

Sheffield Hallam University

Incremental Perception in
Swarm Robotics

Mir Immad ud din

M.Sc. Computer and Network Engineering
Full-Time
2005-06

First supervisor: Dr. Bala P. Amavasai
Second supervisor: Dr. Stuart Meikle

Incremental Perception in Swarm Robotics

Mir Immad ud din ii

This thesis is submitted in partial fulfilment

of the requirements for the degree of

Masters of Science

in Computer and Network Engineering

Incremental Perception in Swarm Robotics

Mir Immad ud din iii

I said to myself, I have things in my head that are not like what anyone has taught me -
shapes and ideas so near to me - so natural to my way of being and thinking that it hasn't
occurred to me to put them down. I decided to start anew, to strip away what I had been
taught.
(Georgia O'Keeffe; 1887 - 1986)

Incremental Perception in Swarm Robotics

Mir Immad ud din iv

Incremental Perception in Swarm Robotics

by

Mir Immad ud din

Submitted to the Faculty of ACES on September 25, 2006 in Fulfillment of
Requirements for the Degree of Master of Science in Computer and Network Engineering

Abstract

Incremental Perception is a novel term in Swarm Robotics, which opens a whole world

for thought and introduces many areas of research. Theme of the present work is to adapt

a Hybrid (decentralised and centralised) approach to Incremental Object Recognition by

un-intelligent Robots equipped with very few sensors (e.g. only touch sensors). These

Robots exhibit Behaviour-Based Cooperation that builds upon simple rules in absence of

any central controller, thus conforming to a Decentralized Model. Interaction via Sensing

approach is used with no communication between Robots at all. This makes the present

work unique, as the Robots not only sense the presence of an object they go ahead by

sharing it with other Robots merely relying upon their behaviour, hence the term

Incremental Perception/Object Recognition.

The work also addresses Formation and Marching problem for which a Centralized

approach has been adapted. Once Robots are ready to transport the object they have

found, their behaviour turns the model into Centralized Architecture by selecting a

‘Leader’, who would guide the swarm back home.

Modelling language Net Logo has been used to simulate and test Algorithms. The present

thesis also presents a literature survey of related work and identifies future areas with

research potential.

Project Supervisor Co-Supervisor
Dr. Bala P. Amavasai Dr. Stuart Meikle
Microsystems and Machine Vision Laboratory Nokia Research
Faculty of ACES

Incremental Perception in Swarm Robotics

Mir Immad ud din v

Incremental Perception in Swarm Robotics

Mir Immad ud din vi

Acknowledgements

I owe my success to having listened respectfully to the very best advice, and then going

away and doing the exact opposite. G. K. Chesterton (1874 - 1936) ¹

All the way through our lives, we exhibit Swarm Behaviour and hardly ever notice it. The

fact that I’ve come so far as completing my thesis for a Masters degree, is a result of

behaviours of members of swarm that have been around me who have behaved in a way

so as to support me. I am thankful to Almighty Allah for his blessings and giving me the

strength to overcome all hardships in the way, for receiving an honour that a feeble

percentage of world’s population is able to achieve.

This work would not have been possible without the never-ending support and patience

of Dr. Bala Amavasai who has not only been my supervisor, but also a source of

inspiration with endless ideas and someone who always had a way to do things in a better

way. I express my heartfelt gratitude for all his encouragement and challenging my

thoughts, guiding my mind to work in an organized way and for giving me an entirely

new professional approach.

I am thankful to the Faculty of ACES and the Sheffield Hallam University for all the help

and support that I have been receiving throughout the academic year. The knowledge and

experience that I gained during my stay is priceless, and is my most precious asset. I have

to accept that it is here that I learned what hard work really is and how important dreams

are.

I am highly indebted to all my teachers, for it is they who have made my what I am

today. I am thankful to my mother, my first teacher; Mrs. Beryl B. Franklin, one of my

junior school teachers; Mr. Chaurhary M. Amin, my physics teacher; Dr. Shahid H.

Bokhari, Operating Systems teacher who has always been a source of inspiration for me;

and Dr. Bala P. Amavasai for teaching me how to make dreams come true.

¹ well, just a quotation…..

Incremental Perception in Swarm Robotics

Mir Immad ud din vii

This work has been possible because of unseen endless efforts by a lot of people around

me. I dedicate my work to

My Father

for he didn’t tell me how to live, but he lived it himself and let me watch him do it.

(Clarence Budington Kelland)

My Mother

for she dreamt great dreams for me, and then let me chase the dreams I had for myself

and still loved me just the same.

(Author Unknown)

My Wife

for understanding my dreams and being my best friend, for standing beside me in rain

and in sunshine, for filling my life with joy and loving me without end.

(Mark Twain)

My Teachers

Give me a fish and I eat for a day. Teach me to fish and I eat for a lifetime.

(Chinese Proverb)

Dr. Shahid Bokhari

Sometimes one man with courage is a majority.

(Andrew Jackson)

Incremental Perception in Swarm Robotics

Mir Immad ud din viii

Incremental Perception in Swarm Robotics

Mir Immad ud din ix

Contents

Chapter 1. Introduction

1.1 History 1
1.2 Inspiration 2
1.3 The Project 3

1.3.1 The Swarm Behaviour 3
1.3.2 Object Recognition 4
1.3.3 Incremental Perception 4
1.3.4 Centralized Approach 4

1.4 Resources 5
1.4.1 Breve 5
1.4.2 Languages in Breve 6
1.4.3 NetLogo 9
1.4.4 NetLogo's Strengths 10
1.4.5 Limitations of NetLogo 11

1.5 Why NetLogo 12
1.6 Summary 13

Chapter 2. Theory and Related Work

 2.1 Early work on Swarm Robotics 15
2.1.1 Cellular Robotic System 17
2.1.2 The CEBOT 17
2.1.3 Alliance / L-Alliance 17

2.2 Centralized Models 18
2.3 The Decentralized Approach 18
2.4 Cooperation Mechanisms 19
2.5 EuSociality and Cooperation 19
2.6 Formation and Marching 19
2.7 Collision Avoidance 21
2.8 Summary 21

Chapter 3. Simulating Swarm Behaviour

 3.1 Assumptions 23
3.2 Architecture 24
3.3 Movement Model

3.3.1 Firefly Like Motion 24
3.3.2 Ant Like Motion 24

3.4 Cooperation 27
3.4.1 Swarm Behaviours 27
3.4.2 The Variable foundObject 27

Incremental Perception in Swarm Robotics

Mir Immad ud din x

3.4.3 The Variable foundField 27
3.4.4 The Variable isMobile 28

3.5 Fundamental Behaviours 28
3.6 Motional Behaviours 28

3.6.1 Procedure: RandomHead 29
3.6.2 Procedure: HeadCarefully 29
3.6.3 Procedure: Turn 31
3.6.4 Procedure: FindField 31
3.6.5 Procedure: FollowField 32
3.6.6 Procedure: LookForObject 32
3.6.7 Procedure: FindObject 33

3.7 Object Detection 35
3.8 Collision Avoidance 36
3.9 Potential Fields Methods 37

3.9.1 Field Strength and Radius Factor 37
3.9.2 Field Defiance 38

3.10 Robot Vision span factor 38
3.11 Object Weight and Robot Power 39
3.12 The Centralized Architecture 40
3.13 Selection of The Leader 40
3.14 Bringing Object back 40
Summary 40

Chapter 4. NetLogo and Implementation

4.1 Structure 42
4.2 Participants 43

4.2.1 The Robot 43
4.2.2 Patches 44
4.2.3 Global Variables; Globals 45

4.3 Movement Models 46
4.3.1 Ant Like Movement; Procedure Turn 46
4.3.2 Firefly Movement; Procedure RandomHead 46

4.4 Procedures 47
4.4.1 Setup 47
4.4.2 Go 48
4.4.3 Object Search 49
4.4.4 LookForObject 49
4.4.5 FindObject 50
4.4.6 RandomHead 50
4.4.7 Collision Avoidance: HeadCarefully 50
4.4.8 FindField 51
4.4.9 FollowField 51
4.4.10 Signal 52

Incremental Perception in Swarm Robotics

Mir Immad ud din xi

Chapter 5. Statistical Analysis and Results

5.1 Scalability 54
5.2 Effect of Different Factors on Convergence Time 55

5.2.1 Field Defiance 55
5.2.2 Signal Radius 56
5.2.3 Robot Power 57
5.2.4 Swarm Population 58

5.3 Shape Extraction 59
5.4 Results 61

Chapter 6. Improvements and Future Work

6.1 Improvements 64
6.1.1 Field Defiance 64
6.1.2 Behaviour of Robots in Centralised Model 65
6.1.3 Dynamic Field 65
6.1.4 Obstacle Avoidance 65
6.1.5 Object Weight as a function of Density 65

6.2 Future work 66
6.2.1 JAVA Extension for an Efficient Controller 66
6.2.2 More Movement Models 66
6.2.3 More than one Breeds of Robots 66
6.2.4 Path Planning 66
6.2.5 Fuzzy Logic 67
6.2.6 Faults and Testing 67

Appendix A: Code

References

Bibliography

Incremental Perception in Swarm Robotics

Mir Immad ud din xii

Incremental Perception in Swarm Robotics

Mir Immad ud din xiii

Figures and Images

Figure 1a. Bees foraging near a sugar-water feeder 3
Figure 1b. Ants surround a toxic gel 3

Figure 2. Khepera II Robot; 70 x 30 mm, 80g 5
Figure 3. The breve software architecture 8
Figure 4a. Migrating Trumpeter Swans in V shape formation 20
Figure 4b. Ants forage around a food source 20
Figure 5. Firefly Like Motion of Robots 25
Figure 6. Ant Like Motion 26
Figure 7. RandomHead 29
Figure 8. Flow Chart: HeadCarefully forms the base of collision avoidance 30
Figure 9. NetLogo statements for collision avoidance 30
Figure 10. Flow Chart: Method Turn 31
Figure 11. Flow Chart: FindField 31
Figure 12. Flow Chart: FollowField 32
Figure 13. LookForObject 33
Figure 14. FindObject 34
Figure 15. Object Detection 35
Figure 16. Collision Avoidance 36
Figure 17. The Potential Field 37
Figure 18. Robot Vision Span Factor 38
Figure 19. Ant Like Movement explained 39
Figure 20. Procedure: Setup 47
Figure 21. Procedure: Go 48
Figure 22. Shape extraction for a Bar shaped object 59
Figure 23. Shape extraction for ‘L’ shaped and ‘+’ shaped objects 59
Figure 24. Shape extraction for an ‘X’ shaped object 60

Tables

Table 1. The Robot Variables 43
Table 2. Frequently used turtle primitives 44
Table 3. The Patch Variables 44
Table 4. Global Variables 45
Table 5. The Procedure Turn explained 46
Table 6. The Procedure RandomHead explained 47
Table 7. Variables initialized by Setup, directly and indirectly 48
Table 8a. Procedure LookForObject explained 49
Table 8b. Procedure LookForObject (continued) 49
Table 9. Procedure FindObject explained 50
Table 10. Procedure HeadCarefully 50
Table 11. Procedure FindField 51
Table 12. Procedure FollowField 51
Table 13. Procedure Signal 52
Table 14. Robots in a Potential Field 64

Incremental Perception in Swarm Robotics

Mir Immad ud din xiv

Graphs

Graph 1: Field Defiance vs. Convergence Time 55
Graph 2: Signal Radius vs. Convergence Time 56
Graph 3: Robot Population vs. Convergence Time; fixed population 57
Graph 4: Number of Robots required vs. Convergence Time 58

Equations

Equation 1. Heading in Ant Like Motion 24
Equation 2. Field Strength 37
Equation 3. Field as a function of distance from origin 52
Equation 4. Object Density function 65

Incremental Perception in Swarm Robotics

Mir Immad ud din xv

Incremental Perception in Swarm Robotics

Mir Immad ud din 1

Chapter 1.

Introduction

1.1 History

Swarm or Swarm Behaviour are terms used by people from a diverse domain of research

interests, ranging from Biology, Military, Cooperative Robotics and Artificial

Intelligence. Biologists use Swarm to define cooperative behaviour of insects and some

other animals. This term has also been used by Military Historians to define battlefield

tactics.

In an arena of cooperative Robotics, the term was introduced by Gerardo Beni (1988) to

describe his work on Cellular Robotic Systems. It has since been used to describe a

variety of behaviours and approaches in areas as diverse as Biology (cooperative

behaviour of insects), Military Tactics, Robotics and Distributed Artificial Intelligence.

Many explanations have emerged for the term, each adapted by a different set of

technologists working in different fields. Parunak (2003) states that Biologists use Swarm

to define “decentralised self-organizing behaviour of (usually simple) animals” whereas

Military Historians use it to describe “a battlefield tactic that uses decentralised pulsed

attacks”.

Incremental Perception in Swarm Robotics

Mir Immad ud din 2

Hackwood and Beni (1991) classify Swarm intelligence as a property of system of non-

intelligent Robots exhibiting collectively intelligent behaviour.

Bonabeau et al. (1999) have defined Swarm Robots as distributed problem solving

devices inspired by collective behaviour of social insect colonies and other animal

societies.

Whatever may the definition be, the basic idea in one way or the other is inspired by

Decentralised Cooperative behaviour of social animal specie. This behaviour in general is

simple (like in ants) but gives rise to complex patterns.

1.2 Inspiration

Earliest work on Swarms comes from the research on Social Insects. Biologists have long

been inspired by cooperative behaviours of insects like Ants and Bees, which led to

intense research on their behaviours. It was realised that although the collective

behaviour of these insects may seem very complex (Figure 1), yet was based upon very

few simple rules.

The existence of Ants and Bees as some of the most successful species on the planet has

probably been the strongest inspiration behind adapting a Swarm approach in

Cooperative Robotics. The term ‘Swarm’ was first used by Beni in his work on Cellular

Robotic System and has since persisted to describe a Decentralised approach to

Collaborative Robotic Applications.

Swarm and Swarm Intelligence are now being used in a variety of disciplines. Wedde and

Farooq (2005) have applied a Swarm approach in their Mobile ad-hock Network model,

Cianci and Martinoli (2005) present their work on load balancing in sensor networks.

Montemanni and Gambardella (2005) adapt a Swarm approach to solve connectivity

Incremental Perception in Swarm Robotics

Mir Immad ud din 3

problem in wireless networks while Wan et al. (2005) have presented a flexible

distributed network partitioning solution.

(a) (b)

Figure 1: (a) Honeybees forage near a sugar-water feeder doped with explosives stimulants, part
of bee-training experiments at Sandia National Laboratories. (b) Ants surround a toxic gel
mistaken that it is a food source. Toxic gels like this are an effective remedy from ants as it is fed
to offspring as well, thus destroying the whole ant colony.

1.3 The Project

The present project establishes a technique called ‘Incremental Perception’ for object

recognition in a Swarm of Robots. Incremental perception is the information built-up and

shared by Swarm of simple Robots (equipped with merely touch sensors and no visual

device) to collectively recognize an object as their target. There is no explicit

communication between the Robots and the information being shared is only through

display of behaviours.

1.3.1 The Swarm Behaviour

Each Robot displays a small set of simple yet consistent behaviours which gives rise to a

complex colony. The agents wander around in the world looking for an object, unaware

by the presence of other Robots. If however two Robots come close enough such that

Incremental Perception in Swarm Robotics

Mir Immad ud din 4

there is a possibility of collision between them, they turn around and adapt a different

route. The model behaves in a Decentralised fashion until the first Robot finds an object.

1.3.2 Object Recognition

Robots have a finite field of adjustable vision. At each step during their motion, they look

around in a pre-defined way to check whether they can see any object. As soon as the

first Robot finds an object, it becomes stationary and creates a Potential field around it.

We will see in Chapter 3 that this Robot behaves as the leader. Any other Robots entering

the Potential field recognize its presence and try to move in a direction downhill with

respect to the field, as it is the direction in which the field originates from. While moving

within the potential field, Robots maintain a factor of randomness that can be controlled

externally.

1.3.3 Incremental Perception

Any member of the Swarm that locates an object in presence of a potential field will

assume that it is the same object that one or more members have previously found, as a

field can only exist after at least one Swarm member finds an object. It thus adds to the

task by informing Master Controller about its coordinates as soon as it locates the object.

Please note that the master controller has not played any role yet and the Swarm has

behaved in a purely Decentralised fashion.

1.3.4 Centralised Approach

The Swarm can now behave in two ways. It can either wait for the master node to analyze

the information from stationary Robots and extract the shape of object before taking any

decision about moving the object back home. Second behaviour can be like African Ants,

which try to bring back any object that they find during an attack. The present model has

applied a hybrid approach; it started with a Decentralised architecture, and is ready to

turn into Centralised as soon as the swarm finds the target object. Rules for this change

have carefully been designed. Please note that this change is in terms of the way the

Swarm behaves under special conditions outlined above.

Incremental Perception in Swarm Robotics

Mir Immad ud din 5

Figure 2: Khepera II Robot; is a
70 x 30 mm, 80g Robot with 8

IR sensors and 512 KB RAM.

1.4 Resources

This project is simulation based with a possibility of

extension to a hardware application in the form of

development of a new Robot, or testing of

algorithms on available Robots like Khepera

(Figure 2).

There were many options available for the choice of

simulation language with the possibility of

developing the model in a general purpose

programming language like C or Java. However, in

the later case, most of the efforts would have been

spent in details of developing the modelling

environment i.e. the agents, world and rules for

their interoperability. Thus choice had to be made between one of modelling languages

available, namely breve and NetLogo.

1.4.1 Breve

The Breve project started at Hampshire College as a thesis by Jon Klein, however major

developments in the modelling environment came during his stay at Chalmers University.

The system has experienced vast acceptance by researchers working on Genetic

Algorithms and Evolutionary Models.

Breve allows simulation of evolving multiple agents for whom user defined behaviours

govern their life in a 3D environment.

It is a free simulation environment designed for multi-agent simulations that allows users

to define the behaviours of autonomous agents in a continuous 3D world, and then

observe how they interact. It also supports a visualisation engine, possibility to integrate

physical laws into the simulation and uses easy-to-use scripting languages. (Klein J,

2003)

Incremental Perception in Swarm Robotics

Mir Immad ud din 6

The world in breve is a 3D space, hence facilitating 3D spatial simulations. The agents

can occupy this 3D space and use it to move about and show predefined behaviours.

These agents can also be made to comply with simple physical laws, hence making

simulations more close to a real world. This 3D spatial environment makes breve

different from many simulation languages that offer a 2D environment for their agents.

(Klein, J. 2003, breve Documentation: version 2.4; Section 2.1.2)

By enabling the feature of Physical Laws into a simulation, breve agents can be forced to

behave like real life objects in a real world. For example, a ball may be placed in the air

and physical simulation can be used to make the ball realistically fall toward the floor and

bounce. Among other things, physical simulation can be used for realistic simulation of

Robots, vehicles and animals.

This ODE Physical Simulation Engine (Figure 3) makes breve a strong candidate for

simulating real life phenomenon by allowing programmers to test their models and see

how they would behave in real life. However the documentation suggests that enabling

the feature may make the model considerably complex, and devotes Section 7.1 to

discuss scenarios where the use of such a model would be appropriate.

1.4.2 Languages in Breve

The steve Language

The breve simulations are normally written in ‘steve’, an object-oriented language that

allows programmers to quickly structure sophisticated simulations while shunning

overheads of programming in a general purpose programming language. The steve

objects can either appear in the simulated world, or they can be abstract and used for data

storage or any other purpose other than appearance in the simulated world. The language

is described chapter 3 of breve documentation. (Klein J. 2003, Documentation: version

2.4)

Incremental Perception in Swarm Robotics

Mir Immad ud din 7

Push

The Push programming language was developed specifically for genetic and evolutionary

computation. Among its qualities for such applications is its combination of an unusually

simple syntax with the ability to work flexibly with multiple datatypes. (Spector et

al.2005)

Genetic programming in breve is now done with the aid of Push, which has an additional

feature of being an evolvable language.

Programs written in Push are evolved with the aid of a system called the PushGP. It has

been used for a variety of applications, ranging from intelligent agent design to automatic

quantum computer programming. Features include:

o Multiple data types without constraints on code generation or manipulation.

o Arbitrary modularity without constraints on code generation or manipulation.

o Evolved module architecture with no extra machinery.

o Support for explicit, arbitrary recursion.

o Support for ontogenetic "development" of code as it runs, via code-manipulation

instructions.

The Push3 EXEC stack supports powerful and parsimonious control regimes through

explicit manipulation of the stack of expressions that are queued for execution. These

control regimes include standard iteration, several forms of recursion based on code

manipulation, combinators, and named subroutines, and less conventional strategies that

are difficult to classify. A straightforward genetic programming system that produces

Push3 programs (PushGP) can routinely produce solutions that incorporate a range of

these control regimes; examples were provided here for reversing and sorting lists and for

computing factorials, Fibonacci numbers, powers of 2, and parity. Application of these

techniques to real-world problems is currently in progress. (Spector et al.2005)

Incremental Perception in Swarm Robotics

Mir Immad ud din 8

Figure 3: The breve software architecture; Image source: Breve Documentation: version 2.4
Chapter 14: ‘The breve Source Code’

Incremental Perception in Swarm Robotics

Mir Immad ud din 9

1.4.3 NetLogo

Currently under development at CCL (Centre for Connected Learning and Computer-

Based Modelling), NetLogo is a cross-platform multi-agent programmable modelling

environment developed by Uri Wilensky in 1999. It is developed on Java platform

(version 1.4.1) and thus inherits many features of the parent language like portability,

garbage collection and the strict math library. It is released under a license that appears to

be much liberal by allowing unrestricted use (including commercial use) but there are

some restrictions on redistribution and/or modification. (Wilensky 1999)

Wilensky (1999) states that NetLogo offers deterministic scheduling algorithms and uses

Java's strict math library, both features make it an ideal choice for modelling of real time

phenomenon. Being Java based, and running on a JVM instead of underlying operating

system, NetLogo simulations give identical results irrespective of underlying operating

system and hardware. It has widely been used to simulate natural phenomenon and real

life scenarios, some of which appear in the models library.

Although it works in the fashion of run time interpreted languages, but does include a

compiler. The compiler does not produce native code or Java byte code rather it produces

a custom intermediate representation that can be interpreted more efficiently than the

original code. The NetLogo team claims that they are working on a compiler that would

generate a byte code for Java’s just in time compiler. (Wilensky 1999)

A NetLogo installation can be run from a read-only file system like a CD-ROM or a

DVD-ROM. The modelling environment has widely been used to simulate real life

scenarios, cooperative and eusocial agent colonies and foe analysing communal

behaviours.

Incremental Perception in Swarm Robotics

Mir Immad ud din 10

1.4.4 NetLogo's Strengths

Java

Having an underlying Java platform itself brings many useful features, namely Platform

Independence, Architecture Independence, Garbage Collection, and possibility to use

strict math Library.

BehaviourSpace

Integration of BehaviourSpace is one of the features that make NetLogo an ideally

convenient option for simulation. It is a software tool that allows running a single model

over and over again with different system parameters. This along with file I/O makes is

exceptionally easy to output data from a model for statistical analysis and lets the

programmer explore the model's space of possible behaviours. (Wilensky 1999a)

The GoGo Board

GoGo Board is an externally serially interfacable hardware that contains sensors, motors,

light bulbs, LEDs, relays and certain other devices. It is an open source general purpose

board designed by Arnan Sipitakiat at the MIT Media Lab. The GoGo Board has 8 sensor

ports and 4 output ports, and also a connector for add-on boards. Using the GoGo Board

extension, NetLogo models can interact with the physical world in two ways. First, it can

gather data from the environment, such as temperature, ambient light, or user input. This

information can be used by the model to change or calibrate its behaviour. Secondly, it

can control output devices - NetLogo could control motors, toys, remote controlled cars,

electrical appliances, light bulbs, and automated laboratory equipment. (Wilensky 1999a)

Shapes Editor

The Shapes Editor allows creating and saving turtle designs. NetLogo uses fully scaleable

and rotatable vector shapes, which means it lets you create designs by combining basic

geometric elements, which can appear on-screen in any size or orientation. (Wilensky

1999a)

Incremental Perception in Swarm Robotics

Mir Immad ud din 11

 System Dynamics Modeller

System Dynamics is a concept different from the normal agent-based approach and

allows the designer to understand how things relate to one another. An agent-based model

allows the designer to set the behaviour of agents and to define the behaviours of

populations of agents. (Wilensky 1999a)

HubNet Architecture

HubNet is a technology that allows NetLogo to run client-server based distributed and

interactive simulations. The activity leader uses the NetLogo application to run a HubNet

activity.

There are two types of HubNet available. With Computer HubNet, participants run the

HubNet Client application on computers connected by a regular computer network. In

Calculator HubNet, created in conjunction with Texas Instruments, participants use TI-

83+ graphing calculators as clients that communicate via the TI-Navigator system.

(Wilensky 1999a, c)

1.4.5 Limitations of NetLogo

o Integers in NetLogo must lie in the range −2147483648 to 2147483647; this range if

exceeded gives incorrect results instead of an error.

o The uphill and downhill reporters sometimes return incorrect answers for turtles

which are standing on patch boundaries; NetLogo team is already working to fix it

and recommends uphill4 and downhill4 primitives instead.

o The 3D View doesn't work on some graphics configurations; on others the 3D View

works but 3D full screen mode doesn't.

Incremental Perception in Swarm Robotics

Mir Immad ud din 12

1.5 Why NetLogo

Tobias and Hofmann (2004) suggest that Breve is not suitable for simulating social

behaviour in groups of multiple agents, while NetLogo is classified as well suited for

modelling complex systems developing over time. (Pozdnyakov 2006)

NetLogo basically is a programmable modelling environment for simulating interactive

social and natural phenomenon, which can theoretically accommodate heavily populated

models of up to thousands of agents, a feature that makes it ideal for Swarm simulations.

License under which NetLogo is released is liberal and allows unrestricted use. The free

modelling environment can even be used for commercial purposes.

Deterministic Scheduling Algorithms have been used that make it an ideal choice for

modelling of real time phenomenon.

NetLogo simulations give identical results irrespective of underlying operating system

and hardware. This along with the fact that NetLogo models can be run as applets, allows

the ease of demonstration to a wide audience while producing the same results.

Incremental Perception in Swarm Robotics

Mir Immad ud din 13

Summary

Cooperative/Swarm Robotics are areas that have heavily been inspired by behaviours of

eusocial insect colonies. The present work presents a decentralised model that builds

upon low-level behaviours of Homogeneous Robots. Robots move around in the world,

aware of their own location but unaware of the presence of other Robots. It is only when

two Robots come very close to each other that they realize the presence of another agent.

The Swarm has a clearly defined task, finding an object and after recognizing it as its

target, try to bring it back. The task is accomplished without the aid of any visual device.

The model is simulated in NetLogo, which is one of the modelling languages of StarLogo

series.

Incremental Perception in Swarm Robotics

Mir Immad ud din 14

Incremental Perception in Swarm Robotics

Mir Immad ud din 15

Chapter 2.

Theory and Related Work

Swarm Intelligence is described as "to design a system that while composed of un-

intelligent units, is capable, as a group to perform tasks requiring intelligence, the so-

called Swarm intelligence". (Beni and Wang 1989)

Most of the work found on Object Recognition in Robotics/Multi Robotics involves the

use of a visual device (usually a camera) and high level image processing algorithms that

require intense computing resources (Tuytelaars et al. 2000). The work presented in this

thesis is unique in the context that it uses un-intelligent Robots with sensors as simple as

touch sensors. The object recognition, here, is a result of cooperative behaviours

exhibited by the swarm without using any sophisticated image processing technique. The

movement of Robots themselves helps to extract the shape of object / target. This chapter

briefly discusses the Swarm Robotics in general, and topics like Behaviour Based,

Centralised / Decentralised Architectures in particular, and lets the reader appreciate the

novelty of technique described in Chapters 3 and 4.

2.1 Early work on Swarm Robotics / Cooperative Robotics

Swarm Robotics evolved from Cooperative Multi-Robotic Systems, in fact the term

Swarm was first used by Beni in his work on Cellular Robotic Systems (Beni 1998). The

study of Cooperative Robotics dates back to 1940s when Walter et al. started exploring

Incremental Perception in Swarm Robotics

Mir Immad ud din 16

the cooperative behaviour of turtle-like Robots equipped with touch and light sensors

(cited in Wiley-Interscience 1990).

Reynolds (1993) evolved the control system of a group of Robots placed in an

environment with static obstacles and a manually programmed predator for the ability to

avoid obstacles and predation. Despite the results described in the paper are rather

preliminary, some evidences indicate that coordinated motion strategies began to

emerge. (Reynolds 1993 cited by Theraulaz et al. 1999)

Baldassarre (2002) evolved a group of Robots to aggregate and move together towards a

light source. He says, "The main advantage of evolution of group of Robots is that it is an

ideal framework for synthesizing Robots whose behaviour emerge from a large number

of interactions among their constituent parts."

Theraulaz and Bonabeau (1995) evolved a population of constructor agents who

collectively build a nest structure by depositing bricks according to their perception of the

local environment and to a set of behavioural rules.

Theraulaz et al. (1999) attempted to design algorithms for distributed problem-solving

devices inspired by the collective behaviour of social insect colonies, such as ants.

Martinoli (1999) used artificial evolution to synthesize the control system of a group of

simulated Khapera Robots (Mondada et al. 1993) that were asked to find food

items randomly distributed on an arena.

In the attempt to study the evolutionary origin of herding, Werner and Dyer (1993) co-

evolved two populations of predators and prey creatures that were selected for the ability

to catch prey and to find food and escape predators respectively. (Werner and Dyer 1993

cited by Theraulaz et al. 1999)

Ward et al. (2001) evolved groups of artificial fish able to display schooling behaviours.

Incremental Perception in Swarm Robotics

Mir Immad ud din 17

2.1.1 Cellular Robotic Systems

Work on Cellular Robotic System laid the foundation of Swarm Robotics. The cellular

Robotic system of Beni (1989) has many agents that behave in a way so as to produce

pattern generation and self-organization. Self-organization was defined as a property of

the agents of a system to distribute themselves optimally for a given task.

2.1.2 The CEBOT

Cellular Robots (CEBOT) is a Dynamically Reconfigurable, Fault Tolerant, Self-

organizing, Self Evolving system. Designers of the system have given it a wide range of

properties to produce a multiple Robotic system with distributed autonomous Robots who

are able to show swarm/collective behaviours. CEBOT consists of many basic functional

units and has been used to experiment with intelligent control and system architecture.

CEBOT has been recommended for a variety of applications like space applications,

intelligent transportation systems and intelligent manufacturing systems etc. Owing to

Micro Manufacturing Technology and Nano Electro-Mechanical Systems (NEMS),

CEBOT can be extended to micro-robotic applications. (Fukuda 2004)

2.1.3 Alliance / L-Alliance

Developed by Parker (1994a) as his PhD. project, Alliance consisted of Independent

Heterogeneous agents. It is a behaviour-based model in which communication between

agents enables them to (limitedly) interpret the affects of behaviour of other agents. In his

PhD Thesis (Parker 1994b) he presents L-Alliance, an extension to the original Alliance

model, which uses reinforcement learning to adjust the parameters controlling behaviour

set activation.

Alliance/L-Alliance model has widely been used to analyze several Marching and

Formation problems, both in simulation and on Hardware.

Incremental Perception in Swarm Robotics

Mir Immad ud din 18

2.2 Centralised Model

Yao et al. (1997) say that the most fundamental decision to be made while defining group

architecture for a multi-Robotic system is whether the system should be centralised or

decentralised. It is further suggested in the same work that a single control agent

dominates centralised models, where as decentralised architectures lack any such control

rather the control itself is distributed amongst the agents.

This however must not be confused with the concept of homogeneity or heterogeneity of

agents, which is a separate issue discussed in a later section of this document.

2.3 The Decentralised Approach

A decentralised model works in the absence of any central controller and is often

characterized by having self-learning and self-organizing capabilities. Yao (1997) states

that although a decentralised model has widely claimed benefits of Fault Tolerance,

Natural Exploitation of Tolerance, reliability and scalability, yet there is no empirical or

theoretical evidence of such a claim.

The decentralised approach emerged as a result of inspiration by social insects such as

termite and ants. Melhuish et al. (1998, cited by Wessnitzer et al. 2001) demonstrated

object sorting using minimalist Robots and algorithms. Stigmergy was used to achieve

self-organising behaviour in mobile Robots. Change in behaviour of one Robot

influenced the actions of other Robots. The model did not use any explicit

communication mechanism and the Robots used information about/from their

environment only to communicate and achieve puck sorting.

In practice, most systems do not conform to a strict Centralised or Decentralised

architecture, rather behave in a hybrid way.

Incremental Perception in Swarm Robotics

Mir Immad ud din 19

2.4 Cooperation Mechanisms

Beni et al. (1991) phrase the problem of interaction as follows: “the essence of the DRS

(Distributed Robotic System) problem is to design a system that while composed of

unintelligent units, is capable, as a group to perform tasks requiring intelligence; the so

called ‘swarm intelligence’”.

Given some task by a designer, a Multiple Robotic System displays cooperative

behaviour if, due to some underlying mechanism (the mechanism of cooperation) there is

an increase in the total utility of the system. (Cao et al.1997)

2.5 EuSociality and Cooperation

McFarland (1994) classifies group behaviours into two types, Eusocial and Cooperative.

Eusocial behaviour, as suggested, is exhibited by social insects (bees and ants) where

individuals are not very capable but complex behaviours evolve out of their interactions.

In the same paper, McFarland says that cooperative behaviour is exhibited by certain

intelligent animals; it is not motivated by innate behaviour but by an intentional desire to

cooperate in order to achieve individual utility.

2.6 Formation and Marching

The concept of Formation has been borrowed explicitly from behaviours exhibited by

Eusocial Insects and some higher-level animals. Trumpeter Swans are famous for

migrating while forming a ‘\/’ shape (Figure 4). Wolves are best known for surrounding

and hence trapping their prey. Ants frequently form straight trails while moving between

their nest and food/prey, mainly owing to pheromone fumes. African soldier ants are best

known for marching in formations of hundreds of thousands, and attacking prey that is

1000s of times larger than the ant itself.

Formation or Pattern Formation is defined by Bahceci et al. (2003) as the coordination of

a group of Robots to get into and maintain a formation with a certain shape, such as a

wedge or a chain.

Incremental Perception in Swarm Robotics

Mir Immad ud din 20

Formation mechanisms occurring in nature have been studied intensively and have

provided the grounds for their implementation in Artificial Intelligence. Solutions to

formation can exist both in a Centralised as well as Decentralised fashion. Egerstedt et al.

(2001) has demonstrated how to move a group of Robots in a desired formation over a

given path. Koo and Shahruz (2001) have suggested a formation strategy for Un-manned

Aerial Vehicles. They have adapted Centralised Architecture in which only leader has the

decision-making capability while the rest simply follow. Robots are heterogeneous with

leader equipped with cameras and other sensors absent in rest of UAVs.

A target assignment strategy for formation-building problem is described by Kowalczyk

(2002), which assigns each Robot in a group of scattered Robots a target that has some

meaning in the final formation. All the future movements of Robots are based upon these

target locations.

A trajectory computation technique based upon kinetic energy shaping has been

suggested by Belta and Kumar (2002, cited by Bahceci et al. 2003)

(a) (b)
Figure 4: (a) Trumpeter swans flying in ‘V’ formation, often seen during their migrations. (b)
Ants formation around food.

Incremental Perception in Swarm Robotics

Mir Immad ud din 21

2.7 Collision Avoidance

Mataric (1992a,b) looks at avoidance, aggregation and dispersion, combined to create an

emergent flocking behaviour in groups of wheeled Robots. Albert uses a minimal

speed/heading mechanism to demonstrate a collision avoidance strategy.

2.8 Summary

Starting with Beni’s work in 1988, Swarm Intelligence and Swarm Robotics are areas

that have widely attracted attention of scientists, most of them being those who were

already involved in cooperative multi-robotics and artificial intelligence. The overview of

present literature presents many problems; some already resolved, some partially solved

and many of them yet be looked at by researchers.

A topic being out of scope of present work and hence not been discussed, is performance

measures of a swarm, or rather the criterion for measuring the performance of a swarm.

Lerman and Galstyan (2002) discuss the topic slightly, but it still needs attentions and is

an area with tremendous research potential.

Incremental Perception in Swarm Robotics

Mir Immad ud din 22

Incremental Perception in Swarm Robotics

Mir Immad ud din 23

Chapter 3.

Simulating Swarm Behaviour

This chapter highlights high-level behaviours of Robots, which are governed by low level

procedures discussed in Chapter 4.

3.1 Assumptions

For the project, certain careful assumptions have been made. However, practicality has

been the major concern and any idea reckoned impractical for a real world hardware

implementation has been avoided.

Robots are Homogeneous and each Robot is aware of its location within the world. On a

macroscopic level, this might be implemented by GPS or some other suitable technology.

On a microscopic level, such as for millimetre sized Robots, this mechanism may be

implemented by using potential fields in case of decentralised approach, whereas in the

case of a centralised architecture, an RTT (Real Time Tomography), CT Scan or any

other suitable mechanism may be used. The controller can take over as soon as the first

Robot finds the object.

Incremental Perception in Swarm Robotics

Mir Immad ud din 24

3.2 Architecture

The algorithms designed during the project, and hence the overall architecture is hybrid

i.e. it behaves both in a Centralised and Decentralised fashion. The model consists of

Homogeneous Robots and starts in a Decentralised way. During the time that model

behaves decentralised model, there is no Central Monitor or Controller.

The Robots follow their instincts, which have explicitly been defined in their governing

algorithms. These instincts or behaviours, although a small set of simple rules, gives rise

to an overall complex behaviour of the community.

3.3 Movement Models

These are low-level behaviours each Robot must show. These behaviours are not related

or shared with other Robots, but may sometimes be affected by some surrounding

individuals. These behaviours are responsible for depicting Ant like or Firefly like

movement of Robots (or any other movement that may later be added); search for object,

creating potential fields and following them.

3.3.1 Firefly like Motion

Firefly like motion exhibited here is more or less Brownian motion. At every point during

its motion, a Robot can head in any direction, i.e. its next step can be at any angle from

the set of 360 degrees, which makes Robots move along trajectories shown in Figure 5.

3.3.2 Ant like Motion

Ant like motion is complex than Firefly like; it is interesting, more realistic and can be

customized according to requirements of a real Robot. The movement is governed by the

factor robotVisionSpan which can manually be adjusted. Next step of a Robot

following this type of motion is in a direction bound by region

currentHeading + (1)

The decision for ‘+ive’ or ‘-ive’ direction is random, and is made by ‘rt’ or ‘lt’

NetLogo primitives, which will be discussed in detail in Chapter 4.





−

+

nSpanrobotVisio

nSpanrobotVisio

Incremental Perception in Swarm Robotics

Mir Immad ud din 25

Ants tend to move along straight lines with random right and left turns, resulting in a

movement shown in Figure 6.

Firefly like Motion

(a) (b)

(c) (d)

Figure 5: Firefly like motion is similar to Brownian motion. At every step during their motion,
Robots can adapt a random heading and move ahead. The lines show large angles at which
Robots turn during executing Firefly like motion. Above Simulation was run with only three
Robots and shows that a wide area is covered by Robots while they search for an object.

Incremental Perception in Swarm Robotics

Mir Immad ud din 26

Ant like Motion

(a) (b)

(c) (d)

Figure 6: While moving, Ants have a limited field of vision. The angle of vision of Ants also
limits the angle over which they may turn while moving. This results in long distances covered by
ants before turning at reasonable angle to change the heading, resulting in a pattern with long
lines and usually small turn angles. Note that a small factor of randomness has been introduced
that makes Ants turn at sharp angles.

Incremental Perception in Swarm Robotics

Mir Immad ud din 27

3.4 Cooperation

3.4.1 Swarm Behaviours

Robots show different behaviours, mainly Search Object, Try to Touch Object, Avoid

Collisions with Other Robots, Surround Object and Transport it Back. Type of behaviour

currently being exhibited can be found by Robot breed’s ‘own’ variables corresponding

to each behaviour, namely

o foundObject

o foundField

o isMobile

3.4.2 The Variable foundObject

Initialized to false, this variable shows whether the Robot has found any Object or not.

When false, a Robot can be searching for object outside or inside the potential field

which is represented by patch-variable ‘field’, generated by another Robot. As soon as

a Robot finds an object, this variable is set to true. Some important actions like

generating a field depend upon this variable.

3.4.3 The Variable foundField

This variable is set to true as soon as a Robot enters potential field created by another

Robot that has already found an object. A Robot with foundField true shows different

behaviour from the rest of swarm. fieldDefiance may be used to change behaviours

of these Robots. They may only move about while going downhill within the potential

field (low value of fieldDefiance) or may have a randomness factor that allows them

to distract from the aforesaid behaviour, thus increasing the chance to escape the field.

Incremental Perception in Swarm Robotics

Mir Immad ud din 28

3.4.4 The Variable isMobile

All Robots are initially mobile (i.e. isMobile true). As soon as a Robot touches an

object, it goes into immobile state (isMobile false). Only mobile Robots are allowed

to move, with the exception being when the architecture turns into Centralised. When the

power of Robots surrounding an object increases weight of the object, they start heading

towards home, irrespective of value of the variable isMobile. This movement will be

in a formation determined by the shape of the object.

Overall behaviour of the swarm is a result of multiple individual behaviours. Below

follows a discussion.

3.5 Motional Behaviours

Individually, Robots show simple behaviours while they move around. These behaviours

are:

o Before taking the next step, check whether there is a Robot, object or field present.

o If there is an object ahead, you do not need to move anymore. Just tell the controller

that you have found an object. Try to lift the object.

o If there is a Robot ahead, change your heading and try to move again

o If a field can be sensed, enter it and try not to leave it. Go downhill.

o Try to touch object and avoid collisions with other Robots.

Motional behaviours appear as a result of low-level functions namely:

o RandomHead

o HeadCarefully

o Turn

o FindField

o FindObject

o FollowField

o LookForObject

Incremental Perception in Swarm Robotics

Mir Immad ud din 29

3.6.1 RandomHead

RandomHead and HeadCarefully methods together

determine the basic Movement Model i.e. Firefly like or

Ant like. N.B. any other models that may be added in

future will be governed by these two methods.

RandomHead checks the variable movementModel.

Possible values are

1; Firefly like Motion

2; Ant like Motion

For firefly like motion, a random heading is selected.

set heading random 360

This sets the variable to a random in the range

0<heading < 360.

For Ant like motion, the method HeadCarefully is directly called without any change

in heading. Heading for Ant like movement is taken care of in HeadCarefully itself.

3.6.2 HeadCarefully

This is the second method contributing to Robots’ movement models. It starts by

checking whether it is safe for the Robot to move (Figure 8). Instead of looking at safe

conditions (Figure 9), let's define unsafe conditions in which a Robot cannot move.

o there is a Robot ahead

o there is an object ahead, an area of which is not being looked at.

o there is an object ahead, an area of which being looked at.

Method: RandomHead

is

movement model
Firefly like

?

select a random

heading

YES

Method: HeadCarefully

NO

Figure 7: RandomHead plays
vital role in Robots’ basic
movement model. It is the core
method that gives rise to

collision avoidance Behaviour.

Incremental Perception in Swarm Robotics

Mir Immad ud din 30

These conditions are checked with

quite ease in a single line NetLogo

statement (Figure 9).

An object is identified by yellow

coloured patches, while an area of

object being looked at by a Robot

turns blue.

If it is not safe for a Robot to move

ahead, it selects a random heading

for its next step forward (but does

not move, until the condition for

safety is checked again) and

returns. This causes Robots to turn

at large angles while observing Ant

like movements in which Robots

usually turn at small angles.

Figure 9: NetLogo statement for collision avoidance; ifelse requires two blocks of statements, one
for the case when condition is true, and second when the condition is false. Note the ease in
which a condition for very complex behaviour is checked.

ifelse(any? turtles-on (patch-at-heading-and-distance heading 1))

or (pcolor-of patch-at-heading-and-distance heading 1 = yellow)

or (pcolor-of patch-at-heading-and-distance heading 1 = blue)

Figure 8: HeadCarefully forms the base of
collision avoidance. The function also
contributes to deadlock prevention under
normal conditions. The system does not
prevent deadlocks, but allows them to occur

and the algorithm takes care of them

is it

safe to move
?

YES

Method: HeadCarefully

select a random heading

NO

return

Is

movement model

firefly like?

NO

Method: Turn

Move one step forward

Incremental Perception in Swarm Robotics

Mir Immad ud din 31

is

there any potential

field
?

look at patch

immediately ahead

Method: FollowField

Method: FindField

3.6.3 Turn

Only valid for Ant like movement

model. The method uses random

number generator and based on the

result (random 100 mod 2), takes

decision to head right or left using:

rt (or lt) random

RobotVisionSpan

Turn limits the turning angle of

ants directly and vision span

indirectly and can be controlled externally by the variable robotVisionSpan.

Please note that robotVisionSpan has no effect in case of Firefly like motion.

3.6.4 FindField

The method FindField looks at the patch

immediately ahead for any trace of potential

field. field is a patch variable, i.e. potential

field exists in the world as a variable whose

value is set by Robots (Figure 11). If a Robot

finds field, it simply tries to move downhill

by calling FollowField. Again, the check

for field is a single NetLogo statement:

if field-of patch-ahead 1 > 0

The foundField variable of a Robot that has

entered or touched the field is true.

foundField apparently is not significant, but

the whole idea of the term ‘Incremental’

perception depends upon this variable.

is
random value = 1

?

turn right at an angle
<0 - robotVisionSpan>

turn left at an angle
<0 - robotVisionSpan>

YESNo

Method: Turn

Figure 10: Turn; The method sets heading within a

span of current heading + RobotVisionSpan

Figure 11: FindField, simple
yet critical.

Incremental Perception in Swarm Robotics

Mir Immad ud din 32

Any Robot that finds an object with this variable already set to true, will believe that it is

looking at a segment of the object, a part of which is already being looked at by another

Robot. The Robot informs controller about its location and thus increments the overall

perception.

It was mentioned earlier that all the variables used in present model could be mapped to a

real life parameter and all behaviours to real life behaviours. FollowField can be

implemented in hardware as a means to detect potential field, which may simply be a

radial Electromagnetic Field.

3.6.5 FollowField

This method sets the heading of calling Robot in a

direction of increasing potential field. It calls the

method HeadCarefully (already discussed) so

that the Robot may continue to move according to

its movement model.

It will later be seen that potential fields exist

merely as a variable, a patch variable to be

precise. Distribution of this variable as a function

of distance from a calling Robot results in an

attractive force which attracts every near by Robot

towards the Robot that created the field. It may or

may not yet be known whether the present object

is the required object or not.

3.6.6 LookForObject

NetLogo world is divided into patches, which have been given a white colour. An object

is characterized by a yellow coloured patch. Thus LookForObject is actually looking

for a yellow coloured patch, which obviously will be an object.

set heading downhill

potential field

Method: FollowField

Method: HeadCarefully

Figure 12: FollowField relies
upon accuracy of low level
routine HeadCarefully

Incremental Perception in Swarm Robotics

Mir Immad ud din 33

Once an object has been found, some important changes are needed; the Robot needs to

become immobile, generate a stationary field around it, be aware that it has found object,

try to lift the object to bring it back, tell the controller that it has just found an object, thus

turning the whole model into a Decentralised Architecture.

Figure 13: LookForObject affects the largest number of variables. Once a Robot finds an

object, the behaviour of swarm becomes centralised.

3.6.7 FindObject

Find object behaves differently for Firefly like and Ant like movement. A firefly looks all

around it i.e. it eyes all 360 degrees around itself, while an ant can look only in a small

field of vision (Figure 14).

A firefly looks around it to see if an object is present (by calling LookForObject) and

continues to look around until either the object is found or the loop (repeat for 0,

90, 180, 270 degrees heading) breaks, which ever is earlier.

Method: LookForObject

is
there an object

ahead
?

change color

reserve location
set foundObject

set isMobile

set found
set power

YES

Incremental Perception in Swarm Robotics

Mir Immad ud din 34

is
movement model

firefly like
?

Method: FindObject

repeat for heading
0, 90, 180, 270

is object
not found yet

?

Method: LookForObject
using present heading

repeat

NO

YES

is object
not found yet

?

select a random
heading

No

NO

Method: Turn

Method: LookForObject
using present heading

For the Ant like movement, method Turn is called which sets the direction in which

Robot is looking in, and then calls LookForObject to check whether there is any object

present in that direction.

Figure 14: FindObject gives rise to low-level complex behaviours. Firefly like movement

mainly depends upon the algorithm used in this method. If used carelessly, the code for firefly
like movement can convert the movement into a Holonomic movement.

Incremental Perception in Swarm Robotics

Mir Immad ud din 35

3.7 Object Detection

The world is a grid of 18 x 18 square patches that are white in colour. A yellow coloured

patch characterizes an object, so the Robots are actually looking for yellow patches in the

world. As soon as a Robot finds an object, it stops and continues to look at the object.

The area of object that a Robot is looking at turns blue, and will not be recognized as an

object by another Robot. Robots that have found an object also create a potential field

around them, thus telling other Robots about presence of an object. Robots try to encircle

an object while staying away from other Robots.

(a) (b)

(c) (d)

Figure 15: a. A Robot approaches object. b. It turns the patch ahead blue so that other Robots may
not stick to this patch. c. Robot generates a potential field around it. d. Other Robots enter field
and eventually find the object.

Incremental Perception in Swarm Robotics

Mir Immad ud din 36

3.8 Collision Avoidance

While moving around, Robots try not to collide with other Robots. Before taking a step

forward, a Robot first checks whether it is safe to do so by looking on the patch that it

intends to step on to. If there is another Robot present, it simply changes its direction and

attempts to move again. The technique is similar to CSMA/CDs collision detection but

apparently has a risk of deadlock, which might arise in an area that is over populated by

Robots. As such, not even a single deadlock has been observer over more that 1000

simulations.

(a) (b)

(c) (d)

Figure 16: a. Robots move ahead while creating a possibility of collision if they move any further.
b. Heading is changed and they move forward. c. Possibility of collision again, in the same pair
and in another pair of Robots. d. Both pairs avoid collision. The second pair moves in two
completely different directions.

Incremental Perception in Swarm Robotics

Mir Immad ud din 37

3.9 Potential-Field Methods

The present architecture uses potential field methods to inform other Robots about a

prospective target object. Potential fields have extensively been used in Robotics, details

about the approach for obstacle avoidance etc can be found in Koren et el. (1991).

Patches in the world have a variable field that corresponds to a potential field in real

life. Field is normally ‘0’, unless a Robot finds an object. It then generates a field

cantered at its present location. Any Robot entering the field will follow it, knowing that

there is another Robot around which is looking at the target object.

(a) (b)

Figure 17: a. Patch marked X is the origin of field. Stronger the field, darker is the colour. b. At
every point in the field, a Robot experiences an attractive force, always directed towards center of
the field. Robots may overcome this attractive force owing to the randomness introduced by
fieldDefiance.

3.9.1 Field Strength and Radius Factor

The potential field generated by a Robot has two attributes, strength and radius. The

potential field here is actually an inverse potential field i.e. Robots move in a direction of

increasing field. Strength of potential field is determined by

(field + round (10 / (1 + distancexy tempx tempy))) (2)

This gives a field, which is a factor of distance from the originating point.

Incremental Perception in Swarm Robotics

Mir Immad ud din 38

3.9.2 Field Defiance

Once inside the field, if Robots only follow field, they would end up near the first Robot

that generated field, and stop there because that would be strongest point of field. In order

to allow Robots to have an element of randomness within the field, fieldDefiance

factor has been introduced. The variable fieldDefiance defines the scale by which the

Robots would disobey the rule of following the field.

3.10 Robot Vision Span Factor

The variable robotVisionSpan differentiates Ant like motion from Firefly like motion.

Vision span for Ant like motion defines the total angle of vision of a Robot which is θ +

robotVisionSpan. This is also the angle over which an Ant like Robot can turn. Only

exception to the rule is when a Robot feels a possibility of collision with another Robot.

Only in this particular case a Robot may turn at any angle from 0° to 360°. Heading angle

is chosen at random from the range of possible angles, and a Robot may turn in positive

or negative direction at that angle.

 (a) (b)

Figure 18: a. Ant like Robots have limited angle of vision and turn. θ is the present heading of

Robot, while Φ is externally defined robotVisionSpan. Larger the value of this variable,

sharper turns can the Ants take. b. A Robot with Firefly like motion can look around and turn at
any angle it likes. Thus the turning angle and angle of vision is the whole set of 360˚. This results
in a Brownian motion for firefly like Robots.

Incremental Perception in Swarm Robotics

Mir Immad ud din 39

Figure 19: Ant like movement of Robots when they turn at maximum

angles i.e. θ + Φ.

The Variable robotVisionSpan does not affect firefly like motion. Reason being that

firefly like motion is appears only when a Robot is given freedom to move in any

direction it feels like, and thus Firefly like Robots by default have a robotVisionSpan

of 360°. Please note that this span for Firefly like Robots is not explicitly defined but

emerges as a result of RandomHead Method.

3.11 Object Weight and Robot Power

An object has some weight that can be configured externally. Along with this, each Robot

has some power. When power of all Robots equals or exceeds an objects weight, only

then will the swarm be able to bring the object back home.

Incremental Perception in Swarm Robotics

Mir Immad ud din 40

3.12 The Centralisation Factor

As mentioned earlier, the present model has Hybrid architecture. It conforms to a

decentralised model until the first Robot finds an object, which is when the controller

wakes up. Any Robot that touches an object immediately informs the controller about its

location. The controller keeps collecting the information and extracts the shape of object.

3.13 Selection of The Leader

Robots in the model are homogenous, i.e. there is no structural difference between them

(same set of variables). Hence the selection of leader is arbitrary, depending upon who

finds the object first. The first Robot to find the object becomes the Leader, and will

determine the direction of home when the swarm has enough power to transport the

object back.

3.14 Bringing Object Back Home

As soon as the power of Robots increases the object’s weight, Robots lift it and try to

bring it back home. A potential field that exists as a patch-variable wayHome governs

their journey.

3.15 Summary

This chapter describes in detail the low-level NetLogo procedures that give rise to high-

level behaviours showed by Robots. NetLogo procedures depend upon some variables

that act as flags, and control entry into their respective procedures. NetLogo allows

manipulation of these variables by agents that do not possess them, i.e. Robots can

change patch variables.

Incremental Perception in Swarm Robotics

Mir Immad ud din 41

Incremental Perception in Swarm Robotics

Mir Immad ud din 42

Chapter 4.

NetLogo and Implementation

Written in Java, NetLogo is the one of the series of next generation multi-agent

modelling languages that started with StarLogo, and is a programmable modelling

environment for simulating natural and social phenomenon. It is particularly well suited

for modelling complex systems developing over time. Designers can give instructions to

thousands of independent agents all operating concurrently. (Wilwnsky 1999)

This chapter defines the low level procedures that give rise to High-Level behaviours

discussed in chapter 3. It discusses the NetLogo primitives used and looks at the routines

that have been developed for the sake of this project.

4.1 Structure

The model is based upon its participants, namely Robots, Patches and the Object, and the

set of rules for each of these participants. These rules govern individual behaviour of the

participants, as well as specify the way in which these participants will interact with each

other. The set of rules, defined as NetLogo functions, is discussed in detail in a later

section of this chapter, while the next section looks at the participants.

Incremental Perception in Swarm Robotics

Mir Immad ud din 43

4.2 Participants

There are two main participants as for as the code for model is concerned, namely Robots

and Patches. Loosely speaking, the ‘world’ can also be classified as another participant.

Technically, Robots are NetLogo turtles defined as a Robot breed, while patches the

NetLogo patches. Both have a set of variables associated with them that enables the

model to show different behaviours. The World is a set of global variables that facilitates

interoperability of Robots and Patches. All these participants exist in the Global Space.

4.2.1 The Robot

Robots are declared as a Breed, which is a mobile agent. NetLogo defines agents as

beings that carry out some instructions and work in parallel to other agents. Breeds are

groups of mobile agents that have same characteristics and follow the same set of rules.

While the use of breeds refines code on one hand, its major benefits are the vast set of

primitives that are associated with it and versatility in which multiple breeds can be

handled within the same model. Since the present model has hybrid centralised-

decentralised architecture, breeds have been used keeping in mind some extensions to

models discussed in Chapter 6.

Robot
foundObject Initialized to false, when a Robot touches an object,

foundObject is set to true.
foundField Robots entering potential field generated by other

Robots turn this variable true.
isMobile A Robot is mobile (isMobile true) until it finds an

object.
isLeader When power of Robots surrounding an object becomes

greater than object’s weight, first Robot to find the
object becomes leader (isLeader true).

Table 1: A Robot actually is an entity with the above-mentioned attributes. Each of these
variables is scalable to a real life property and can easily be mapped while testing the algorithms
on a real Robot.

Incremental Perception in Swarm Robotics

Mir Immad ud din 44

Each Robot is aware of its location in global space, which is available as two built in

turtle variables xcor and ycor. Other built in variables include shape, size, colour etc and

can easily be modified to show traits visually. A rich set of primitives is also available,

some of which (Table 2) have frequently been used.

turtle primitives

set heading; downhill; forward;
patch-at-heading-and-distance; rt

Table 2: Some of the most frequently used turtle primitives. NetLogo primitives are usually self-

explanatory e.g. ask patch-at-heading-and-distance <heading>

<distance>[] asks a patch at given heading and distance to execute a given piece of code.

4.2.2 Patches

The NetLogo world is divided into patches, which are a special type of agent, as alive as

turtles but immobile. Just like any other agent, a patch can also execute a set of code and

show certain behaviours. This is one of the features that distinguish NetLogo from other

modelling languages. The concept is very much realistic allows to define laws for the

Global Space. Each patch has its coordinates and 0,0 is the origin. Below are variables

that are used for patches in the present model.

Patch
field This is the Potential field that Robots generate when

they find an object. A Robot in a potential field
experiences an attractive force towards center of the
field.

oldField Potential field surrounds a Robot and moves with it.
When a Robot that has generated field around it moves,
the patches behind are set to the previous value of field.

wayHome Way home comes into existence when the swarm
decides to move the object back home.

Table 3: Important concepts such as potential fields, which are difficult to model in languages
like C or Matlab, can easily be integrated in a NetLogo model. Use of only one variable along
with certain NetLogo primitives can result in complex behaviours and simulation of physical laws
relating to attractive and repulsive forces.

Incremental Perception in Swarm Robotics

Mir Immad ud din 45

4.2.3 Global Variables; Globals

These are global variables accessible to Patches and Robots (and to any other agents

added to the model in future) and facilitate their interoperability. Although they do not

contribute to any behaviours directly, but are vital as the whole idea behind model is

cooperation and interoperation of agents, which are heavily dependent upon these global

variables.

Global Variables
found A Robot that finds an object also sets the global found

true to enable signal generation.

locx, locy Robot’s coordinates when it finds an object.

objx, objy Location of object. Used to redraw object.

canTransport True when power of Robots equals or increases
object’s weight, false otherwise. When true, model
turns into a centralised architecture.

lHead Variable used in centralised model to set the heading of
whole swarm towards home.

power Every Robot that finds object adds to the power of
Robots surrounding object.

timeCheck Variable that allows entry to routine that writes
convergence time to a file.

Table 4: Important concepts such as potential fields, which are difficult to model in languages
like C or Matlab, can easily be integrated in a NetLogo model. Use of only one variable along
with certain NetLogo primitives can result in complex behaviours and simulation of physical laws
relating to attractive and repulsive forces.

Some of these variables are used as check points and flags for entry into a code segment.

For example the variable found controls entry to the method Signal, a function that

generates Potential Field around a Robot. Others contribute to turn architecture into

centralised, for example lHead, power.

Chapter 6 suggests how the number of these variables can be reduced to give a minimal

overhead model that is equally efficient.

Incremental Perception in Swarm Robotics

Mir Immad ud din 46

4.3 Movement Models

Robots show two movement models, Firefly like and Ant like. These movements emerge

from low level behaviours discussed below. They are governed by certain parameters

(e.g. RobotVisionSpan) and are heavily affected by a change in value of these

parameters.

4.3.1 Ant Like Movement; Procedure Turn

While behaving as ants, the Robots have a finite field of vision with a limited angle of

vision and turning angle, which can be controlled externally through the variable

robotVisionSpan. The method Turn is the key to this type of movement.

Turn

let fac (random 100 mod 2)

ifelse fac = 0

[rt random RobotVisionSpan]

[lt random RobotVisionSpan]

Table 5: rt and lt primitives are used for right or left turn. random uses Java’s strict math

Library.

The method decides left or right turn (in degrees) by using random number generator. rt

and lt (turn right, left) primitives ease the code for Ants movement.

4.3.2 Firefly Movement; Procedure RandomHead

Fireflies, as mentioned earlier, show a Brownian motion. At every step during their

motion, they may turn at any angle and head forward. Their angle of vision angle is also

360°, so they may look all around them for an object or field.

Incremental Perception in Swarm Robotics

Mir Immad ud din 47

Setup

Create World

Create Swarm

Draw ObjectInitialize variables

RandomHead

ifelse movementModel = 1

[

 set heading random 360

 HeadCarefully

]

.

Table 6: movementModel = 1 means firefly like and 2 means Ant like motion.

HeadCarefully is discussed in detail in section 4.4.7.

4.4 Procedures

NetLogo comes with a rich set of instructions called commands. These commands can

either be used individually to ask agents to behave in certain ways, or can be grouped

together to give complex behaviours.

Each NetLogo procedure starts with a ‘to-‘ and ends with an ‘end’ statement.

4.4.1 Setup

Before a model can be started,

setup creates the environment for

it. It is conventional to call the first

executed function setup, although

any name can be used.

Setup initializes certain variables

and then calls three other

functions, namely CreateWorld,

CreateSwarm and DrawObject.

CreateWorld and CreateSwarm further initialize specialized variables private for

patches and Robots. DrawObject creates the object according to the pattern already

specified by user externally.

Figure 20: Procedure Setup initializes some
variables itself, and calls initialization routines
for the rest.

Incremental Perception in Swarm Robotics

Mir Immad ud din 48

Variables affected by Setup and functions called
Setup

found

canTransport

reset-timer

timeChek

dra

CreateWorld

pcolour

objx

objy

CreateSwarm

colour; size

isMobile

foundObject

foundField

isLeader

Table 7: Setup is the method that affects largest number of variables, directly in its code, and
indirectly by calling other methods. Variables initialized by setup itself are global variables.

4.4.2 Go

Go is a forever

procedure, i.e. one that

runs over and over

again until a condition

to stop its execution

occurs. It forms the

major body of model

and is a function that

checks certain

conditions to call

methods. These

conditions and methods

govern the overall

behaviour of

participants. Go uses

low-level code

segments to give certain

high-level behaviours

such as Object Search,

following a field,

attracting other Robots,

bringing object back.

Go

if a robot
can move

Try to find object and
then field

If it hasn’t
found object

nor field

Create own field

If
it has found

object but not

field

Follow field and try to
find object

If
it has found

field but not
object

If power
is enough to
move object

Try to bring it back

Figure 21: Go implements the main algorithm and his heart of the
model. Basic Algorithm can be seen in the diagram above, while

details can be seen in Appendix A.

Incremental Perception in Swarm Robotics

Mir Immad ud din 49

Go implements the basic algorithm and facilitates the high-level behaviours by checking

patch and Robot variables and taking decisions based on the values of these variables.

4.4.3 Object Search

Object search is carried out by two methods, a low level routine LookForObject and a

high level routine FindObject. LookForObject is called both by fireflies and ants,

while FindObject behaves differently for both movements.

4.4.4 LookForObject

Look for object looks at the patch ahead at unit distance an in the present direction.

Heading of Robot must be adjusted before calling this method. Thus FindObject (or

any other method that decides to use it) uses set heading before calling this method.

LookForObject

if pcolour-of patch-at-heading-and-distance heading 1 = yellow

Table 8a: patch-at-heading-and-distance checks the patch at a given distance and in a direction
already adjusted, for any subsequent statements.

If condition of if stands true, Robot and global parameters are altered to show that the

present Robot has found an object.

LookForObject

set pcolour-of patch-ahead 1 blue

set foundObject true

set isMobile false

SetLocaion

set found true

set power power + rPower
write the current time to file: "indstats.txt"

Table 8b: Global and Robot parameters adjusted by LookForObject. To appreciate the ease of

File I/O please refer to Appendix A.

Incremental Perception in Swarm Robotics

Mir Immad ud din 50

4.4.5 FindObject

A high level routine that first checks what type of movement the model is following, and

then calls another method accordingly. In both cases, it relies on LookForObject to

actually check for object.

FindObject

 if firefly motion
 foreach [0 90 180 270]
 [
 if not foundObject
 [set heading ? LookForObject]
]

 otherwise [Turn LookForObject]

Table 9: For firefly motion, heading is set explicitly by foreach list. For Ant like motion, Turn
adjusts the heading.

4.4.6 RandomHead

RandomHead calls HeadCarefully after adjusting a random heading in case of firefly

like motion. For ants, it only calls HeadCarefully. Repeat can be used to make ants

cover a certain distance before turning.

4.4.7 Collision Avoidance: HeadCarefully

Any Robots that come close to each other experience a repulsive force, direction of

which is random, if after moving one step forward, there is a possibility of having more

than one Robots on one single patch. HeadCarefully checks the condition for collision.

HeadCarefully

ifelse

(any? turtles-on (patch-at-heading-and-distance heading 1))

or (pcolour-of patch-at-heading-and-distance heading 1 = yellow)

or (pcolour-of patch-at-heading-and-distance heading 1 = blue)

Table 10: A yellow coloured patch is an object or a segment of an object that is not being looked
at by any Robot. As soon as a Robot starts looking at a patch, it turns blue in colour.

Incremental Perception in Swarm Robotics

Mir Immad ud din 51

If it is not safe to move, Robot selects a random heading only but does not move.

Random heading is selected so that it may attempt to move in one of the subsequent

iterations.

If it is safe to move, a Robot moves one step forward (fd 1) in case of firefly like motion,

and 0.25 step (fd 0.25) in case of Ant like motion.

4.4.8 FindField

FindField is similar to find object. The difference being that find object looks for a

yellow coloured patch while FindField scans the patch ahead for field.

FindField

if field-of patch-ahead 1 > 0

Table 11: Another powerful NetLogo primitive ‘-of’. Usage:<variable name>-of [agentset]. The
above statement checks value of field for the patch immediately ahead in a given direction.
heading of Robot must be adjusted before calling the method.

4.4.9 FollowField

The model uses inverse potential field method i.e. Robots move uphill instead of going

downhill in a field.

FollowField

 set heading uphill field

 HeadCarefully

Table 12: uphill [variable] selects a patch from surrounding patches such that the value of
variable is greater than the present value. Heading of Robot is then adjusted in the direction of
that patch.

Incremental Perception in Swarm Robotics

Mir Immad ud din 52

4.4.10 Signal

Signal generates a potential field for a stationary Robot that has found an object

according to the following equation:















∆+
+Φ=Φ

pn

cn R
1

10
 (3)

nΦ is the new value of field for nth patch, cΦ is the current value of field of present patch,

pn∆ is the Euclidean distance from this patch to n
th patch, R is rounding function that rounds

input value to nearest decimal.

Signal[x y]

ask patch-at x y

ask patches in-radius sigRadius [

set field(field + round (10 / (1 + distancexy tempx tempy)))

ifelse((pcolour = blue) or (pcolour = yellow))

[] [set pcolour scale-colour red (10 * field) 90 10]

]

Table 13: A stationary Robot calls Signal [x-coordinate y-coordinate].

in-radius<> selects all patches in a given radius and executes any subsequent instructions.

Incremental Perception in Swarm Robotics

Mir Immad ud din 53

Incremental Perception in Swarm Robotics

Mir Immad ud din 54

Chapter 5.

Statistical Analysis and Results

A set of experiments was designed and the model was run and tested several times for

different system parameters. Two factors are significant while analyzing the model.

Firstly, as major objective is perception of the object and shape extraction, effect of

number of Robots on relevance of shape extracted to original shape of object was studied.

Secondly, statistical data to find out effect of different factors on convergence time was

collected and analyzed. It is worth noting that the major concern i.e. shape extraction was

easy to be analyzed as it only depends upon two factors, the Swarm population and

spatial distribution. Convergence time, as can be see in the following sections of this

chapter, depends upon every system parameter.

5.1 Scalability

Scalability implies that a system or algorithm should give optimal performance,

regardless of the swarm population. A scalable system would offer the same performance

even if an arbitrary number of agents are added or removed from the system. A careful

definition would subject scalability to addition of an arbitrary number of agents, while

robustness to removal of an arbitrary number.

McLurkin (2004) suggests that scalability also requires that algorithms do not scale in

running time or in memory space as a function of n, the total number of Robots. The

Incremental Perception in Swarm Robotics

Mir Immad ud din 55

graphs below show that performance of the system actually improves with the increase in

number of Robots.

Convergence time has been averaged over values taken from 50 simulations.

5.2 Effect of Different Factors on Convergence Time

All the statistics below are collected from data averaged over at least 150 simulations for

each experiment.

5.2.1 FieldDefiance

(a)

Change in Field Defiance

0.000

5.000

10.000

15.000

20.000

25.000

1 3 5 7 9 11 13

Field Defiance

C
o

n
v
e
rg

e
n

c
e
 T

im
e

Average

Median

(b)
Graph 1: a. Field Defiance vs. Convergence Time in Firefly like Motion. b. in Ant like Motion

Change in Field Defiance

0.000

5.000

10.000

15.000

1 3 5 7 9 11 13 15

Field Defiance

C
o

n
v
e
rg

e
n

c
e
 T

im
e

Average

Median

Incremental Perception in Swarm Robotics

Mir Immad ud din 56

Graph 1a shows that there is an irregular increase in convergence time as field defiance

increases for Firefly like Motion, while a steady increase is seen in the case of Ant like

Motion. The range of Convergence Time varies from 4.5ms to 10ms in case of Firefly

Motion, while for Ant Motion it is distributed in a range of 7.5-20ms.

5.2.2 Signal Radius

Change in Signal Radius

0.00

5.00

10.00

15.00

20.00

25.00

0 2 4 6 8 10 12 14

Signal Radius

C
o

n
v
e
rg

e
n

c
e
 T

im
e

Average

Median

Signal Radius vs Convergence Time

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18

Signal Radius

C
o

n
v
e
rg

e
n

c
e
 T

im
e

Average

Graph 2: a. Signal Radius vs. Convergence Time in Firefly like Motion. b. in Ant like Motion

Signal Radius, as expected, reduces convergence time.

Incremental Perception in Swarm Robotics

Mir Immad ud din 57

5.2.3 Robot Power

Robot Power vs Convergence Time for a fixed

population of Robots

0.00

5.00

10.00

15.00

20.00

1.25 1.5 1.75 2 2.5 3.5 5 10

Robot Power

C
o

n
v
e
rg

e
n

c
e
 T

im
e

Average

(a)

Robot Power vs Convergence Time for a fixed

popupation of Robots

0.00

5.00

10.00

15.00

20.00

1.5 1.75 2 2.5 3.5 5 10

Power

C
o

n
v
e
rg

e
n

c
e
 T

im
e

Average

Median

(b)

Graph 3: Robot Power vs. Convergence Time in a. Firefly like motion. b. Ant like motion

Robot Power ‘1.25’ has been ignored in case of Ant like motion because it took

unreasonably long time for the swarm to converge.

The two graphs are identical, with Firefly like Robots converging earlier than Ant like.

Incremental Perception in Swarm Robotics

Mir Immad ud din 58

5.2.4 Swarm Population

Change in Number of Robots required - Fixed

Population

0.00

5.00

10.00

15.00

20.00

2 4 6 8 10 12 14 16

Robots Required

C
o

n
v
e
rg

e
n

c
e
 T

im
e

Average

Median

(a)

Change in Number of Robots required - Fixed

Population

0.00

5.00

10.00

15.00

20.00

2 4 6 8 10 12 14

Robots

C
o

n
v
e
rg

e
n

c
e
 T

im
e

Average

Median

(b)

Graph 4: a. Field Defiance vs. Convergence Time in Firefly like Motion. b. in Ant like Motion

Number of Robots required from a fixed population is controlled by adjusting Robot

Power. This Graph is in fact inverse of the previous Graph, with same properties.

Total Robot Population was 20.

Incremental Perception in Swarm Robotics

Mir Immad ud din 59

(e)

5.3 Shape Extraction

(a) (b)

 (c) (d)

Figure 22: (a) 4 Robots give a quadrilateral. (b) 6 Robots show that the figure might be a
Rhombus. (c) 8 Robots, any better ? (d) 8 Robots show that the object might be rectangular. (e)
11 Robots;a technique may be developed to combine different images to give a better view.

 (a) (b)

 (c) (d)
Figure 23: a. An ‘L’ shaped object with 12 Robots. b. ‘+’ shaped object with 12 Robots c. ‘+’
shaped object with 13 Robots d. ‘+’ shaped object with 15 Robots that started with a better spatial
distribution.

Incremental Perception in Swarm Robotics

Mir Immad ud din 60

 (a) (b)

 (c) (d)

 (e)

Figure 24: for an ‘X’ shaped object a. 4 Robots b. 10 Robots c. 12 Robots d. 20 Robots e. 24
Robots that started with a better spatial distribution.

Incremental Perception in Swarm Robotics

Mir Immad ud din 61

5.4 Results

From the above graphs and figures, some conclusions can be made. In the graphs 1-4, it

is obvious that Firefly like Robots generally converge quicker than Ant like Robots.

Another fact can be seen in Graph 3, where ‘powerful’ Robots converge quickly as

compared to ‘weak’ Robots. Signal radius is also found to be a significant factor,

contributing positively to Swarm’s convergence time.

Section 5.2, figures 22-24 show that larger the number of Robots, better the shape of

object is extracted. Another factor found to be significant is spatial distribution of Robots.

Wider the distribution of Robots, better they surround an object and hence better the

shape of object is extracted. A factor not considered is the ratio between Robot size and

object’s surface area. In other words, it is the surface area that each Robot looks at and

reserves for itself so that another Robot may not look at it (turns the patch blue). A swarm

with low power robots reserving large surface areas might never converge. This draws

attention to another factor, object density, and will be dealt with in an improved model.

A better algorithm to efficiently extract the shape from available coordinates is needed. In

a future model, spatial distribution factor may also be introduced, so as to give a better

degree of accuracy with respect to object recognition.

Incremental Perception in Swarm Robotics

Mir Immad ud din 62

Incremental Perception in Swarm Robotics

Mir Immad ud din 63

Chapter 6.

Conclusion and Future Work

Incremental Perception is the information built-up and shared by Swarm of simple

Robots (equipped with merely touch sensors and no visual device) to collectively

recognize an object as their target. A hybrid Architecture has been adapted for the model

in which the swarm starts with in a decentralised fashion. The model is heavily behaviour

based where high-level behaviours arise from low level rules defined for Robots. The fact

that makes this work unique is that there is no explicit communication between the

Robots and the information being shared is only through the display of behaviours.

Each Robot displays a small set of simple yet consistent behaviours which gives rise to a

complex colony. The agents wander around in the world looking for an object, unaware

by the presence of other Robots. If, however, two Robots come close enough such that

there is a possibility of collision between them, they turn around and adapt a different

route. The model behaves in a Decentralised fashion until the first Robot finds an object.

Simulating Language NetLogo has been used whose advantages over other modelling

languages have already been discussed. NetLogo is truly an ideal language for simulating

Swarm Behaviour as it can cater agent colonies of thousands.

Incremental Perception in Swarm Robotics

Mir Immad ud din 64

6.1 Improvements

By the time the present work came was completed, many improvements and extensions

had already been identified, which considering the timescale of present project, were not

possible to implement. Nevertheless, these will be rectified/added as future work. Some

of these improvements are discussed below.

6.1.1 Field Defiance

While Robots move about within the potential field, fieldDefiance can make Ant like

movement appear similar to Firefly like movement. In fact in the said conditions, they

cannot be differentiated unless the model is run at 50% of full speed.

RandomHead is repeatedly called for a Robot moving within a field, the repetitions

depending upon the value of fieldDefiance.

Sequence of instructions when Robot is inside a field

repeat fieldDefiance [RandomHead]

FindObject

if foundObject [stop]

Table 14: call RandomHead fieldDefiance times and then try to find object. While this sequence

introduces a randomness factor into movement of Robots inside a field, it affects Ant like
movement of Robots.

RandomHead in turn calls HeadCarefully, which gives a Robot random heading if

there is a possibility to collide with another Robot or a segment of an object that is

already being looked at by another Robot. While within a field, Robots repeatedly

confront other Robots and blue object segments, thus changing their heading randomly at

a high rate that makes their movement firefly like even though they try to move like Ants.

The function HeadCarefully can be redesigned to force Ants to remain Ants. However

it is anticipated that this will slow down the Ants movement inside field.

Incremental Perception in Swarm Robotics

Mir Immad ud din 65

6.1.2 Behaviour of Robots when they attempt to bring object back

Before the Robots attempt to transport the object back home, they depend upon the leader

to specify a direction to move in. While selecting the heading, the leader also alters

direction of Robots that do not surround object, thus causing them to return. This may not

always be the intention and can be eliminated by restructuring the code carefully. An

external control may also be provided to take the decision.

6.1.3 Dynamic Field

The found variable can allow entry into Signal with coordinates of calling Robot as

arguments. The field thus generated does not move around with its creating Robot. A

different approach would be more efficient, in which a Robot itself creates a potential

field around it. Preserving previous values of field in a given radius around the Robot can

serve this purpose. Another approach in which a Robot only increments and decrements

the field variable of patches around it can be more useful, but cannot be used in presence

of diffuse field primitive, as there seems to be no control over the way that this primitive

handles variables.

6.1.4 Obstacle Avoidance

Similar to Multiple Object Problem, it is considered that there are no obstacles to the

movement of Robots. The presence of any obstacles, especially while the swarm is

bringing an object back, becomes significant. This itself will be an arena to explore the

performance of several obstacle avoidance algorithms.

6.1.5 Object Weight as a function of Density

objectWeight, at present, is an externally defined parameter and does not depend upon

size of object. However, a realistic approach will be to carefully designate objectWeight

depending upon an Object Density Function and Object Size.

 patchexthtobjectWeig νρ ×= (4)

where extρ is the density function whose value is specified externally, while patchν is the

object size and is a function of number of patches that the object occupies.

Incremental Perception in Swarm Robotics

Mir Immad ud din 66

Object weight should be replaced by Object Density. It is seen that there is a limit to the

number of Robots that can surround an object, depending upon its area. If the power of

maximum number of Robots that can surround an object does not equal or increase its

weight, the swarm does not completely converge. In such a case shape may be extracted

but swarm will not be able to bring the object back. Also, some of the Robots will

continue to move with foundField set to true and never find an object.

6.2 Future work

6.2.1 Java Extension for an Efficient Controller

Shape extraction is external to the model at present. However, NetLogo provides facility

of external Java plug-ins, a feature that can be exploited to generate an efficient

controller. This controller will extract the shape of object and hence take the decision

whether to bring the object back or not.

6.2.2 More Movement Models

Robots can only show to movement models namely Ant like and Firefly like. Other

movements may be added to the model like Moth and Frog like and/or any other. Many

other Formation and Marching behaviours may as well be introduced.

6.2.3 More than one Breeds of Robots

In the present model, Robots exist as one turtle breed and can behave either like Ants or

Fireflies. A better approach would be to define two (or more) Robot breeds that can co-

exist in the world and comply to a different set of rules.

6.2.4 Path Planning

While working with multiple objects, it would be essential to introduce path planning.

Although a whole arena of study itself, known path planning techniques can be used to

make the model more efficient.

Incremental Perception in Swarm Robotics

Mir Immad ud din 67

6.2.5 Fuzzy Logic

A fuzzy logic based approach may be developed for collective perception of the shape of

object by swarm.

6.2.6 Faults and Testing

To check system’s scalability and robustness, faults may be introduced and the system

performance tested against them. Some of the faults can be

o Death of some Robots

o Introduction of Dead Locks

o Some agents not complying to their behaviours

o Randomly moving agents

Incremental Perception in Swarm Robotics

Mir Immad ud din 68

Incremental Perception in Swarm Robotics

Mir Immad ud din 69

Appendix A Incremental Perception in Swarm Robotics

Mir Immad ud din i

Appendix A

breed [robots robot]
breed [objcts objct]

robots-own
[foundObject foundField isMobile isLeader]
patches-own [field oldField wayHome]

globals
[
 found ; first robot to find an object sets this variable to true
 locx ; geographical coordinates of first robot when it senses
 locy ; an object
 objX
 objY
 canTransport
 lHead
 power
 timeChek
 gCounter
 dra
]

to setup

 ca
 set found false
 set canTransport false
 CreateWorld
 CreateSwarm
 DrawObject
 reset-timer
 set timeChek true
 file-open "indstats.txt"
 file-print "New Sim"
 file-close
 set gCounter 0
 set dra true

end

Appendix A Incremental Perception in Swarm Robotics

Mir Immad ud din ii

to CreateSwarm

 create-custom-robots agents
 [
 set color red
 fd random max-pxcor
 set isMobile true
 set foundObject false
 set foundField false
 set isLeader false
 set size 1
]

end

to CreateWorld

 ask patches [set pcolor white]
 set objx random 10
 set objy random 10
 DrawObject
 ask patches
 [PaintHome]

end

to PaintHome

 if distancexy -15 -15 < 2
 [
 set pcolor cyan
]
 set wayHome distancexy -15 –15

end

Appendix A Incremental Perception in Swarm Robotics

Mir Immad ud din iii

to go
 plot count robots with [color != red]
 ask robots
 [

 if isMobile
 [
 if not foundObject and not foundField
 [
 RandomHead
 FindObject
 if not foundObject
 [
 FindField
 ;set heading random 360
]
]

 if foundField and not foundObject
 [
 FollowField
 repeat fieldDefiance
 [
 RandomHead
]
 FindObject
 if foundObject [stop]
]

 if (not foundField) and foundObject
 [
 set field 10
 set isLeader true
]
]
]

 if (found)
 [
 Signal locx locy
 set found false
]
 if not any? turtles with [color = red]
 [
 file-open "shape.txt"

Appendix A Incremental Perception in Swarm Robotics

Mir Immad ud din iv

 ask turtles
 [
 if (foundObject)
 [
 file-write round xcor
 file-print round ycor
 ifelse isleader [set color red]
 [set color green]
]
]
 file-close
 set canTransport true
]

 if power >= objectWeight
 [

 if timeChek
 [
 file-open "ct.txt"
 ;file-write "CT"
 file-print timer
 set timeChek false
 file-close
]

 if dra [DrawShape]

 Transport

 ask turtles
 [
 set heading lHead
 fd 1
 if wayHome < 4
 [
 set canTransport false
]
]
 if any? robots with [foundObject and distancexy -15 -15 < 1]
 [

 file-open "tt.txt"
 file-print timer
 file-close

Appendix A Incremental Perception in Swarm Robotics

Mir Immad ud din v

 set gCounter gCounter + 1

 if not (gCounter = 50)
 [
 setup
 go
]

]

 ask patches
 [
 set pcolor white
]

 ask patch-at objx objy
 [

 ask patch-at-heading-and-distance lHead 1
 [
 set objx pxcor
 set objy pycor
]

]

]

 ask patches [PaintHome]

 DrawObject

end

Appendix A Incremental Perception in Swarm Robotics

Mir Immad ud din vi

to DrawShape

 set dra false
 file-open "shape.txt"

 ask turtles
 [
 if (foundObject)
 [
 file-write round xcor
 file-print round ycor
 ifelse isleader [set color red]
 [set color green]
]
]

 file-close

end

to SetLocaion
 set locx xcor
 set locy ycor
end

to Signal [tempx tempy]
 ask patch-at tempx tempy
 [
 ask patches in-radius sigRadius [
 set field (field + round (10 / (1 + distancexy tempx tempy)))
]
]
 ask patch-at tempx tempy
 [
 ask patches in-radius sigRadius [
 ifelse ((pcolor = blue) or (pcolor = yellow)) []
 [set pcolor scale-color red (10 * field) 90 10]
]
]
end

Appendix A Incremental Perception in Swarm Robotics

Mir Immad ud din vii

to Transport
 ask turtles
 [
 if isLeader
 [
 set color red
 set lHead downhill wayHome
]
]
end

to FindObject
 ifelse movementModel = 1
 [
 foreach [0 90 180 270]
 [
 if not foundObject
 [
 set heading ?
 LookForObject
]
 if not foundObject [set heading random 360]
]
]
 [Turn LookForObject]
end

to LookForObject
 if pcolor-of patch-at-heading-and-distance heading 1 = yellow
 [
 set color yellow
 set pcolor-of patch-ahead 1 blue
 set foundObject true
 set isMobile false
 SetLocaion
 set found true
 set power power + rPower
 file-open "indstats.txt"
 file-print round timer
 file-close
]
end

Appendix A Incremental Perception in Swarm Robotics

Mir Immad ud din viii

to RandomHead

 ifelse movementModel = 1
 [set heading random 360 HeadCarefully]
 [HeadCarefully]

end

to HeadCarefully

 ifelse (any? turtles-on (patch-at-heading-and-distance heading 1))
 or (pcolor-of patch-at-heading-and-distance heading 1 = yellow)
 or (pcolor-of patch-at-heading-and-distance heading 1 = blue)

 [set heading random 360]
 [
 ifelse movementModel = 1
 [fd 1]
 [fd 0.25]
]

end

to Turn

 let fac (random 100 mod 2)
 ifelse fac = 0
 [rt random robotVisionSpan]
 [lt random robotVisionSpan]

end

to FindField

 if field-of patch-ahead 1 > 0
 [
 set foundField true
 FollowField
]

end

Appendix A Incremental Perception in Swarm Robotics

Mir Immad ud din ix

to FollowField
 set heading uphill field
 HeadCarefully
end

to DrawObject

 if object = 1
 [
 let a 1
 repeat 8
 [
 ifelse (pcolor-of patch-at (objX + a) objY = blue)
 or (pcolor-of patch-at objX (objy + a) = blue)
 or (pcolor-of patch-at (objX + 1) (objy + a) = blue) []
 [
 set pcolor-of patch-at (objX + a) objY yellow
 set pcolor-of patch-at (objX + a) (objY + 1) yellow
]
 set a (a + 1)
]
]

 if object = 2
 [
 let a 1
 repeat 8
 [
 ifelse (pcolor-of patch-at (objX + a) objY = blue)
 or (pcolor-of patch-at objX (objy + a) = blue)
 or (pcolor-of patch-at (objX + 1) (objy + a) = blue) []
 [
 set pcolor-of patch-at (objX + a) objY yellow
 set pcolor-of patch-at (objX + 1) (objY + a) yellow
]
 set a (a + 1)
]
]
if object = 3
 [
 let a 1
 repeat 8
 [
 ifelse (pcolor-of patch-at (objX + a) objY = blue)
 or (pcolor-of patch-at (objX + 6) (objY + 6 - a) = blue) []

Appendix A Incremental Perception in Swarm Robotics

Mir Immad ud din x

 ;or (pcolor-of patch-at (objX + 1) (objy + a) = blue) []
 [
 set pcolor-of patch-at (objX) objY yellow
 set pcolor-of patch-at (objX + a) objY yellow
 set pcolor-of patch-at (objX + 6) (objY + 6 - a) yellow
]
 set a (a + 1)
]
]

if object = 4
 [
 let a 1
 repeat 8
 [
 ifelse (pcolor-of patch-at (objX + a) (objY + a) = blue) []
 ; = blue) or (pcolor-of patch-at objX (objy + a) = blue)
 ;or (pcolor-of patch-at (objX + 1) (objy + a) = blue) []
 [
 set pcolor-of patch-at (objX) (objY) yellow
 set pcolor-of patch-at (objX + a) (objY + a) yellow
 set pcolor-of patch-at (objX + a) (objY + 8 - a) yellow
]
 set a (a + 1)
]
]
end

References Incremental Perception in Swarm Robotics

Mir Immad ud din i

References

1. Beni, G., “The Concept of Cellular Robotic Systems”, Proc. 3rd IEEE Int’l symp.

Intelligent Control, Arlington, VA, pages 57-62, August 24-26, 1988

2. H. Van Dyke Parunak, “Making Swarming Happen”, Presented at the Conference on
Swarm and C4ISR, Tysons Corner, VA. 3, Jan 2003

3. S. Hackwood and G. Beni., “Self-organizing sensors by deterministic annealing”, In
IEEE / RSJ IROS, pages 1177-1183, 1991

4. E. Bonabeau, M. Dorigo, and G. Theraulaz., “Swarm Intelligence: From Natural to
Artificial Systems”, New York, Oxford University Press, 1999.

5. H. Wedde and M. Farooq., “The wisdom of the hive applied to mobile ad-hoc
networks”, Swarm Intelligence Symposium, 2005. SIS 2005. Proceedings 2005 IEEE,
Page(s): 341 – 348, 8-10, June 2005

6. C. Cianci, V. Trifa, A. Martinoli., “Threshold-based algorithms for power-aware load
balancing in sensor networks”, In Proceedings of The IEEE Swarm Intelligence
Symposium SIS-2005, Pasadena, California, June, 2005.

7. R. Montemanni and L.M. Gambardella., “Swarm approach for a connectivity problem
in wireless networks”, Proceedings of the IEEE Swarm Intelligence Symposium (SIS
2005), pages 265-272, Pasadena, U.S.A., 8-10, June 2005.

8. Wan, Y. Sandip Roy Saberi, A. Lesieutre, B., “A stochastic automaton-based
algorithm for flexible and distributed network partitioning”, Swarm Intelligence
Symposium, 2005. SIS-2005. Proceedings 2005 IEEE, On page(s): 273- 280, 8-10
June 2005.

9. Klein, J., “Continuous 3D Agent-Based Simulations in the breve Simulation
Environment”. In Proceedings of NAACSOS Conference (North American
Association for Computational, Social, and Organizational Sciences). Pittsburgh, PA,
2003

10. Klein J., “breve: a 3d Simulation Environment for
Multi-Agent Simulations and Artificial Life”, breve Documentation version 2.4.

11. Spector, L., Klein J., and Keijzer M., “The Push3 Execution Stack and the Evolution
of Control”. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2005), pp. 1689-1696. Springer-Verlag, 2005.

References Incremental Perception in Swarm Robotics

Mir Immad ud din ii

12. NetLogo itself: Wilensky, U., NetLogo. http://ccl.northwestern.edu/NetLogo/. Center
for Connected Learning and Computer-Based Modeling, Northwestern University.
Evanston, IL. 1999.

13. NetLogo documentation: Wilensky, U. Frequently asked questions.

http://ccl.northwestern.edu/NetLogo/faq.html/. Center for Connected Learning and
Computer-Based Modeling, Northwestern University. Evanston, IL, 1999.

14. Wilensky, U. & Stroup, W., HubNet.
http://ccl.northwestern.edu/NetLogo/hubnet.html. Center for Connected Learning and
Computer-Based Modeling, Northwestern University. Evanston, IL, 1999.

15. G. Beni and U. Wang., “Swarm intelligence in cellular robotic systems”. In NATO
Advanced Workshop on Robots and Biological Systems, Il Ciocco, Tuscany, Italy,
1989.

16. Tuytelaars, T., Zaatri, A., Van Brussel, H. and Van Gool, L., “An object recognition
as part of a supervisory control system”, in ICRA’2000, San Francisco, 2000.

17. Dorf R., Concise International Encyclopedia of Robotics: “Applications and
automation”. Wiley-Interscience, 1990.

18. Theraulaz G., Bonabeau E., “Coordination in distributed building,” Science 269, 686-
688, 4 August 1995.

19. Theraulaz G., Bonabeau E., J.L. Deneubourg, “The algorithmic beauty of stigmergic
patterns in social insects,” Math. Sci. 435:52-65, 1999.

20. Baldassarre, Nolfi S., Parisi D., “Evolving Mobile Robots Able to Display Collective
Behaviors”. Proceedings of the International Workshop on Self-Organizing and
Evolution of Social Behavior, pages 11-22, Ascona, Switzerland, September, 2002.

21. Martinoli A., “Swarm Intelligence in Autonomous Collective Robotics: From Tools
to the Analysis and Synthesis of Distributed Control Strategies”. Ph.D Thesis Nr.
2069.

22. C Reynolds., “An evolved, vision-based model of obstacle avoidance behavior”, in C.
Langton, editor Artificial Life III, Santa Fe Institute Studies in the Sciences of
Complexity, proc. Vol. XVI Wesley, 1993.

23. Werner, G. M. and Dyer, M. G., “Evolution of Herding Behavior in Artificial
Animals”. In: J.-A. Meyer, H. L. Roitblat, and S. W. Wilson (eds.), From Animals to

Animats 2: Proceedings of the Second International Conference on Simulation of

Adaptive Behavior. Bradford Book?MIT PRess, Cambridge MA. pp. 393-399, 1993.

24. Ward, C. R., Gobet, F., & Kendall, G., “Evolving collective behavior in an artificial
ecology”. Artificial Life, 7, 191-209, 2001.

References Incremental Perception in Swarm Robotics

Mir Immad ud din iii

25. Parker L. E., “Alliance; an architecture for fault tolerant, cooperative control of
heterogeneous mobile Robots”. In IEEE/RSJ IROS, pages 776-783, 1994.

26. Parker L. E., “Hetrogeneous Multi-Robot Cooperation. PhD thesis”, MIT EECS

Dept., February 1994.

27. Y. Uny Cao, Alex S. Fukunaga , Andrew B. Kahng, “Cooperative Mobile Robotics:
Antecedents and Directions”, 1997.

28. Wessnitzer J., Adamatzky A., Melhuish C., “Towards Self-Organising Structure
Formations: A Decentralized Approach”. 573-581; ECAL 2001.

29. G. Beni and J. Wang, "Theoretical Problems for the realization of distributed Robotic
systems", Proceedings of the 1991 IEEE International Conference on Robotics and
Automation, 1991.

30. Melhuish C., Holland O. and Hoddell S., "Collective sorting and segregation in
Robots with minimal sensing", 5th International Conference on the Simulation of
Adaptive Behaviour, From Animals to Animats, MIT Press, 1998.

31. McFarland D., “Towards Robot cooperation”, In Proc. Simulation of Adaptive
Behavior, 1994.

32. Erkin Bahceci, Onur Soysal, Erol Sahin, “A Review: Pattern Formation and
Adaptation in Multi-Robot Systems”, Robotics Institute Carnegie Mellon University
Pittsburgh, Pennsylvania 15213 (2003).

33. Egerstedt M. and Hu X., “Formation constrained multi-agent control”. IEEE
Transactions on Robotics and Automation, 17(6):947.951, 2001.

34. Koo T.J. and Shahruz S.M., “Formation of a group of unmanned aerial vehicles
(uavs)”. In Proceedings of the American Control Conference, 2001.

35. Kowalczyk W., “Target assignment strategy for scattered Robots building formation”,
in RoMoCo'02. Proceedings of the Third International Workshop on Robot Motion
and Control, 2002.

36. Belta C. and Kumar V., “Trajectory design for formations of Robots by kinetic energy
shaping”, In Proceedings. ICRA'02. IEEE International Conference on Robotics and
Automation, 2002.

37. Erkin Bahceci, Onur Soysal and Erol Sahin, “A Review: Pattern Formation and
Adaptation in Multi-Robot Systems”, CMU-RI-TR-03-43 October 2003.

38. Mataric M., “Designing emergent behaviors: From local interactions to collective
intelligence”, in Proceedings of the International Conference on Simulation of
Adaptive Behavior: From Animals to Animats 2, pages 432-441, 1992.

References Incremental Perception in Swarm Robotics

Mir Immad ud din iv

39. Mataric M., “Minimizing complexity in controlling a mobile Robot population”, in
proceedings of the 1992 IEEE International Conference on Robotics and Automation,
pages 830-835, Nice, France, May 1992.

40. Albert L. Schoute, “Time-optimal collision avoidance of automatically guided
vehicles”, University of Twente, Department of Computer Science Postbox 217,
7500AE Enschede, Netherlands.

41. James D. McLurk, “Stupid Robot Tricks: A Behavior-Based Distributed Algorithm
Library for Programming Swarms of Robots”, Massachusetts Institute of Technology,

May 2004.

42. Lerman, K. and Galstyan, “A. Mathematical model of foraging in a group of robots:
Effect of interference”, Autonomous Robots, 13(2):127–141, 2002.

43. Tobias, R., Hoffmann, C, “Evaluation of the Free Java Libraries for Social scientific

Agent Based Simulation / Internet.” - http://jasss.soc.surrey.ac.uk/7/1/6.html in
Journal of Artificial Societies and Simulation

44. AN OVERVIEW OF THE AGENT - BASED SOCIAL SYSTEM SIMULATION
TOOLS Dmitrij Pozdnyakov, Riga Technical University 1, Kalku Street, Riga, LV-
1658, Latvia, Annual Proceedings of Vidzeme University College “ICTE in Regional
Development”, 2006

References Incremental Perception in Swarm Robotics

Mir Immad ud din v

Bibliography
Following works, although not cited directly, have been very helpful during my work.

K. Nickels, A. Castano, C. Cianci., “Fusion of Lidar and Stereo Range for Mobile
Robots”. In Proceedings of The 11th International Conference on Advanced Robotics,
Coimbra, Portugal, July 2003.

R. Montemanni, J. Barta and L.M. Gambardella. “An exact algorithm for the robust
traveling salesman problem with interval data”. Proceedings of ODYSSEUS 2006, pages
256-258, Altea, Spain, 23-26 May 2006.

A.E. Rizzoli, N. Casagrande, A.V. Donati, L.M. Gambardella, D. Lepori, R.
Montemanni, P. Pina and M. Zaffalon. “Planning and optimisation of vehicle routes for
fuel oil distribution”. Proceedings of MODSIM 2003 - Integrative Modelling of
Biophysical, Social and Economic Systems for Resource Management Solutions
February, volume 4 pages 2024-2029, Townsville, Australia, 11-17 July 2003.

R. Montemanni , J. Barta and L.M. Gambardella., “Heuristic and preprocessing
techniques for the robust traveling salesman problem with interval data”. Technical
Report IDSIA-01-06, Istituto Dalle Molle di Studi sull’Intelligenza Artificiale, January
2006.

Crawford-Marks, R., and L. Spector. “Size Control via Size Fair Genetic Operators in the
PushGP Genetic Programming System”. In W. B. Langdon, E. Cantu-Paz, K. Mathias, R.
Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull,
M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke, and N. Jonoska (editors), Proceedings
of the Genetic and Evolutionary Computation Conference, GECCO-2002, pp. 733-739.
San Francisco, CA: Morgan Kaufmann Publishers. 2002.

Spector, L., and A. Robinson., “Genetic Programming and Autoconstructive Evolution
with the Push Programming Language”. In Genetic Programming and Evolvable
Machines, Vol. 3, No. 1, pp. 7-40. 2002

Bonabeau E., Dorigo , and Theraulaz G., “From Natural to Artifcial Systems”.
Oxford University Press, 1999.

Martinoli, A. J. Ijspeert, and L. G. Gambardella, “A Probabilistic Model for
Understanding and Comparing Collective Aggregation Mechanisms’, Proc. of the Fifth
Int. European Conf. on Artificial Life ECAL-99, Lausanne, Switzerland, pp. 575-584,
September 1999.

Zaera, N., Cliff, D., & Bruten, J., “(Not) evolving collective behaviours in synthetic fish”.
Technical Report HPL-96-04. Palo Alto, Ca.: Hewlett-Packard Laboratories. 1996.

References Incremental Perception in Swarm Robotics

Mir Immad ud din vi

Seeley, Thomas D. “The Wisdom of the Hive” Harvard University Press. Cambridge,
Massachusetts. 1995.

P.K.C. Wang. “Navigation strategies for multiple autonomous Robots moving in
formation”. Journal of Robotic Systems, 8(2):177:195, 1991.

Q. Chen and J. Y. S. Luh., “Coordination and control of a group of small mobile Robots”.
In Proceedings of the 1994 IEEE International Conference on Robotics and Automation,
pages 2315{ 2320, San Diego, CA, USA, 1994.

Martinoli A., Easton K. and Agassounon W., “Modeling of Swarm Robotic Systems: A
Case Study in Collaborative Distributed Manipulation”. Special Issue on Experimental
Robotics, Siciliano, B., editor, Int. Journal of Robotics Research, 23(4): 415–436, 2004.

References Incremental Perception in Swarm Robotics

Mir Immad ud din vii

Image References

Figure 1a. Image Source: www.sandia.gov/media/minebees.htm, “Bees foraging
near a sugar-water feeder”; 'bees.jpg';

Figure 1b. Image Source: www.thesahara.net/ants.jpg, “Ants surround a toxic gel”,
‘ants.jpg’

Figure 2. Image Source: http://www.k-team.com/kteam/home.php, Khapera II.
Figure 3. Image Source: Image source: FiBreve Documentation: version 2.4 Chapter

14: ‘The breve Source Code’, The breve software architecture

Figure 4a. Image Source: http://www.nps.gov/archive/dena/home/resources/Wildlife/
birdweb/ index/ birdwatchTS.htm

Figure 4b. http://www.math.utah.edu/~kfitzger/research.html

Some Useful URLs

Home page of Prof. Roberto Montemanni
http://www.idsia.ch/~roberto/

Home page of Christopher Cianci, Swarm Intelligence Systems Group
http://www5.epfl.ch/swis/page1339.html

Home page of Lee Spector, Hampshire College
http://hampshire.edu/~lasCCS/publications.html

John Klein Publications
http://artificial.com/publications.html

Lee Spector, Publications
http://hampshire.edu/~lasCCS/publications.html

Kinematic Self-replicating Machines
http://www.molecularassembler.com/KSRM/Refs2700-2799.htm

Home page of Guy Theraulaz
http://cognition.ups-tlse.fr/_guyt/

Molecular Assembled Website.
http://www.molecularassembler.com/index.htm

References Incremental Perception in Swarm Robotics

Mir Immad ud din viii

Computational and Mathematical Organization Theory, 5(3), October, Special Issue on
Social Intelligence; Edited by Bruce Edmonds and Kerstin Dautenhahn
Dordrecht: Kluwer Academic Publishers 1999; ISSN 1381-298X
http://jasss.soc.surrey.ac.uk/5/3/reviews/gotts.html#theraulaz1999

Prof. Michael G. Dyer, Computer Science Department, 4532F Boelter Hall, University of
California at Los Angeles (UCLA), Los Angeles, CA 90095-1596
http://www.cs.ucla.edu/~dyer/Publications.html

