the goal, we have f(n) = estimated cost of the cheapest solution through n[4]. The

results of the blind search and the A* search has been compared and studied. An

additional heuristic was added and experimental data has been provided that this

heuristic improves the efficiency of the A* algorithm drastically.

1.5 Methodology

In Breve sensors can be modelled by using the patch class. In the patch class it is

possible to create patches which can sense the presence of obstacles (representing

dangerous objects). We can assume that the sensors are as sensitive and efficient as

 Chapter 1: Introduction

 3

the patches created in the simulation program. But when put to practical use it may be

necessary create very efficient sensors or to compensate for the lack of efficiency of

the sensors. Once safe patches and unsafe patches are found we should be able to

build maps and find safe paths by keeping as far away from the obstacles as possible.

Figure 1.1: Simulation Snapshot. The light blue patch is the starting position of

the robot. The dark blue patch is the target. Patches containing the red square

blocks represent the danger patches. The empty and pink coloured patches are

safe patches. The patches coloured green shows the path to be taken by the

vehicle.

1.6 Deliverables

The results obtained in this simulation can be tested and implemented practically

using Lego robots. The performance of the various path finding techniques are

compared and contrasted. It should be possible to combine the strengths of various

algorithms and come with a novel and more efficient algorithm for path planning.

1.7 Thesis Formulation

This section discusses constraints such as time, technical limitations etc. and develops

a work plan for the entire thesis.

 Chapter 1: Introduction

 4

1.7.1 Time/Schedule

Table 1.1 shows the definitions of the tasks and timescale of the thesis.

Task Time Period

Literature study and investigation of path finding

techniques

June 2005

Familiarization of the Breve simulation environment

Learn and experiment the Steve language

July 2005

Create a vehicle design in Breve

Teach the vehicle to navigate in the artificial world

August 2005

Implementation of path finding techniques September 1st 2005 to

September 15th

Report writing September 15th 2005 to

September 29th 2005

Table 1.1: Tasks to be completed for the thesis and their schedule

1.7.2 Technical Limitations

This section focuses on various limitations of the thesis as listed below

• Difficulty in implementing C, C++ plugins.

• Difficulty in navigating the vehicle.

• Lack of data structures like stacks and queues in Steve.

1.7.3 Potential Hazards

The precautions that were strictly followed during the entire thesis period were

• An erect sitting posture was maintained while working on the computer

• Breaks were taken at regular intervals to avoid cramps and sprains that can be

caused due to sitting in front of the computer for long hours.

 Chapter 1: Introduction

 5

1.8 Report Guideline

Chapter 2 contains the theory behind path finding which is very essential to this

thesis. This chapter discusses most of the theory used in the project. Chapter 3 is on

the Breve simulation environment. An overview of the Steve language has also been

presented here. Chapter 4 talks about homeland security, why is it so important and

why has it suddenly received so much of attention in the research circle. Chapter 5

shows the implementation done in the project. It also shows various experimental data

collected in the project. Finally Chapter 6 concludes the thesis work and has some

very interesting future work that can be done.

1.9 Summary

This chapter contains the background and motivation behind this project. It also

briefly summarises the path finding techniques and homeland security issues.

 Chapter 2: Relevant Theory and Analysis

 6

2.1 Introduction
This chapter discusses the basic theory behind path planning and analyses the various

methods used in path planning. Path planning using various search algorithms are first

analysed. Cell Decomposition and Skeletonisation methods are then discussed. The

most popular method of path finding using Potential fields is discussed next. Lastly an

interesting method i.e. pathfinding using Pheromones is touched upon briefly.

2.2 Search Algorithms

The output of a search algorithm is either a failure or a solution. The efficiency of a

search algorithm can be evaluated in four ways [4]

• Completeness: Does the algorithm guarantee to find a solution when it exists

• Optimality: Does the strategy find the optimal solution?

• Time Complexity: Time taken to find the solution

• Space Complexity: Memory needed to perform the search

Search algorithms can be classified as Uninformed and Informed (heuristic) search.

2.2.1 General Search Algorithm

In case of the general search algorithm the agent does not know the full search space.

Instead the agent knows the initial state, and it knows operators. An operator is a

function which expands a node. "Expanding" a node means computing the node that

the agent could move to using the operator. With this available knowledge, the

general search algorithm that the agent can use is:

Chapter 2

Relevant Theory and Analysis

function GENERAL-SEARCH(problem, stratergy) returns a solution, or failure

 initialise the search tree using the initial state of problem
 loop do

 if there are no candidates for expansion then return failure

 choose a leaf node for expansion according to stratergy

 if the node contains a goal state then return the corresponding solution

 else expand the node and add the resulting nodes to the search tree

 end

 Chapter 2: Relevant Theory and Analysis

 7

The Romanian travel example

Imagine using a map to plan a trip from Arad to Bucharest. The Romanian road map

is shown in the figure2.1[4].

Figure 2.1: Romanian road map

Referring to the figure2.1 the following points can be noted

• Arad is not a goal node so let us expand it to find all its successors: Sibiu,

Timisoara, and Zerind.

• Now lets make a choice of one of these to investigate next, say Sibiu.

• Sibiu is not a goal node so let us expand it to get its successors: Arada,

Fagaras, Oradea, and Rimnicu Vilcea.

• Now let us make a choice of any one of the current leaf nodes to expand next,

i.e. one of Arada, Fagaras, Oradea, Rimnicu Vilcea, Timisoara, and Zerind.

• And so on, until the goal node is arrived.

Figure 2.2 shows this search tree

 Chapter 2: Relevant Theory and Analysis

 8

Figure 2.2 Search tree generated after a few iterations of the general search

Here it can be noticed that expanding the node Sibiu gives Arad, which has already
been visited. In general the search algorithm does not "know" this.

2.2.2 Uninformed Search Strategies

The uniform search strategies use a blind search technique where each and every

possible goal state is analysed. The advantage of this method is that they form a very

easy to implement algorithm. The disadvantage is that they are highly inefficient and

could result in very high time and space complexities. The Uninformed search

strategies are

2.2.2.1 Breadth-first search(BFS)

BFS is the general search algorithm where the "insert" function is "enqueue-at-end".

This means that newly generated nodes are added to the fringe at the end, so they are

expanded last. BFS first considers all paths of length 1, then all paths of length 2, and

so on. This is why it is called "breadth-first". Figure 2.3 shows how BFS works.

 Chapter 2: Relevant Theory and Analysis

 9

Figure 2.3: Order of expansion of the nodes in the Breadth-first search

2.2.2.2 Depth-first search(DFS)

DFS is the general search algorithm where the "insert" function is "enqueue-at-front".

This means that newly generated nodes are added to the fringe at the beginning, so

they are expanded immediately [4].

DFS goes down a path until it reaches a node that has no children. Then DFS

backtracks and expands a sibling of the node that had no children. If this node has no

siblings, then DFS looks for a sibling of the grandparent, and so on. Figure 2.4

illustrates DFS

Figure 2.4: Order of expansion of the nodes in Depth First Search(DFS)

 Chapter 2: Relevant Theory and Analysis

 10

2.2.2.3 Iterative deepening depth first search

Iterative deepening is a very simple, very good, but counter-intuitive idea that was not

discovered until the mid 1970s. Then it was invented by many people simultaneously.

The idea is to do depth-limited DFS repeatedly, with an increasing depth limit, until a

solution is found[4].

Intuitively, this is a dubious idea because each repetition of depth-limited DFS will

repeat uselessly all the work done by previous repetitions.

Iterative deepening simulates BFS with linear space complexity.

For a problem with branching factor b where the first solution is at depth d, the time

complexity of iterative deepening is O(b^d), and its space complexity is O(bd).

2.2.3 Informed (Heuristic) Search strategies

Informed search strategies use problem specific knowledge beyond the definition of

the problem itself and can hence find solutions more efficiently than an uninformed

strategy. This section explores the various informed search strategies.

Greedy best-first search

The greedy best-first search expands the node that is closest to the destination first. It

tries to follow a single path all the way to the goal but will back up when it hits a dead

end. It is not optimal and is incomplete. The worst-case time and space complexity is

O(bm), where m is the maximum depth of the search space[4]. Figure 2.5 shows how

the greedy search does find a path.

 Chapter 2: Relevant Theory and Analysis

 11

Figure 2.5 Order of expansion in the Greedy Search

A* search

A* is one of the most widely used search techniques. The nodes are evaluated by

combining g(n), the cost to reach the goal, and h(n), the cost to get from the node to

the goal:

f(n) = g(n) + h(n) .

Since g(n) gives the path cost from the start node to node n, and h(n) is the estimated

cost of the cheapest path from n to the goal, we have

f(n) = estimated cost of the cheapest solution through n .

Hence if we are trying to find the cheapest solution, a reasonable thing to try first is

the node with the lowest value of g(n) + h(n). Provided that the heuristic function h(n)

satisfies certain conditions, A* search is both complete and optimal[4]. Figure 2.6

shows how A* search finds an optimal path

 Chapter 2: Relevant Theory and Analysis

 12

Figure 2.6 Order of expansion in the A* Search

Memory-bounded heuristic search

A simple way of to reduce memory requirements for A* is to adapt the idea of

iterative deepening to the heuristic search context, resulting in the iterative-deepening

A*(IDA*) algorithm. The main difference between IDA* and standard iterative

deepening is that the cut-off used is the f-cost (g+h) rather than the depth. This section

briefly examines two more resent memory bounded algorithms

Recursive best-first search(RBFS) is a simple recursive algorithm uses the standard

best first strategy using only linear space. RBFS is more efficient than IDA* but still

suffers from excessive node re-generation. Like A*, RBFS is an optimal algorithm if

the heuristic function h(n) is admissible. Its space complexity is O(bd), but its time

complexity is rather difficult to characterize.

Simplified memory-bounded A* proceeds just like A* expanding the best leaf until

memory is full. When it finds that it cannot add a new node to the search tree without

dropping an old one, SMA* drops the worst leaf node which is the one with the

highest f-value. But it backs up the value of the forgotten node to its parent to come

back to it if there is no better alternative.

 Chapter 2: Relevant Theory and Analysis

 13

2.3 Cell Decomposition Methods

One approach to path planning is to decompose the entire free space into a finite

number of contiguous regions called cells [5]. The simplest cell decomposition

consists of a regularly spaced grid. In Breve the patch and patch-grid classes were

used to create regularly spaced grid. This method has the advantage that it is very

simple to implement. There are 2 disadvantages of this method

• It is workable for low dimensional configuration spaces only, as the number of

grid cells increases exponentially with d, the number of dimensions.

• There is a problem of what to do with cells that are mixed i.e. neither entirely

within the free space not entirely within occupied space. A solution path

includes such a cell may not be a real solution, because there may be no way

to cross the cell in the desired direction in a straight line. This would make the

path planner unsound. On the other hand, if we insist that only completely free

cells may be used, the planner will be incomplete, because it might be the case

that the only paths to the goal may go through mixed cells. This problem was

encountered in the thesis.

There are 2 solutions to this problem

• Recursively sub dividing the cells until a path is found.

• Exact cell decomposition of the free space. This was the solution used in the

thesis. The obstacles were made the same size as the cells and also care was

taken to place the obstacles in such a way that they fit the cell exactly without

overlapping on the other cells. But an advanced way of solving this issue

would be to allow the cells to be irregularly shaped where they meet the

boundaries of free space. This technique requires advanced geometric ideas

and so was not followed in this thesis.

 Chapter 2: Relevant Theory and Analysis

 14

Figure 2.7: Left Figure: Exact cell decomposition, space exactly decomposed

into trapezoids. Right Figure: Approximate cell decomposition, mixed cells

are divided until a series of free cells connects the start with the goal cell free

cells: light grey, obstacle cells: dark grey, mixed cells: white, obstacles (- -).

2.4 Skeletonization Methods

The skeletonization methods reduce the robot’s free space to a one-dimensional

representation for which the planning problem is easier. This lower-dimensional

representation is called a skeleton of the configuration space. This section analyses

the two most used methods of skeletonization

2.4.1 Voronoi Graph

Voronoi graph is drawn by connecting the set of all points that are equidistant to two

or more obstacles. Path planning using Voronoi graphs involves making the robot

move to the closest point in the graph and follows the Voronoi graph until it reaches

the point nearest to the target. Disadvantages of Voronoi graph techniques are that

they are difficult to be applied to higher dimensional configuration spaces, and that

they tend to induce unnecessarily large detours where the configuration space is wide

open[6].

2.4.2 Probabilistic Roadmap

Probabilistic roadmap, a skeletonization method offers more possible routes and thus

deals better with wide open spaces. The graph is created by randomly generating a

large number of configurations, and discarding those that do not fall into free space.

We then join any nodes by an arc if it is easy to reach one node from the other .

 Chapter 2: Relevant Theory and Analysis

 15

Theoretically this method is incomplete, because a bad choice of random points may

leave us without any paths from the start to the target [7].

2.5 Path Planning Using Potential Fields

In path planning using potential fields, an artificial potential field, where robots move

under the actuation of artificial forces is created [1]. The goal generates an attractive

potential which pulls the robot towards it. The obstacles generate a repulsive potential

which pushes the robot away from the goal. The attractive potential is higher near the

goal and lower away from the goal. Hence the robot will naturally move towards the

goal from any position. The potential field method has a low computational load and

generates smooth paths that stay away from obstacles. However, the greedy gradient

descent may get trapped in local minima [3]. It is hence most useful in environments

where local minima are unlikely. Furthermore, it can be used for fast reactive obstacle

avoidance.

2.6 Path Planning Using Pheromones

Ant colonies are able to quickly adapt to changing food sources and obstacles without

the need for centralization [8]. They construct networks of paths with pheromones

(evaporative scent markers) that connect their nests with food sources.

Mathematically, these networks form minimum spanning trees [9], minimizing the

energy ants expend in bringing food into the nest. Agents guided by synthetic

pheromones can imitate the behaviour of insects in tasks such as path planning. These

systems are well suited to problems such as path planning for unmanned robotic

vehicles.

2.7 Summary

A brief overview of the various path planning techniques has been presented in this

chapter. Path planning using searching algorithms was discussed first followed by

roadmap techniques. The more advanced method of potential fields for finding path

was illustrated next. Finally a group path planning method using pheromones was

suggested.

 Chapter 3: The Breve Simulation Environment

 16

3.1 Introduction

This chapter introduces the Breve simulation environment. The Steve language used

in Breve is explored next. The features of the Steve language used in the thesis are

discussed. Braitenberg vehicles are discussed briefly. How the robot vehicle used in

this thesis evolved using a basic braitenberg vehicle template is illustrated with

figures. The patch and patch-grid classes of Steve and their features are mentioned in

brief.

3.2 What is Breve

The simulation software Breve, was initiated by Jon klein as a thesis at Hampshire

College and was developed further into a Master's thesis at Chalmers University. The

software is actively being developed as a platform for a thesis building large scale

simulations of evolutionary dynamics, but is also used for many other applications.

Breve is a free, open-source software package which makes it easy to build 3D

simulations of decentralized systems and artificial life. Users define the behaviours of

agents in a 3D world and observe how they interact. Breve includes physical

simulation and collision detection so one can simulate realistic creatures and an

OpenGL display engine so one can visualize ones simulated worlds. While Breve is

conceptually similar to existing packages such as Swarm and StarLogo, the

implementation of Breve which simulates both continuous time and continuous 3D

space is quite different such that the environment is suited to a different class of

simulations[10]. Breve is available for Mac OS X, Linux and Windows. The Breve

mailing list was used extensively during the course of this thesis.

3.3 Writing Simulations in Breve

Breve simulations are written in an easy to use language called Steve. The language is

object-oriented and borrows many features from languages such as C, Perl and

Objective C and even users without previous programming experience will find it

easy to program using it[11].

Chapter 3

The Breve Simulation Environment

 Chapter 3: The Breve Simulation Environment

 17

3.4 Use of Plugins in Breve

Breve features an extensible plugin architecture which allows us to write our own

plugins and interact with our own code. Writing plugins is simple and allows us to

expand Breve to work with existing code. Plugins have been written in Breve to

generate MIDI music, download web pages, interact with a Lisp environment and

interact with the “push” language [11]. It is also possible to write plugins in C, C++.

3.5 Versions of Breve

The latest version of Breve at the time of writing this report is Breve 2.3. This version

includes a genetic algorithm class.

The thesis was initially done using Breve 2.1 and then was upgraded to Breve 2.2

version as soon as it was released.

3.6 Features of Breve

Following are some of the important features of Breve

• Object oriented language: Steve

• An OpenGL display engine

• Collision detection

• Genetic algorithm class

• Braitenberg class

• Push language

• Plugins

• Record movies of the simulation

• Save snapshots of the simulation

3.7 Braitenberg Vehicles

In the book [12], Valentino Braitenberg describes a series of thought experiments in

which "vehicles" with simple internal structure behave in unexpectedly complex

ways. He describes simple control mechanisms that generate behaviours that, if we

did not already know the principles behind the vehicle’s operation, we might call

aggression, love, foresight and even optimism. Braitenberg gives this as evidence for

the "law of uphill analysis and downhill invention," meaning that it is much more

difficult to try to guess internal structure just from the observation of behaviour than it

is to create the structure that gives the behaviour.

 Chapter 3: The Breve Simulation Environment

 18

3.7.1 Braitenberg Vehicle implemented in Breve

The template of the Braitenberg vehicle in Breve is shown is Figure 3.1

Figure 3.1: Snapshot taken from the Breve simulation shows the rectangular

white object which is the body of the vehicle and a red light object which can

move about.

This template of the braitenberg vehicle has been taken and the modifications done to

it will be shown subsequently.

3.7.2 Features of the Braitenberg Vehicle

There are 5 classes implemented in the Braitenberg class.

BraitenbergControl: In order to create a Braitenberg vehicle simulation, we need to

subclass BraitenbergControl and use the init method to create BraitenbergLight and

BraitenbergVehicle objects.

BraitenbergLight: A BraitenbergLight is used in conjunction with

BraitenbergControl and BraitenbergVehicle. It is what the BraitenbergSensor objects

on the BraitenbergVehicle detect.

3.7.3 Braitenberg vehicle with wheels and sensors added

Two wheels were added to the vehicle to enable it to move around. Two sensors were

also added to the vehicle to enable it to sense the light objects. Figure 3.2 shows this

design.

 Chapter 3: The Breve Simulation Environment

 19

It was possible to move the vehicle by setting a velocity to the wheels. But the vehicle

would move and fall off the edge and it was not possible to study the motion of the

vehicle.

The method (vehicle get-position) was used to get the position of the vehicle at each

iteration and whenever there was the possibility of the vehicle falling down, it was

made to move back and turn right or left.

Now that the vehicle was able to move about the vehicle without falling off the edge,

it was time to add sensors and introduce obstacles in the vehicles path.

Using this design an interesting study of the braitenberg principles was observed.

Both the left and right sensors were coupled to just one of the wheels. This caused the

vehicle to move about the world avoiding the obstacles. But it was noticed that this

method was not perfect. The light obstacles would be avoided when the obstacles

were either to the left or right of the vehicle. But the vehicle would run right through

the obstacle if it were in front of the vehicle equally in between the two sensors.

Various combinations of coupling the sensors with the wheels were tried. Adding two

more sensors was also tried. But none of the methods could give a prefect obstacle

avoidance technique.

Figure 3.2: Two wheels and two sensors have been added to the vehicle

 Chapter 3: The Breve Simulation Environment

 20

3.7.4 Introduction of Patches

The introduction of the patches in the simulation led to a change in the dimensions of

the braitenberg vehicle. Due to change in the dimensions of the vehicle it was

necessary to add more wheels. After the introduction of the patches the use of sensors

had become redundant and hence was removed. The final design of the vehicle used is

shown in Figure 3.3.

Figure 3.3: Final modified design of the vehicle and obstacle

3.8 Patch Class

In accordance with the cell decomposition method the world was decomposed by

equal sized patch grids. The size of the patch grids and the vehicle were made the

same in order to ease the navigation of the vehicle from one patch grid to another.

This section discusses the features of the patch class.

3.8.1 Features of the Patch Class

The patch class has a lot of useful features which eased programming task a lot in this

thesis.

• patch get-location: returns a vector location of the patch object

• get-patch-at-location: returns the patch at the given vector location

• get-patch-above: Returns the patch towards (0, 1, 0)

• get-patch-below: Returns the patch towards (0, -1, 0)

 Chapter 3: The Breve Simulation Environment

 21

• get-patch-towards-plus-z: Returns the patch towards (0, 0, 1)

• get-patch-towards-minus-z: Returns the patch towards (0, 0, -1)

• patch set-color to (value) : Sets the color of the patch to value

• patch set-transparency to value : Sets the transparency to value

There are a lot more features in the Patch class but only those above were mentioned

since they were used quite often in the thesis.

Figure 3.4: Shows a simple 4X4 patch

The following function was used to get the adjacent neighbors of any patch

Figure 3.5 shows the above code in action. Given the patch at the centre(Pink) this

function returned the 4 neighbors(Green) surrounding it. The set-color function was

used just for demonstration purposes.

+to get-neighbors of patch (object):

 neighborList (list).

 i (int).

 i=0.

 if (patch get-patch-to-left) : {neighborList{i}= (patch get-patch-to-left). i++. }

 if (patch get-patch-to-right) : {neighborList{i}= (patch get-patch-to-right). i++. }

 if (patch get-patch-towards-plus-z) : {neighborList{i}= (patch get-patch-

towards-plus-z). i++. }

 if (patch get-patch-towards-minus-z) : {neighborList{i}= (patch get-patch-

towards-minus-z). i++. }

 return neighborList.

 Chapter 3: The Breve Simulation Environment

 22

Figure 3.5: Given any patch it is possible to obtain its neighbouring patches.

The following function was used to delete patches which contained an obstacle from

the neighbors list. The patch on which the red rectangular object resides on is not

coloured green as can be seen in Fig3.6.

+ to deleteobs neighList neighList (list) :
 obsList, tempList (list).
 i, j, k, length2 (int).
 patch (object).
 j=0. k=0.
 obsList = self getObstacleList.
 for each patch in neighList: {
 i=0.
 length2 = |obsList| - 1.
 while(length2 >= 0) : {
 if (patch == obsList{length2}) : {i=1.}
 length2--.
 }
 if(i==0): {
 tempList{j} = neighList{k}.
 j++.
 }
 k++.
 }
 return tempList.

 Chapter 3: The Breve Simulation Environment

 23

Figure 3.6: The patch containing the obstacle has been deleted from the

neighbour list

There are a lot more functions of the patch class used which cannot all be covered

here.

3.9 List Data Type

The data type used to store the patches was the list data type in Steve. Using the list

data type it is possible to keep a list of other variables of any type including other

lists.

3.9.1 List Operators

Some of the list operators used often in the thesis are

• insert expression at list{ index }: inserts expression at the specified index in

the list, shifting up other list elements with higher indices

• remove list{ index }: removes the element of list at the specified index and

returns it, shifting down other list elements with higher indices

• push expression onto list: appends expression onto the end of list

• pop list: removes the last element of list and returns it

• prepend expression onto list: prepends expression onto the start of list

 Chapter 3: The Breve Simulation Environment

 24

• list{ expression } = value: sets an element of the list at offset expression to

value.

• copylist list: copies the entire list.

• | list |: gives the length of a list.

3.10 Summary

The Features of Breve was covered briefly in the beginning of this chapter. The basics

of the Steve language was also touched upon. Some important classes that were used

in the thesis like Braitenberg class, Patch class was covered and 2 functions used in

the patch class was demonstrated. The chapter ended with a brief description of the

List datatype which shows the strength of this data type in Steve.

 Chapter 4: Homeland Security

 25

4.1 Introduction
This chapter first discusses the basics of homeland security and why it is necessary.

The sensor based networks used for homeland applications are discussed next. How

the sensor based ad-hoc networks have been simulated using Breve is illustrated with

figures. The placement of sensors and algorithms to place sensors are discussed.

Finally dynamic path finding where the sensor values keep changing over time which

was implemented in this thesis is discussed.

4.2 What is Homeland Security?
Homeland security or homeland defence is a neologism referring to domestic

governmental actions justified by potential guerrilla attacks or terrorism. The term

became prominent in the United States following the September 11, 2001. Terrorist

Attack, although it was used less frequently before that incident.

Such domestic governmental actions include [13]:

• Emergency mobilization, including volunteer medical, police, and fire

personnel

• New domestic surveillance and spying efforts, particularly with respect to

immigration, transportation, military installations, and utilities

• Infrastructure protection

• Border control

4.3 Scope of Homeland Security

The six main mission areas considered critical for Homeland Security are:

• Intelligence and warning;

• Border and transportation security

• Domestic counterterrorism

• Protecting critical infrastructures

• Defending against terrorism

• Emergency preparedness and response

Chapter 4

Homeland Security

 Chapter 4: Homeland Security

 26

The first three areas focus on, among other things, preventing terrorist attacks

against the U.S., the next two on reducing vulnerabilities within the U.S., and the

last area on minimizing the damage and recovering from terrorist attacks that have

occurred in the U.S [14].

4.4 Navigation Techniques in Sensor Networks

The application of path finding techniques for homeland applications used in this

thesis was inspired by work done in [1]. Here a versatile information by using

distributed sensor networks: hundreds of small sensors, equipped with limited

memory and multiple sensing capabilities which autonomously organize and

reorganize themselves as ad hoc networks in response to task requirements and

to triggers from the environment. Distributed adaptive sensor networks are

reactive computing systems, well suited for tasks in extreme environments,

especially when the environmental model and the task specifications are uncertain

and the system has to adapt to them. A collection of active sensor networks can

follow the movement of a source to be tracked, for example, a moving vehicle. It

can guide the movement of an object on the ground, for example, a surveillance

robot. Or it can focus attention over a specific area, for example, a fire in order

to localize its source and track its spread. A sensor network consists of a

collection of sensors distributed over some area that form an ad hoc network. Each

sensor is equipped with some limited memory and processing capabilities,

multiple sensing modalities, and communication capabilities. These sensors are

capable of detecting special events called “danger” (e.g. temperature, biochemical

agents, etc.) that are above a particular threshold. The sensors that have triggered

the special events are considered to be obstacles.

 Chapter 4: Homeland Security

 27

Figure 4.1[15]: The left figure shows a typical setup for the navigation

guiding task. The solid black circles correspond to sensors whose sensed

value is danger. The white circles correspond to sensors that do not sense

danger. The dashed line shows the guiding path across the area covered by

the sensor network. Note that the path travels from sensor to sensor and

preserves a maximal distance from the danger areas while progressing to the

exit area. The right picture shows some Mote sensors used for our

experiments. The three sensors placed in the upright position denote two

obstacles (i.e., danger areas) and one goal.

4.5 Sensor Network modelled in Breve

The sensor network mentioned in the previous section was modelled in Breve

using patches in the patch class. In this thesis the patches was equally distributed

over the entire region. But efficiency could have been improved by placing the

patches in a certain pattern to minimize the number of patches and maximising the

safety of a vehicle navigating through the area infested with “danger” (obstacles).

In the sensor network the sensors would sense the special events electronically.

This is simulated in Breve by placing light obstacles over the patches. By getting

the location of the light object and by finding the patch present at that location we

can determine the patches which have obstacles or “danger” and patches which

are safe.

 Chapter 4: Homeland Security

 28

Figure 4.2: The sensor network shown in fig3.1 has been modelled using patches

in Breve. The patches containing the red light objects represent danger areas.

The patch the vehicle is on is the start patch. The dark blue patch is the target

patch. The green coloured patches show the path the vehicle needs to take.

4.6 Sensor Communications

The US Army’s Future Combat Systems (FCS) will rely heavily on the use of

unattended sensor networks to detect, locate and identify enemy targets in order to

survive with less armour protection on the future battlefield. The latest Homeland

Security (HLS) counter-terrorist measures will also rely heavily on unattended sensor

networks to detect, locate and identify terrorist attacks on critical civilian

infrastructure. Successful implementation of these critical communication networks

will require the collection of the sensor data, processing and collating it with available

intelligence, then transporting it in a format conducive to make quick and accurate

decisions. The networked communications must support secure, stealthy, and jam

resistant links for sensor data fusion for both tactical and HLS missions[16].

S&TCD is working closely with the U.S. Army Research Laboratory to mature

specialized networked communications technologies for the Networked Sensors

for the Objective Force (NSOF) Advanced Technology Demonstration (ATD) that is

led by the CECOM RDEC Night Vision Electronic Sensors Directorate. The NSOF

communications can apply to tactical deployments as well as scenarios for HLS when

 Chapter 4: Homeland Security

 29

normal civilian communications infrastructure are not available due to terrorist attack

or stress from the chaotic scenario. Successful use of these critical UGS networks

requires the development of complementary communication networks to interconnect

the UGS networks within a sensor field and to connect the UGS networks field back

to higher level data fusion and Command and Control (C2) elements. The envisioned

UGS supporting communications architecture consists of two layers, the Lower

Sensor Layer (LSL) and the Higher Sensor Layer (HSL). Figure 4.3 shows a depiction

of the NSOF Notional System Architecture.

The LSL consists of, but is not limited to, small, (close to the ground) low data rate

sensor nodes known as Pointer Nodes (P-nodes). P-nodes may contain a combination

of sensor types, such as acoustic, magnetic and seismic detection sensors, micro-radar

motion detectors, and potentially Nuclear, Biological, and Chemical (NBC) sensors.

These sensors are integrated with a low power, low data rate radio and associated

battery and antenna, which communicate at ranges of up to four hundred meters. P-

nodes perform functions such as target detection, simple target classification, and

simple Line-of Bearing (LOB) determination and in some cases data fusion. The HSL

consists of higher data rate/bandwidth sensor nodes known as Recognition Nodes (R-

nodes). R-nodes may contain some of the aforementioned types of sensors, combined

with video imagery and/or uncooled InfraRed (IR) imagery capabilities. The R-nodes

generally are larger, higher power nodes having advanced processing. capabilities.

These nodes may perform data fusion and correlation, image processing, advanced

 Chapter 4: Homeland Security

 30

Figure 4.3: Notional NSOF System Architecture

target classification, and act as the gateway that allows the UGS networks to

communicate with the upper echelon C2 elements. To facilitate the transfer of

imagery data and the longer-range communications requirement (up to 10 Km), a

higher power, higher data-rate radio is required, along with the appropriate batteries

and antennae. In addition to the HSL functions just identified, the R-node is

networked together with the LSL P-node network. For an HLS application the

architecture is very similar. The drivers are the quantity of sensor data and the

distance range that the data needs to be sent to various decision authorities. The

quantity of data will be determined by the type of sensor. Acoustic, magnetic and

seismic detectors will have a minimum amount of data while Infra-red or video

imagers will require more data. The HLS range needs are somewhat more complex.

Numerous civilian decision authorities are involved in the event of an attack on a

critical target are numerous. Even when the lead authority is identified, the data must

be shared with the other national, regional, state and local agencies which also need

the data to coordinate their specialized activities in a timely manner.

 Chapter 4: Homeland Security

 31

4.7 Sensor Deployment Techniques

In this thesis sensors(patches) were placed at a uniform distance and connected to

each other. In [17] the sensor deployment problem in the context of uncertainty in

sensor locations subsequent to airdropping was considered. Sensor deployment in

such scenarios is inherently non-deterministic and there is a certain degree of

randomness associated with the location of a sensor in the sensor field.

Wireless sensor networks that are capable of observing the environment, processing

the data, and making decisions based on these observations, have recently attracted

considerable attention [18]. Such networks can be used to monitor the environment,

detect, classify and locate specific events, and track targets over a specific region. The

topology of the sensor field, i.e., the locations of the sensors, determines to a large

extent the quality of the coverage provided by the sensor network. However, even if

the sensor locations are precomputed for optimal coverage and resource utilization,

there are inherent uncertainties in the sensor locations when the sensors are dispersed,

scattered, or airdropped. Thus a key challenge in sensor deployment is to determine

an uncertainty aware sensor field architecture that reduces cost and provides high

coverage, even though the exact location of the sensors may not be controllable. In

applications such as battlefield surveillance and environmental monitoring, sensors

may be dropped from airplanes. Such sensors cannot be expected to fall exactly at

predetermined locations; rather there are regions where there is a high probability of a

sensor being actually located (Figure. 4.4). In underwater deployment, sensors may

move due to drift or water currents. Thus the position of sensors may not be exactly

known and for every point in the sensor field, there is only a certain probability of a

sensor being located at that point.

In [17], two algorithms for sensor deployment were presented wherein it was

assumed that sensor positions were not exactly predetermined. It was also assumed

that the sensor locations were calculated before deployment and an attempt was being

made during the airdrop to place sensors at those locations; however, the sensor

placement calculations and coverage optimization were based on a Gaussian model,

which assumes that if a sensor is intended for a specific point P in the sensor field, its

exact location can be anywhere in a “cloud” surrounding P. The sensor field was

represented as a grid (two or three dimensional) points. A target in the sensor field is

therefore a logical object, which is represented by a set of sensors that see it. An

 Chapter 4: Homeland Security

 32

irregular sensor field is modelled as a collection of grids. The optimization framework

is however inherently probabilistic due to the uncertainty associated with sensor

Figure 4.4: Sensors dropped from airplanes. The clouded region gives the

possible region of a sensor location. The black circle shows the mean (intended)

position of a sensor.

detections. Two algorithms were proposed for sensor placement that addressed

coverage optimization under the constraints of imprecise detections and terrain

properties. The placement algorithms gave the sensor positions prior to actual

placement and we assume that sensors are deployed in a single step.

4.8 Moving Sensors

In a dynamic environment where the sensor values may change from “danger” to

“safe” or vice versa, care should be taken to recalculate the path as the vehicle is

navigating. Instead of calculating the entire path again, algorithms like the dynamic

A* or lifelong A* can be used.

4.9 Summary

This chapter gives a brief introduction to homeland security. The sensor network used

in homeland security was illustrated and then a snapshot and explanation of how this

network was modelled in Breve is shown. Sensor deployment techniques not used in

the project was also discussed. Dynamic path planning was discussed in brief.

 Chapter 5: Implementation and Results

 33

5.1 Introduction

The coding involved in the development of the vehicle design used in this thesis is

discussed. The patches and light objects modelled as obstacles and some functions

using these have been illustrated. The implementation of the general search algorithm,

the A* algorithm has been shown along with the pseudocode and experimental results

obtained from the thesis. An additional heuristic which was added to the A* algorithm

is discussed. Experimental data to prove that this heuristic improves the A* algorithm

is provided. Dynamic path finding and path finding techniques used in homeland

robotics are then illustrated with snapshots taken from actual simulation performed in

the thesis.

5.2 Design and implementation of the Vehicle

The evolution of the design of the vehicle used in this thesis has already been

demonstrated in Chapter 3 section 3.7 of this report. In this section the coding

involved in the design and implementation of the vehicle will be discussed.

5.2.1 Changes made to the Braitenberg Class

The following piece of code was added to the class file in order to add a black

protrusion on the top.

Chapter 5

Implementation and Results

+ to add-body at location (vector):

 % Adds a top body at location on the vehicle.

 bodyAdd, joint, addLink (object).

 bodyAdd = new Shape.

 bodyAdd init-with-cube size (4, 1.0, 3.5).

 addLink = new Link.

 addLink set-shape to bodyAdd.

 addLink set-color to (0,0,0).

 joint = new FixedJoint.

 joint link parent bodyLink

 to-child addLink

 with-parent-point location

 with-child-point (0,0,0).

 self add-dependency on joint.

 self add-dependency on bodyAdd.

 return bodyAdd.

 Chapter 5: Implementation and Results

 34

A lot of care had to be taken when creating joints and adding

dependencies to the main vehicle.

There are four joints available in Breve. They are

• PrismaticJoint for linear sliding joints between links

• RevoluteJoint for rotational joints between links

• FixedJoint for static joints between links

• BallJoint for ball joints between links

• UniversalJoint for ball joints between links

For adding a body on top of the vehicle implemented in this thesis a Fixed joint was

used as can be seen in the sample code listing.

5.2.2 Coding Used to Implement the Vehicle

A Class implementing the Braitenberg class was created and the following piece of

code was added to create the vehicle.

Figure 5.1 shows the final design of the vehicle.

% Creates new braitenberg vehicle instance

vehicle = new BraitenbergVehicle.

% Sets the colour of the vehicle to (1.0, 0.0, 0.0)

vehicle set-color to (1.0, 0.0, 0.0).

% Makes the camera focus on the vehicle as it moves about

self watch item vehicle.

%Adds the wheels at the vector position and sets a color

leftbackWheel1 = (vehicle add-wheel at (-2.5, 0, 2.5)).

leftbackWheel1 set-color to (0, 0, 0).

rightbackWheel1 = (vehicle add-wheel at (-2.5, 0, -2.5)).

rightbackWheel1 set-color to (0.0, 0, 0).

leftbackWheel2 = (vehicle add-wheel at (-0.5, 0, 2.5)).

leftbackWheel2 set-color to (0, 0, 0).

rightbackWheel2 = (vehicle add-wheel at (-0.5, 0, -2.5)).

rightbackWheel2 set-color to (0.0, 0, 0).

leftfrontWheel = (vehicle add-wheel at (1.5, 0, 2.5)).

leftfrontWheel set-color to (0, 0, 0).

rightfrontWheel = (vehicle add-wheel at (1.5, 0, -2.5)).

rightfrontWheel set-color to (0.0, 0, 0).

%Makes use of the add-body class the coding of which was shown in the

%previous section.

Addbody = (vehicle add-body at (-1,0.8,0)).

 Chapter 5: Implementation and Results

 35

Figure 5.1: Vehicle Design used in the Thesis.

5.3 Patches

According to the principle of Cell Decomposition the entire space was covered by

equal size patches. The Patch and PatchGrid classes in Steve was used for this. These

patches have a sense of location. That is given a location it is possible to obtain the

patch object residing in that location. Given a patch it is possible to get its location.

Figure 5.2 shows the patches covering the entire work space. It was not possible to

capture the entire work space and hence only a partial view has been shown.

The patches were created using

patches = (new PatchGrid init-at location (0,0.75,0) with-patch-size

(5, 0.1, 5) with-x-count X_SIZE with-y-count Y_SIZE with-z-count 6

with-patch-class "LifePatch").

By changing the x and z values it was possible to create patches of different

dimension like 4X4, 6X6 etc….A 32X32 patch would fill the entire work space

created in this simulation.

 Chapter 5: Implementation and Results

 36

Figure 5.2: Shows the patches used in the simulation

5.4 Light Objects modelled as Obstacles

The light objects which are part of the braitenberg class were used as obstacles. The

light objects are mobile objects and could be moved around during the simulation

which gives us dynamic obstacles that is obstacles that would change the position

with time and in this thesis it was able to take the dynamic nature of the obstacles into

consideration and get a safe path avoiding the obstacles at each iteration of the

simulation cycle. Figure 5.3 shows the patches, vehicle and obstacles and an

interesting observation can be made. The size of the patches, vehicle and the obstacles

are all the same. The vehicle size and the patch size were made same in order to ease

the vehicle navigation when it moves from one patch to the neighbouring patch. The

size of the obstacle and patch were made the same in order to solve the problem

discussed in Chapter 2 Section 2.4. Also care was taken to place the obstacles

centrally in the patch since this prevents overlapping of a single obstacle with many

chapters which was also discussed in Section 2.4.

 Chapter 5: Implementation and Results

 37

Figure 5.3: The patch, vehicle and obstacle size are all same.

The following piece of code shows how the light obstacles were placed in the

simulation.

The “if” statement “if (i==13||i==18||i==20)” places the obstacle on patches

numbered 13, 18, 20. So using this piece of code it is possible to add any number of

obstacles and on any patch quite easily.

+ to place-obstacle:

 i(int).

 patch (object).

 loc (vector).

 patchList (list).

 patchList = (self getPatchList).

 for each patch in patchList: {

 dic{i++} = patch.

 }

 for i=1, i<=35, i++: {

 if (i==13||i==18||i==20) : {

 patch = dic{i}.

 loc = (patch get-location).

 loc += (2.5,0,2.5).

 obj add-light at loc.

 }

 }

 Chapter 5: Implementation and Results

 38

5.5 Getting the List of Patches Containing Obstacles

The following piece of code shows how patches containing obstacles were identified.

This function was written in the main controller class. The getlightpositions function

talks to the braitenberg class and gets the vector position of all light objects which

were created in the braitenberg class. Next the list of all patches is obtained. For every

patch existing in the simulation the vector position of the patch was compared with all

the positions of the light objects obtained previously as a list and those patches which

resided in the same position as the light objects were stored and returned as

obspachlist.

5.6 Implementation of the General Search Algorithm

The first algorithm that was implemented in this thesis was the general search

algorithm. This random search algorithm was implemented in order to make sure that

it would be possible to implement a search algorithm using the Steve language. The

Pseudocode used for this algorithm is:

+ to getObstacleList:

 obstacleList, obspachList, patchList (list).

 light,patch (object).

 i,length, count(int).

 obstacleList = obj getlightpositions.

 patchList = (self getPatchList).

 foreach patch in patchList: {

 length = |obstacleList| - 1.

 while(length>=0): {

 if ((patch get-location)+(2.5,0,2.5))== obstacleList{length} : {

 obspachList{i}=patch.

 i++.

 }

 length--.

 }

 }

 return obspachList.

 Chapter 5: Implementation and Results

 39

5.6.1 Time Complexity Analysis

Manhattan Distance Time taken to calculate path in seconds

40 0

45 1

50 11

55 116

Table 5.1: Time taken to calculate paths in seconds

This algorithm crashes for a manhattan distance of 60 or above.

5.6.2 Space Complexity Analysis

The algorithm crashes due to a limit on the number of paths or the number nodes that

this software can compute at a given time, considering the memory available. Hence a

space complexity study has been done. The maximum paths and maximum nodes are

defined as follows:

Maximum paths: - The maximum no of possible paths that the algorithm considers

during any iteration as it goes on to find the final safe path.

Maximum nodes: - The number of nodes in the path which contains the maximum

number of nodes before a valid safe path is found

Manhattan Distance Maximum paths Maximum nodes

30 110 7

40 447 9

45 2282 10

50 5614 11

55 13722 12

Table 5.2: Maximum paths and maximum nodes computed.

Thus it is found that this algorithm crashes due to a huge number of maximum paths

to calculate in a single iteration.

create a list P
 add the start node S, to P giving it one element
 Until first path of P ends with G, or P is empty
 extract the first path from P
 extend the path one step to all neighbors creating X new paths
 reject all paths with loops
 add each remaining new path to P
If G found -> success. Else -> failure.

 Chapter 5: Implementation and Results

 40

5.6.3 Advantages of this Algorithm

It was one of the most easiest algorithms to implement.

It calculated the paths within a manhattan distance of 40 in zero time.

5.6.4 Disadvantages of this Algorithm

The general search algorithm crashes due to space complexity when the manhattan

distance is greater than 55.

5.7 Implementation of the A* algorithm

The A* algorithm improves the basic search algorithm by adding certain heuristics.

5.7.1 When two or more paths end in the same node take only the best path

When there are two or paths ending in the same node it makes sense to consider the

best possible path and ignore the rest. This will help us reduce the space complexity

encountered in the basic search algorithm explained in the section 5.6. So whenever

we find that there are more than two paths with the same end node, we calculate the

sum of the distance travelled and the remaining distance to the target node and the

path with the lowest cost is selected and the rest are simply ignored.

The code used to do this is shown below

+ to delete-same-end-paths shortList sampleList (list):
 #sampleList (list).

 length1 (int).
 i,j,k (int).
 i1, i2 (int).

 length1 = |sampleList | - 1.
 j = |sampleList{i}| - 1.
 while (i <= (length1)): {
 i1 = i .
 while (i1 < length1): {
 j = |sampleList{ i }| - 1.
 k = |sampleList{i1+1}| - 1.
 if (sampleList{i}{ j } == sampleList{i1+1}{k}): {
 if (j<k || j==k): remove sampleList{i1+1}.
 else: remove sampleList{i}.
 i1=i.
 length1 = |sampleList| - 1.
 }
 i1++.
 }
 i++.

 Chapter 5: Implementation and Results

 41

The A* algorithm uses this heuristic and also sorts the paths with the lowest cost path

first so that the lowest cost path is always expanded first. The pseudocode for the A*

algorithm is as shown below:

5.7.2 Time Complexity Analysis

Sample readings obtained using the A* algorithm is shown in the following table:

Manhattan

Distance

Time taken to

calculate

path(seconds)

Manhattan

Distance

Time taken to

calculate

path(seconds)

80 1 170 27

110 2 175 31

120 3 180 39

125 4 185 45

130 5 190 41

135 7 195 43

140 8 200 74

145 10 205 86

150 13 210 99

155 16 215 148

160 20 220 168

165 23 225 214

Table 5.3: Time taken to calculate paths in seconds

create a list P

add the start node S, to P giving it one element

 Until first path of P ends with G, or P is empty

 extract the first path from P

 extend first path one step to all neighbors creating X new paths

 reject all paths with loops

 for all paths that end at the same node, keep only the shortest one.

 add each remaining new path to of P

 Sort all paths by total underestimate, shortest first.

 If G found -> success. Else -> failure.

 Chapter 5: Implementation and Results

 42

5.7.3 Space Complexity Analysis

Manhattan Distance Maximum paths Maximum nodes

30 13 7

35 18 8

40 21 9

45 27 10

50 31 11

55 37 12

60 43 13

65 51 14

85 83 18

125 171 26

150 223 31

200 321 41

220 358 45

Table 5.4: Maximum paths and maximum nodes computed.

Comparing table 5.2 with 5.4 the A* algorithm could possibly crash due to an

increase in the maximum number of nodes that can be expanded, unlike the general

search algorithm which crashed due to the maximum number of paths that could be

expanded.

5.7.4 Advantages of the A* algorithm

Comparing the table 5.1 and 5.2 it can be concluded that the A* algorithm performs

vastly better than the general search algorithm. Since A* algorithm expands the

lowest cost paths first, it can be expected to give the optimal path.

5.7.5 Disadvantages of the A* algorithm

Given a list which contains paths ending in the same node the A* algorithm chooses

the lowest cost one and ignores the rest. This methods is not very efficient because of

2 reasons

• The path which has more cost presently may in the longer run be a cheaper

cost.

 Chapter 5: Implementation and Results

 43

• Such rash deletion of paths may even delete the only path that may be

available in certain situations.

5.8 Adding the additional heuristic to the General Search Algorithm

Deleting paths that exceed the maximum manhattan distance

The maximum distance is the manhattan distance between the start node and the end

node. It is quite obvious that any path which is greater than the manhattan distance

will not an efficient path.

5.8.1 Time Complexity Analysis

The sample readings using this additional heuristic to the is shown below

Manhattan Distance Time taken to calculate path(seconds)

40 1

45 1

50 3

55 57

60 Infinite

Table 5.5: Time taken to calculate paths in seconds

Comparing the values in the table 5.5 and the table 5.1, we see that adding this

heuristic has certainly improved the performance of the general search algorithm by

decreasing the time taken to calculate paths. Hence if we add this heuristic to the A*

algorithm, it should improve the performance of the A* algorithm.

5.8.2 Space Complexity Analysis

Manhattan Distance Maximum paths Maximum nodes

30 80 7

35 201 8

40 452 9

45 1020 10

50 2198 11

55 4776 12

60 10106 13

Table 5.6: Maximum paths and maximum nodes computed.

 Chapter 5: Implementation and Results

 44

Comparing the values obtained in table 5.1 and 5.6, it can be seen that the addition of

this heuristic has decreased the space complexity of the general search algorithm. Lets

now apply this heuristic to the A* algorithm and check how it improves the A*

algorithm.

5.9 Adding an additional heuristic to the A* algorithm

After adding the heuristic discussed in section 5.8 to the A* algorithm the new

algorithm will be as follows

The change from the A* algorithm has been shown in italics

5.9.1 Time Complexity Analysis

The readings obtained using this modification is shown in table 5.4.

Manhattan Distance Time taken to calculate path(seconds)

160 11

180 25

210 70

215 91

220 123

225 140

230 165

235 220

240 238

Table 5.7: Time taken to calculate paths in seconds

create a list P
 add the start node S, to P giving it one element
 Until first path of P ends with G, or P is empty
 extract the first path from P
 extend first path one step to all neighbors creating X new paths
 reject all paths with loops
 reject all paths exceeding maxdist

 for all paths that end at the same node, keep only the shortest one.
 add each remaining new path to P
 Sort all paths by total underestimate, shortest first.
 If G found -> success. Else -> failure.

 Chapter 5: Implementation and Results

 45

Comparing the table 5.3 and the table 5.7 it can be concluded that adding this

additional heuristic has certainly improved the performance of the A* algorithm in

terms of time taken.

5.9.2 Space Complexity Analysis

Manhattan Distance Maximum paths Maximum nodes

35 9 8

40 11 9

45 12 10

50 13 11

55 15 12

60 19 13

65 21 14

70 24 15

75 28 16

80 30 17

85 33 18

125 58 26

150 115 31

200 273 41

220 347 45

225 351 46

230 374 47

Table 5.8: Maximum paths and maximum nodes computed.

Comparing the table 5.4 and table 5.8 it can be seen that the additional heuristic has

decreased the number paths expanded by the A* algorithm even though there is no

improvement in the maximum number of nodes expanded.

5.9.3 Advantages of the Modified A* Algorithm

The addition of a simple common sense heuristic has improved the performance of

the A* algorithm by deleting inefficient paths.

 Chapter 5: Implementation and Results

 46

5.9.4 Disadvantages of the modified A* algorithm

Along with the disadvantages mentioned for the A* algorithm, the addition of the new

heuristic introduces another small issue when obstacles are present. The presence of

obstacles will make paths, which are greater than the maximum manhattan distance,

valid paths. So when obstacles are present this new heuristic might never be able to

give us a solution since it deletes all paths greater than the manhattan distance

between the start node and the target node. But this issue can be resolved by making

the manhattan distance greater by the number of obstacles present.

5.10 Dynamic path finding

Dynamic path finding is where the obstacles move and change position with time.

This poses a challenge to the moving vehicle, since it needs to change its path as the

obstacles change their position. The snapshots taken from a single run of the

simulation at different time steps is shown next

Figure 5.4: Shows the initial path found.

 Chapter 5: Implementation and Results

 47

Figure 5.5: Shows the introduction of a new obstacle, which was in the path of

the original path found. The algorithm has found a new safe path avoiding the

newly introduced obstacle.

Figure 5.6: Shows the introduction of another new obstacle which was again in

the path of the vehicle and a new path was found.

5.11 Path Finding Used in Homeland Security Robots

Finally we can now test path finding techniques for robots used in homeland security.

The following snapshots show the vehicle taking safe paths avoiding the “danger

spots”.

 Chapter 5: Implementation and Results

 48

Figure 5.7: A safe path is found for the robot to navigate

Figure 5.8: Another snapshot showing a safe path found.

The snapshots shown in Figure 5.7 and Figure 5.8 show the safe paths found. The

snapshot shown in Figure 5.9 is very interesting because although the vehicle has

found a safe path it has not found the safest path. That is on careful scrutiny it can

seen the path found does not take care to keep the vehicle at a maximum distance

from the target. This could be a serious concern. Consider for eg an army unit moving

through a battle field avoiding enemy camps, in this situation it would be highly

desirable to navigate the army unit or vehicle as far away from the “danger spots” as

possible.

 Chapter 5: Implementation and Results

 49

Figure 5.9 A safe path but not the safest path is found.

5.12 Placement of Obstacles

The following snapshots show the paths found for a complex arrangements of

obstacles.

Figure 5.10: Safe path taken in a 12X12 matrix with obstacles places in a open

square fashion.

 Chapter 5: Implementation and Results

 50

Figure 5.11: Safe path taken in a 12X12 matrix with obstacles places in a open

square fashion.

Figure 5.12: Safe path taken in a 12X12 matrix with obstacles places in a open

square fashion.

 Chapter 5: Implementation and Results

 51

Figure 5.13: Safe path taken in a 12X12 matrix with obstacles places in a open

square fashion.

Figure 5.14: Safe path taken in a 12X12 matrix with obstacles places in a

triangular fashion.

 Chapter 5: Implementation and Results

 52

Figure 5.15: Safe path taken in a 12X12 matrix with obstacles places in a

triangular fashion.

5.14 The longest path calculated by the Improved A* algorithm

Fig5.14 shows the longest path calculated by the A* algorithm. It took 2.6 minutes to

calculate this path. This was done for a 26X26 matrix containing 676 nodes totally.

Figure 5.14: Shows the longest path calculated by the improved A* algorithm

 Chapter 5: Implementation and Results

 53

5.15 Summary

This chapter started with more discussion about Breve and then showed the

performance of the general search algorithm. The advantages and disadvantages of the

general search algorithm was discussed. The performance of the A* algorithm was

then illustrated and shown to be better than the general search algorithm. Finally it

was proved through experimental data that an additional heuristic could improve the

performance of the A* algorithm. Dynamic path finding implemented in the thesis

was illustrated with snapshots. Finally how the path finding techniques implemented

could be used in homeland robotics was shown.

 Chapter 6: Conclusion and Further Work

 54

6.1 Discussion
This thesis has developed and analysed the use of different path finding techniques in

the same work space which is of importance to the robots used in homeland

applications.

The objective of the project was to analyse the performance of various path finding

techniques and to come up with a better technique by combining their strengths and

nullifying their drawbacks.

Different search algorithms were used in the same work space and the time taken to

calculate the paths using the different algorithms were recorded most efficiently in

Breve.

The general search algorithm contains no heuristics or assumptions. The A* search

algorithm uses a very effective heuristic and also sorts the paths so that the path

finding is more efficient. The performance of the general search with the A* search

was compared and it was proved that the general search algorithm is no match to the

A* search. Finally an additional heuristic was added to the A* algorithm and it was

proved through experimental data that this heuristic improves the performance of the

A* algorithm.

This improved A* algorithm was then used for robots used in homeland applications.

It was found that our algorithm was very efficient in terms of finding a safe path

avoiding all “danger spots”. It was also found that this algorithm sometimes finds the

shortest path instead of the safest path as would be the requirement in most homeland

applications. Hence it can be concluded that although the algorithm developed in this

work can be used in homeland applications it cannot be used in sensitive mission

critical homeland applications where it is a matter of life and death.

Chapter 6

Conclusion and Further Work

 Chapter 6: Conclusion and Further Work

 55

Another interesting path finding technique using potential fields as discussed in

section 2.6 can be used. This method has been used in [15]. But potential field

methods tend to suffer from local minima i.e. the navigating vehicle may get stuck in

regions of local minima. Care should be taken to avoid this.

The advantages and disadvantages of all the algorithms used were clearly stated. This

should enable us to explore more path finding techniques and come up with a more

efficient technique by combining the strengths of various techniques and correcting

the drawbacks in each algorithm.

6.2 Further Work

6.2.1 Sensor Deployment

In this project where an ad-hoc sensor network was modelled using the patch class,

the patches representing the sensors were distributed uniformly. In [17] algorithms for

sensor deployment were discussed. It would be interesting to study and implement the

sensor deployment algorithm.

6.2.2 Map Building

This project deals only with path finding. The algorithms assume that the sensor

locations are known. Breve has a very efficient collision handling methods. Using this

it should be possible to implement map building techniques. The robot can be made to

explore the environment and mark the safe spots and the danger spots. Map building

in mobile robotics is still under developmental stages. Simultaneous Localization and

Mapping (SLAM) [19] is one of the most used techniques in map building. So another

interesting further work would be to first implement map building techniques to build

a map of the environment and then use path finding techniques using this information.

6.2.3 SMA* Algorithm

The disadvantages of the algorithms implemented in this thesis as described in section

5.7.2 and section 5.9.2 can be overcome by using the SMA* algorithm which is a

modification of the A* algorithm. The algorithms implemented in this thesis consider

only the best path and do not give a chance for a path which is presently bad to

develop into an efficient path in future. The SMA* algorithm on the other hand

 Chapter 6: Conclusion and Further Work

 56

remembers the best path of the forgotten paths and comes back to the forgotten path

recursively when it finds that the present path is not doing all that very well.

6.2.4 Cell Decomposition

The cell decomposition method used in this project divides the work space into equal

sized cells. The obstacles are made the same size of the cells and are placed exactly in

any one cell at any time. This is a luxury when compared to real life scenarios where

the obstacles can be of different shapes and same obstacles can reside in different

squares. In other words some part of the cell may contain an obstacle and other parts

of the cell may be free. If we consider the entire cell to be unsafe then we would not

get an efficient path. So one way to resolve this would be further sub divide the cell to

find the region in the cell which is free. This issue discussed in section 2.4 can be

resolved using more advanced geometric technique which has not been done in this

project.

6.2.5 Terrains

In this project a plain terrain was used. Using Breve it is possible to model different

kinds of terrains like hills. The robots used in the WTC were unable to withstand the

rigors of rubble. The effect of using the path finding techniques on different terrains

can be analysed.

6.3 Conclusion

The path finding technique developed in this work was implemented in a simulated

homeland security environment. This technique was proved to take lesser time than

the A* algorithm. Given any start node, target node and positioning of obstacles the

algorithm always returned a safe path avoiding all danger spots. The only drawback

found in this algorithm was that it calculates optimal paths instead of safest paths

which may be critical in some homeland security applications. Hence it can be

concluded that this algorithm can be used in non critical homeland applications and

the algorithm needs to be modified for use in critical homeland applications.

 Reference

 57

 [1] ACM Transactions on Sensor Networks (TOSN) Volume 1 , Issue 1 (August

2005) table of contents Pages: 3 - 35 Year of Publication: 2005 ISSN:1550-4859

[2] Sven Behnke "Local Multiresolution Path Planning",In Proceedings of 7th

RoboCup International Symposium, Padua, Italy, 2003. RoboCup-2003: Robot

Soccer World Cup VII, LNCS 3020, pp. 332-343, Springer, 2004

[3] COMMUNICATIONS OF THE ACM March 2004/Vol. 47, No. 3

[4] Stuart Russell, Peter Norvig, A Modern Approach, Pearson Education, Inc. 2003,

ISBN (0-131-03805-2), January, 1995

[5] R. Brooks and T. Lozano-P´erez. A subdivision algorithm in configuration space

for findpath with rotation. In Proceedings of the 8th International Conference on

Artificial Intelligence (ICAI), pages 799–806, 1983.

[6] C. O’Dunlaing and C. K. Yap. A ’retraction’ method for planning the motion of a

disc. Journal of Algorithms, 6:104–111, 1986.

[7] L. Kavraki, P. Svestka, J.C. Latombe, and M. Overmars. Probabilistic road maps

for path planning in high-dimensional configuration spaces. IEEE Transactions on

Robotics and Automation, 12(4):566–580, 1996.

[8] H. Van Dyke ParunaK , Sven Brueckner , John Sauter, Digital pheromone

mechanisms for coordination of unmanned vehicles, Proceedings of the first

international joint conference on Autonomous agents and multiagent systems: part 1,

July 15-19, 2002, Bologna, Italy

[9] S. Goss, S. Aron, J. L. Deneubourg, and J. M. Pasteels. Selforganized

Shortcuts in the Argentine Ant.Naturwissenschaften, 76:579-581, 1989.

Reference

 Reference

 58

[10] Klein, J. 2002. Breve: a 3D simulation environment for the simulation of

decentralized systems and artificial life. Proceedings of Artificial Life VIII, the 8th

International Conference on the Simulation and Synthesis of Living Systems. The

MIT Press.

[11] http://www.spiderland.org/Breve/

[12] Valentino Braitenberg, Vehicles: Experiments in Synthetic Psychology, MIT

Press, 1986

[13] http://en.wikipedia.org/wiki/Homeland_security

[14] John Yen, Communications of the ACM March 2004/Vol. 47,No 3.

[15] ACM Transactions on Sensor Networks (TOSN) Volume 1 , Issue 1 (August

2005) table of contents Pages: 6 Year of Publication: 2005 ISSN:1550-4859

[16] Dan Hampel and Stefano DiPierro, Booz Allen Hamilton, “Networked Sensor

Communications”, 2002 IEEE.

[17] Y. Zou and K. Chakrabarty, "Uncertainty-Aware Sensor Deployment Algorithms

for Surveillance Applications", Ad Hoc Networks, vol. 1, pp. 261-272, 2003.

[18] G. J. Pottie and W. J. Kaiser, “Wireless sensor networks”, Communications

of the ACM, vol. 43, pp. 51-58, May 2000.

[19] Stefan B.Williams, Hugh Durrant-Whyte, Gamini Dissanayake "Constrained

Initialization of the Simultaneous Localization and Mapping Algorithm" in The

International Journal of Robotics Research Vol. 22, No. 7–8, July–August 2003, pp.

541-564,©2003 Sage Publications

[20] Senior Diablo, http://ai-depot.com/Tutorial/PathFinding.html

 Appendix A: Source code used in this thesis

 59

@use Braitenberg.
@use Link.
@include "Patch.tz"

Controller main.

@define X_SIZE 8. #determines the matrix of patches
@define Y_SIZE 1.

#The main class where the execution starts
Control : main {
 + variables:
 obj (object).
 patches (object).
 x, flag, maxdist (int).
 time1, time2, time (float).
 startTargetList (list).
 dic (hash).
 + to init:
 self set-integration-step to 1.0.
 self set-iteration-step to 1.0.
 #Creates an instance of the main vehicle class

 obj = new myBraitenbergControl.
 #creates the patches
 patches = (new PatchGrid init-at location (0,0.75,0)

with-patch-size(5, 0.1, 5) with-x-count X_SIZE with-y-count Y_SIZE
with-z-count 8 with-patch-class "LifePatch").

 x=1.
 #self schedule method-call "findPath" at-time 1.0.
 #self schedule method-call "findPath" at-time 2.5.

 #Given a patch object this function shows its neighbors
 + to showneigbors:
 patch (object).
 i (int).
 patchList, neighborList (list).
 patchList = (patches get-patches).
 for each patch in patchList: {

 if (i==9): {
 neighborList = patch get-neighbors of patch.
 neighborList = self deleteobs neighList neighborList.
 patch set-color.
 for each patch in neighborList: patch set-path-color.

Appendix A:

Source Code used in this Thesis

 Appendix A: Source code used in this thesis

 60

 }
 i++.
 }
 # When there are 2 are more paths ending in the same node
 # only the best path is taken
 + to delete-same-end-paths shortList sampleList (list):
 #sampleList (list).

 length1 (int).
 i,j,k (int).
 i1, i2 (int).

 length1 = |sampleList | - 1.
 j = |sampleList{i}| - 1.
 while (i <= (length1)): {
 i1 = i .

 while (i1 < length1): {
 j = |sampleList{ i }| - 1.
 k = |sampleList{i1+1}| - 1.
 if (sampleList{i}{ j } == sampleList{i1+1}{k}): {
 if (j<k || j==k): remove sampleList{i1+1}.
 else: remove sampleList{i}.
 i1=i.
 length1 = |sampleList| - 1.
 }
 i1++.
 }
 i++.

 }
 return sampleList.

Deletes a any path that exceeds the maximum manhattan
distance

 + to delete-long-paths list1 list1 (list):
 length1, length2, i (int).
 covered, tocover, total (int).

 length1 = |list1| - 1.
 while(i<length1): {
 length2 = |list1{i}| - 1.
 covered = self get-manhattan-dist patch1

list1{i}{length2} patch2 list1{i}{0}.
 tocover = self get-manhattan-dist patch1

list1{i}{length2} patch2 startTargetList{1}.
 total = covered + tocover.

 if (covered+tocover) >maxdist: {

 Appendix A: Source code used in this thesis

 61

 remove list1{i}.
 i--.
 length1 = |list1| - 1.
 }
 i++.
 }
 return list1.

 #Function which return the list of all patches
 + to getPatchList:
 patchList (list).
 patch (object).

 i(int).

 patchList = (patches get-patches).
 for each patch in patchList: {
 patch set-color.
 dic{i++} = patch.
 }
 return patchList.

 #Function to place obstacles
 + to place-obstacle:
 i(int).
 patch (object).
 loc (vector).
 patchList (list).

 patchList = (self getPatchList).

 for each patch in patchList: {

 dic{i++} = patch.

 }
 for i=1, i<=64, i++: {
 if (i==27||i==30||i==42) : {
 patch = dic{i}.
 loc = (patch get-location).
 loc += (2.5,0,2.5).
 obj add-light at loc.
 }
 }

 # Function to calculate the manhattan distance between 2

 # patches
 + to get-manhattan-dist patch1 patch1 (object) patch2 patch2

(object):
 point1, point2 (vector).

 Appendix A: Source code used in this thesis

 62

 a,b (float).
 point1 = (patch1 get-location).
 point2 = (patch2 get-location).
 #print "point1 = $point1".
 #print "point2 = $point2".
 a = point1::x - point2::x.
 b = point1::z - point2::z.
 if a<0: a = -a.
 if b<0: b = -b.
 return a+b.
 #print a+b.

 # Returns a list of all the patches containing obstacles
 + to getObstacleList:
 obstacleList, obspachList, patchList (list).
 light,patch (object).
 i,length, count(int).
 #patch = new PatchLife.
 obstacleList = obj getlightpositions.
 #print "obs = $obstacleList".
 patchList = (self getPatchList).
 # #print "patches = $patchList".

 foreach patch in patchList: {
 length = |obstacleList| - 1.
 while(length>=0): {
 if ((patch get-location)+(2.5,0,2.5))==
 obstacleList{length} : {
 obspachList{i}=patch.
 i++.
 }
 length--.
 }
 }

 #foreach patch in obspachList: patch set-path-color.
 #print "obs = $obspachList".

 return obspachList.

#Set the Start and Target Patch and return list containing #them
 + to setStartTarget:
 patchList (list).
 patch (object).
 count (int).
 loc (vector).

 patchList = (self getPatchList).

 Appendix A: Source code used in this thesis

 63

 foreach patch in patchList: { #print (patch get-
location).

 if count==0 : {
 startTargetList{0} = patch.
 patch set-state-start.
 loc = (patch get-location) + (0,0.7,2.5).
 }

 if count==60: { startTargetList{1} = patch. patch set-

state-target.}
 count++ .
 }
 obj move to loc.
 maxdist = self get-manhattan-dist patch1
 startTargetList{0} patch2 startTargetList{1}.
 print "maxdist=$maxdist".
 return startTargetList.

 #Delete the patches which contain obstacles from the

 neighbors List
 + to deleteobs neighList neighList (list) :
 obsList, tempList (list).
 i, j, k, length2 (int).
 patch (object).
 j=0. k=0.

 obsList = self getObstacleList.

 for each patch in neighList: {
 i=0.
 length2 = |obsList| - 1.
 while(length2 >= 0) : {
 if (patch == obsList{length2}) : {i=1.}
 length2--.
 }

 if(i==0): {
 tempList{j} = neighList{k}.
 j++.
 }
 k++.
 }

 return tempList.

 #Function to sort a list of possible paths with the
 #lowest cost first

 + to sortList tosortList tosortList (list) targetPatch
targetPatch object):

 Appendix A: Source code used in this thesis

 64

 length1, length2, length3, x, y, index_of_min (int).
 distance1, distance2 (float).
 tempList (list).
 for x=0, x<length1, x++: {
 index_of_min = x.
 for y=0, y<length1,y++ : {
 length2 = |tosortList{index_of_min}| - 1.
 length3 = |tosortList{y}| - 1.

 distance1 = self get-manhattan-dist
 tosotList{index_of_min}{length2}.
 distance2 = self get-manhattan-dist

 tosotList{y}{length3}.

 if distance1 > distance2 : {
 index_of_min = y.
 }
 }
 tempList = tosortList{x}.
 tosortList{x} = tosortList{index_of_min}.
 tosortList{index_of_min} = tempList.
 }
 return tosortList.
 + to display the listtodisplay (list):

 #Function which finds the path from the start patch to the
 #target patch

 + to findPath:
 pathList, tempList1,tempList2, tempList3, tempList4,
 neighborList,startTargetList (list).
 obstacleList, tempList5 (list).
 index, length1, length2, length3, length4, i , j, k,

found, terminate (int).
 forindex (int).
 patch, dummy(object).

 self place-obstacle.

 obstacleList = self getObstacleList.
 startTargetList = self setStartTarget.

 pathList{0} = startTargetList{0}.

 tempList1{0} = pathList{0}.
 neighborList = tempList1{0} get-neighbors of

tempList1{0}.
 neighborList = self deleteobs neighList neighborList.

 length3 = |neighborList| - 1.

 Appendix A: Source code used in this thesis

 65

 j=0.
 while(length3>=0): {
 i=0.
 tempList2{i} = tempList1{0}. i++.
 tempList2{i} = neighborList{length3}.
 pathList{j} = copylist tempList2.
 length3--.
 j++.
 }

 index=0. found=0.

 while(found==0): {
 length1 = |pathList| - 1.
 while(length1 >=0) : {
 tempList1 = pathList{length1}.
 length2 = |tempList1| - 1.
 neighborList = tempList1{length2} get-neighbors of
 tempList1{length2}.
 neighborList = self deleteobs neighList neighborList.

 length3 = |neighborList| - 1.
 while (length3>=0) : {
 if(self not-circular mainList tempList1 item
 neighborList{length3}): {
 tempList2 = copylist tempList1.
 push neighborList{length3} onto tempList2.

 tempList3{index} = copylist tempList2.
 index++.
 }
 length3--.
 }

 length1--.
 }

 pathList = copylist tempList3.

 pathList = self delete-same-end-paths shortList

 pathList = self delete-long-paths list1 pathList.

 index=0.

 length4 = |pathList| - 1.

 while (length4 >=0) : {
 tempList4 = copylist pathList{length4}.
 length2 = |tempList4| - 1.

 Appendix A: Source code used in this thesis

 66

 if (tempList4{0}==startTargetList{0} &&
 tempList4{length2}==startTargetList{1}): {
 pathList = copylist tempList4.
 found=1. length4=-1.
 print (controller get-time).
 length3=|pathList| - 1 .

foreach patch in pathList: patch set-path-color.
 pathList{0} set-state-start.
 pathList{length3} set-state-target.
 }
 length4--.
 }
 }

 #Function to delete circular paths

+ to not-circular mainList mainList (list) item item (object):
 flag, length (int).
 flag=1.
 length = |mainList| - 1.
 while(length>=0): {
 if(mainList{length}) == item: flag=0.
 length--.
 }
 return flag.

 #Iterate function of the main function
 #Used to get the time elapsed in calculating paths
 + to iterate:

 if flag==0: {
 time1 = (controller get-real-time).

 self findPath.
 time2 = (controller get-real-time).
 time = time2 - time1.
 print time.

 flag=1.
 }

 }

 #Braitenberg class which created the vehicle
 BraitenbergControl : myBraitenbergControl {
 + variables:
 vehicle, Addbody (object).
 leftbackWheel1, rightbackWheel1, leftbackWheel2,

rightbackWheel2,leftfrontWheel, rightfrontWheel (object).
 obj (object).
 light1, light2, light3, light4 (object).

 Appendix A: Source code used in this thesis

 67

 start, loc (vector).
 location (float).
 flag,superb (int).
 time (float).

 #Function to move vehicle straight
 + to moveStraight:
 leftbackWheel1 set-natural-velocity to 15.0.
 rightbackWheel1 set-natural-velocity to 15.0.
 #Function to stop the vehicle
 + to Stop:
 leftbackWheel1 set-natural-velocity to 0.0.
 rightbackWheel1 set-natural-velocity to 0.0.

 #Function to move the vehicle right
 + to moveRight:
 rightbackWheel1 set-natural-velocity to 5.0.
 leftbackWheel1 set-natural-velocity to 0.0.

 #Function to move the vehicle left
 + to moveLeft:
 rightbackWheel1 set-natural-velocity to 0.0.
 leftbackWheel1 set-natural-velocity to 5.0.
 #self sleep for-seconds 10.

 #Function to move the vehicle backwards
 + to moveBack:
 #print "moving Back".
 leftbackWheel1 set-natural-velocity to -15.0.
 rightbackWheel1 set-natural-velocity to -15.0.

 #Function to make the vehicle to loc
 + to move to loc(vector):
 vehicle move to loc.

 #Function to get the vehicle position
 + to getvehPos:
 return (vehicle get-location).

 #Function to get the position of the light obstacles
 + to getlightpositions:
 lights, lightPos(list).
 light (object).

 lights = all BraitenbergLights.

 foreach light in lights: {
 insert (light get-location) at lightPos {0 }.
 }
 return lightPos.

 Appendix A: Source code used in this thesis

 68

 #Function which returns all the light objects
 + to get-all-lights:
 lights(list).
 lights = all BraitenbergLights.
 #print lights.
 return lights.

 #Function which adds a light obstacle
 + to add-light at loc(vector):
 lightobj (object).
 lightobj = new BraitenbergLight.
 lightobj move to loc.
 #loc = (2.5,0.7,-15+2.5).

 #Init function of the braitenberg class which
 #created the vehicle
 + to init:
 #self schedule method-call "add-light" at-time 1.0.
 #self schedule method-call "add-light" at-time 2.0.
 vehicle = new BraitenbergVehicle.
 vehicle set-color to (1.0, 0.0, 0.0).
 self watch item vehicle.
 loc = (0.00000+2.5, 0.70000, -5.00000+2.5).

 leftbackWheel1 = (vehicle add-wheel at (-2.5, 0, 2.5)).
 leftbackWheel1 set-color to (0, 0, 0).
 rightbackWheel1 = (vehicle add-wheel at (-2.5, 0, -2.5)).
 rightbackWheel1 set-color to (0.0, 0, 0).

 leftbackWheel2 = (vehicle add-wheel at (-0.5, 0, 2.5)).
 leftbackWheel2 set-color to (0, 0, 0).
 rightbackWheel2 = (vehicle add-wheel at (-0.5, 0, -2.5)).
 rightbackWheel2 set-color to (0.0, 0, 0).

 leftfrontWheel = (vehicle add-wheel at (1.5, 0, 2.5)).
 leftfrontWheel set-color to (0, 0, 0).
 rightfrontWheel = (vehicle add-wheel at (1.5, 0, -2.5)).
 rightfrontWheel set-color to (0.0, 0, 0).

 vehicle move to (-7.50000, 1, -12.50000).
 flag=0. superb=0.

 Addbody = (vehicle add-body at (-1,0.8,0)).

 #Iterate function of the braitenberg class
 + to iterate:

 super iterate.

 Appendix A: Source code used in this thesis

 69

}

Patch class
Patch : LifePatch {
 # Declare variables used in this class
 + variables:
 neighbors (4 objects).

 # Set the color of the start patch
 + to set-state-start:
 self set-color to (0,0,5).
 self set-transparency to 0.1.

 # Set the color of the target patch
 + to set-state-target:
 self set-color to (0,0,0).
 self set-transparency to 0.5.

 # Set the color of the patches in the path
 + to set-path-color:
 #self set-transparency to 1.0.
 self set-color to (0,1,0).

 # Set color of the other paches
 + to set-color:
 self set-color to (5,0,0).

 # Gets the patch at a location
 + to get-pach at location (vector):
 patch (object).
 patch = new PatchGrid.
 patch get-patch at-location location.
 return patch.

 # Gets the neighbors of the patch specified
 +to get-neighbors of patch (object):
 neighborList (list).
 i (int).
 i=0.

 if (patch get-patch-to-left) : {
 neighborList{i}= (patch get-patch-to-left). i++.
 }
 if (patch get-patch-to-right) : {
 neighborList{i}= (patch get-patch-to-right). i++.
 }
 if (patch get-patch-towards-plus-z) : {
 neighborList{i}= (patch get-patch-towards-plus-z). i++.
 }
 if (patch get-patch-towards-minus-z) : {

 Appendix A: Source code used in this thesis

 70

 neighborList{i}= (patch get-patch-towards-minus-z). i++.
 }

 return neighborList.

}

