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ABSTRACT

The term “Grid computing” is used to describe an advanced distributed computing 

environment where the resources and tasks are dynamically assigned to the 

computing nodes depending on the current load/demand of the entire system. 

Numerically intensive tasks can be executed faster using low-cost general purpose 

computers that are converted to run on a grid. This project attempts to improve the 

solution of the NP complete Boolean Satisfiability (BSAT) problem by partitioning 

the task into 3 sub-tasks and distributing them over 3 grid nodes for parallel 

execution. The BSAT problem is of crucial importance in the fields of artificial 

intelligence, hardware design etc. and a faster solution will greatly aid the 

verification and testing of digital circuits. Two strategies are considered as solutions 

to the BSAT problem: the brute-force/exhaustive approach and an artificial genetic 

algorithm (GA) based approach. GAs have been used to consider multiple feasible 

solutions for the BSAT problem that are consequently refined towards a desired 

solution, if any exists. Both the algorithms are applied to the standard Boolean 

satisfiability benchmarks on a single computer configuration and on grid computers 

using non-optimised and optimised executables. The task is partitioned (coarse grain) 

and distributed over the grid using Simple Object Access Protocol (SOAP) 

technology. The results reveal that the grid enabled solution exhibits better 

performance than single computer for exhaustive search (non-optimised and 

optimised code) and for non-optimised GA search code. However, no clear 

correlation could be identified between the single computer and the grid in case of 

the optimised code GA search. The main contribution of this thesis is the design of a 

GA based solution to the BSAT problem for a grid computing environment. 
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NOMENCLATURE

BCP  : Boolean Constraint Propagation 

BDD  : Binary Decision Diagram 

BSAT  : Boolean Satisfiabilty 

CNF  : Conjunctive Normal Form 

CORBA : Common Object Request Brokerage Architecture 

DCOM : Distributed Component Object Modelling 

DP method : Davis and Putnam's method 

DPLL method : Davis-Putnam-Logemann-Loveland method 

GA  : Genetic Algorithm 

MIMD  : Multiple-Instruction-Multiple-Data 

RMI  : Remote Method Invocation 

SOAP  : Simple Object Access Protocol 

VO  : Virtual Organisation 

XML  : Extensible Markup Language 
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Chapter 1 

Introduction

1.1 Introduction 

This project explores solutions of the Boolean Satisfiability (BSAT) problem [1] 

using two methods: the exhaustive search algorithm and an artificial genetic 

algorithm (GA) [2]. Each approach is implemented in grid computing [3] 

environment. 

1.2 Background 

Verification and testing is one of the most important tasks in the production of new 

VLSI digital circuits. Testing ensures fault free circuits and verification succeeds if 

the circuits conform to the design specification [4]. Incomplete testing might result in 

faulty hardware with bugs that can cause serious damage when applied to critical 

applications. Testing requires a lot of effort and time since verifying a circuit of V

inputs involves testing 2V input combinations which is an NP complete problem [1]. 

The Boolean Satisfiability (BSAT) [1] problem is one of the most studied NP-

complete problems because of its importance in both theoretical research and 

practical applications [5], especially in the formal verification [6, 7] of hardware 

design. A distributed solution of the BSAT problem has been explored in this project 

using a grid of general purpose computers [3]. 

1.3 Motivation 

In a grid computing environment a numerically intensive task is partitioned 

dynamically among a number of heterogeneous computers that can run in parallel to 
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obtain better performance [8]. Instead of using special purpose computer and 

software, a grid can be implemented by combining inexpensive computers and 

software protocols like Remote Procedural Call (RPC) running under the LINUX 

operating system. In contrast, a huge amount of research effort has been concentrated 

on highly expensive specialised hardware for efficient solution of the BSAT 

problem. Therefore, designing a cost effective solution based on a grid should aid 

verification and testing of new generation VLSI circuits massively. 

1.4 Project description 

A genetic algorithm (GA) [2] based BSAT solution has been proposed and 

implemented on single computer and grid computing environment. The project 

investigates the performance of the two algorithms: exhaustive/brute force search 

and genetic algorithm based solution (GA BSAT) on a grid computing environment 

running under the LINUX Mandrake 10.0 operating system.  

1.5 Aims and objectives 

The objectives of the project are to 

investigate existing BSAT solutions and grid implementation mechanisms. 

design and implementing a GA based solution to the BSAT problem. 

develop an inexpensive grid system solution for BSAT problem using the 

LINUX operating system. 

compare the performance between a single computer and grid computing 

environment. 

investigate execution speed and file size of non-optimised and O3 optimised 

executables generated by gcc compiler. 
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1.6 Methodology 

The grid system consists of a client and multiple servers. In this case, three servers 

are employed. The client partitions the parent task and distributes the sub-tasks using 

Remote Procedural Call (RPC) mechanism among the servers running on the grid.  

This mechanism is depicted in figure 1.1. 

Figure 1.1: Task partitioning and distribution on the grid of computers using RPC. 

1.7 Deliverables 

If the system is designed correctly, the client should be able to split the parent 

problem into sub-problems and assign them to servers automatically. The deliverable 

of the project will be an inexpensive general purpose computer based grid capable of 

solving BSAT problem in a distributed manner. 

1.8 Project formulation 

This section discusses constraints such as time, technical limitations etc. and 

develops a work plan for the entire project. 

1.8.1 Time/schedule 

Table 1.1 shows the definitions of the tasks and timescale of the project. 

Client 

Main task 

Sub-task 1 Sub-task n

Server 1 Server n

RPC RPC

Task
partitioning 
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Task Time period 

Literature survey and investigations of existing techniques June and July 2004 

Design and implementation of algorithms and the overall 

grid environment 

July and August 2004 

Report writing July and August 2004 

Table 1.1: Tasks to be completed for the project and their schedule 

1.8.2 Technical limitations 

This section focuses on various limitations of the project and they are listed below 

SOAP technology has been used to invoke RPC that generates time overheads for 

marshalling/un-marshalling data into XML format.  

Static task partitioning is used. 

The client follows a coarse grained partitioning approach. 

1.8.3 Potential hazards 

The precautions that were strictly followed during the entire project period are given 

below

Health and safety problems caused by working for long hours on computers 

without any break. 

Accidental electric shock while connecting computers, switches etc. to power 

supply.
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1.9 Report guideline 

Chapter 2 explores the concept of grid computing techniques, the BSAT problem, 

genetic algorithms and remote procedural call technique. The exhaustive search 

algorithm for BSAT problem is described and a GA based BSAT algorithm is 

proposed and explained in chapter 3. Coarse grained partitioning of both the 

exhaustive and the GA BSAT algorithm for grid computing is also discussed in this 

chapter. Chapter 4 presents the specification and design of the grid system. 

Implementation details and results of application of the algorithms (the exhaustive 

and the GA BSAT) on single computer and on grid are discussed in chapter 5. 

Finally, chapter 6 draws some conclusion. 

1.10 Summary 

A brief overview of the entire project work has been presented in this chapter. A 

preview of the mechanisms of implementing the grid has also been discussed. 

The next chapter brings all the terminologies, relevant theories, analysis and research 

works done previously on BSAT, grid, GA etc.
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Chapter 2 

Relevant Theory and Analysis 

2.1 Introduction 

This chapter explores the basic concepts of grid computing, SOAP technology, the 

Boolean satisfiability problem and artificial genetic algorithms. Existing grid 

computing infrastructures, previous works on Boolean satisfiability and artificial 

genetic algorithm are also discussed in this chapter. 

2.2 Grid computing 

Grid computing made its appearance as an advanced distributed computing 

technology in the mid-1990s. It focused on large scale resource sharing for 

processing intensive applications and encompasses everything from sophisticated 

networking to artificial intelligence [9]. Nowadays grid computing carries unlimited 

opportunities in the fields of business and technology and therefore, more and more 

organisations are moving towards it for solving real-world problems that involve 

massive computation. 

Grid computing can be categorised as a parallel and distributed computing 

environment that allows dynamic sharing, balancing of resources based on 

availability, performance, cost and quality-of-service (QoS) of connected 

autonomous systems [10]. In other words, it is a network of computing resources, 

tools and protocols with a high degree of coordination in order to share processing-

intensive tasks among pooled assets (resources) so as to use them efficiently. These 

resources can be connected with high-speed LAN, MAN, WAN and distributed 
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across the continents. They can be heterogeneous i.e., consisting of workstations, 

servers, mainframes and even supercomputers [9]. These pooled assets are known as 

Virtual Organisations (VO). Figure 2.1 depicts the concept of grid computing where 

the VOs are scattered all over the globe [11]. 

Figure 2.1: The overall structure of grid computing with heterogeneous and 

geographically disperse virtual organisations. 

Grids can deliver scalable, high-performance computing facility equivalent to 

supercomputing capacity that can be allocated to authenticate users and applications 

in real time [12]. The grid computing environment can extend from local Ethernet to 

the Internet and can scale from tens to thousands of server nodes.  These nodes must 

be interconnected with a scalable high-performance network to have the best 

performance [12]. Figure 2.2 depicts the topology of grids on the Internet and WAN. 
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Figure 2.2: Topology of large scale grids 

2.2.1 Advantages of grid computing 

This section focuses on the special services that a grid can provide over an expensive 

high-performance computer. 

High utilisation of idle resource 

Processes can migrate and run on an idle remote machine on the grid when the 

originating machine becomes overloaded or busy. However, two criteria must be met 

to allow remote execution [11] 

the process must be executed with the least migration overhead. 

the remote machine must satisfy all types of hardware and software requirements 

of the migrating process. 

Parallel execution on multiple CPUs 

By designing applications to support parallelism, a process can be partitioned into 

independent parts (sub-tasks) and these parts can be executed on different CPUs of 
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the grid. In an ideal situation, a process can finish N times faster if it is distributed 

among N processors as shown in figure 2.3. Nevertheless, the following two points 

restricts the degree of parallelism 

the algorithm can split a task into a maximum number of subtasks that can create 

a barrier on the scalability of the grid. 

intercommunication among the subtasks also limits overall performance of 

parallel execution of the subtasks. For instance, execution efficiency degrades 

when subtasks access a common database or file. 

Figure 2.3: Task splitting and parallel execution of subtasks on multiple CPUs. 

Collaboration among Virtual Organisations (VOs) 

A grid presents a more versatile form of distributed computing that allows 

heterogeneous systems to work together and produce the image of a large virtual 

computing system with different types of resources to the user [11]. The users can be 

associated dynamically to virtual organisations (VOs) depending on the criteria and 

policy requirements. These VOs on the same grid can share resources in many ways, 

for instance 

Data sharing: data can be distributed among several systems in form of files and 

databases to provide more capacity than a single system. Such data distribution 

technique improves transfer rate by locating the closest data source on the grid. 

Task

Subtask 1 Subtask 2 Subtask N

CPU 1 CPU 2 CPU N
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Furthermore, redundant copies of the same data on different systems ensure 

reliable data retrieval in case of system failure and supports fault tolerance [11]. 

Hardware sharing: A process requiring special type of device (for example, laser 

colour printer, bar code reader etc.) can use the hardware attached to a remote 

computer. Organisations participating in the grid build up the grid resources and 

can use other organisation's special resources when they need additional 

resources.

Software service, licence sharing: Expensive licensed software service can be 

installed on some machines of the grid and requests can be sent to these machines 

to utilise software licenses [11]. 

High bandwidth for the Internet: In case of high bandwidth requirement, the load 

can be split among several grid machines that have independent connections to 

the Internet [11]. 

Security: The grid can enforce security rules/policies in a distributed fashion to 

protect unauthorised access to the grid. It eliminates single point failure problem. 

Resource/load balancing 

The grid can be configured to balance resource/load by scheduling grid enabled tasks 

on machines with low utilisations as depicted in figure 2.4. This technique is very 

useful to handle occasional peak loads in a larger organisation. However, overload 

situation can be dealt in the following ways 

a sudden overload of processes can be transferred to relatively low utilised 

machines in the grid. 

low priority tasks can be suspended temporarily and restarted later if the grid is 

busy with high priority tasks. 
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Figure 2.4: Tasks are migrated to less busy parts of the grid to balance resource/loads 

and improve overall performance 

A grid is also suitable for real time tasks with specific deadlines. The task can be 

split into subtasks and executed on several processors simultaneously if the size and 

type of the task is known in advance. However, processes running on different 

processors might need to communicate with each other through the Internet or 

storage media. Nevertheless, communication traffic/overhead can be minimised by 

using an advanced scheduler.

Reliability

In case of failure at one site of the grid, the other parts can be designed to continue 

functioning. Therefore, grid management system can automatically resubmit tasks to 

other machines on the grid. Furthermore, in critical real-time applications, multiple 

copies of the same task can be run on different machines throughout the grid, as 

illustrated in figure 2.5 and the results can be checked for any kind of inconsistency 

[11].
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Figure 2.5: Real time critical task/job x is executed on two sites to provide high 

degree of reliability. 

Management

The grid can be viewed as a combined and shared computing environment of several 

organisations. Administrators can change the policies that affect how the different 

organisations might share or compete for resources of the grid [11]. 

In summary, all these features make the grid look like a large virtual machine with a 

collection of virtual resources of different types. 

2.2.2 Classification of grid applications 

Grid applications can be categorised into four broad classes based on computational 

intensity, memory demands, data-locality and inter-task communications 

requirements [13]. 

Loosely Coupled: This class exhibits low memory requirements, small amounts 

of data and little inter task communication. These are suitable for execution on 

wide-area clusters connected via low bandwidth networks [13]. 
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Pipelined: Applications in this class deal with real-time data and the algorithms 

are often very memory and data intensive. They display coarse-grained inter-task 

communication. Typical examples in this class are the real-time signal processing 

and subsequent storage of data captured from satellites, remote sensors including 

microscopes etc [13]. 

Tightly Synchronised: This class of applications require frequent inter-task 

synchronisation and therefore, demands strong communication infrastructure. 

However, these may have significant data intensive computation. Examples of 

applications in this class are climate, physics, and molecular models employing 

explicit iterative methods [13].  

Widely Distributed: Applications in this class search, update, and/or merge 

distributed databases. Typically these have small computation, data, and memory 

requirements, but access databases owned by different organisations across the 

grid environment. [13]. 

2.2.3 Open source code for grid computing 

The open source code technologies that are available for the grid computing are 

discussed in this section. 

N1 Grid Engine open source code 

The N1 Grid Engine (former Sun Grid Engine) is a piece of software for managing 

distributed computing resources. It dynamically satisfies user’s computing resource 

requirements to the computing resources available [14]. The N1 Grid Engine is 

suitable for cluster grids — one-project, one-department grids. The N1 Grid Engine

has some functionality of global grids that can span multiple enterprises. However, 
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the Sun Grid Engine Enterprise Edition from Sun Microsystems is suitable for 

enterprise level grids — multi-project, multi-department grids in a single 

organisation and has basic functionality for global grids [14]. It runs on Solaris 9, 8, 

7, and 2.6 SPARC® operating environment variants and on Sun x86 Linux and 

Linux x86 [14]. The computing grid master daemon may run on some arbitrary node. 

The Globus Project 

The Globus ALLiance project is a research and development project focused on 

enabling the application of grid concepts to scientific and engineering computing. It 

is developing an integrated open-architecture, open-source, grid services 

implementations called the Globus Toolkit. It provides a range of basic services and 

software libraries to support grids and grid applications. The toolkit includes 

software for security, information infrastructure, resource management, data 

management, communication, fault detection and portability [15]. The Globus toolkit

includes components designed to integrate the distributed hardware of the grid [16] 

Globus Resource Allocation Manager (GRAM): Library service to handle job 

submission. 

Grid Information Service (GIS): Directory service to locate grid resources. Also 

known as the metacomputing directory service. 

Grid Security Infrastructure (GSI): A library providing security services. 

GridFTP: File transfer protocol for high bandwidth wide area networks based on 

FTP. It includes GSI security, multiple data channels, partial file transfers, 

authenticated data channels and reusable data channels. 

Globus Access to Secondary Sources (GASS): Remote data access component.  

Globus also provides a layer above these services to give a simple user interface. 
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2.2.4 Existing grid infrastructures and previous works on grid 

The North Carolina Research and Education Network (NCREN) in the US, 

established in 1985 forms the backbone infrastructure for the state-wide grid that 

interconnects universities of the state. Through this grid, the University of North 

Carolina 16-campus system and other NCREN customers will offer research and 

development resources beyond the major metropolitan areas of North Carolina where 

many of the advanced computing resources already exist [17]. The structure of the 

grid is shown in figure 2.6. 

Figure 2.6: Structure of North Carolina Research and Education Network (NCREN)

grid

Sun Microsystems has taken control of several grid computing projects. Their grid 

strategy scales from cluster grid to global grid to expand existing technologies and 

integrate new ones [18], [19]. Figure 2.7 depicts the three levels of grid as planned 

by Sun. 
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Figure 2.7: Three levels of grid computing: Department grid, Enterprise grid and 

Global grid. 

A grid based on the Ethernet standard has been proposed in [20] to share resources. It 

is an effective and reliable technique for exploiting coarse-grained parallelism when 

failures are common. This approach places several simple but important 

responsibilities on client software to back off during periods of failure and to inform 

the competing clients in case of resources contention. It is employed to perform 

several grid computing tasks such as job submission, disk allocation and data 

replication [20]. 

2.3 Distributed communication techniques for RPC: SOAP 

XML based web technology provides more flexibility and simplicity than the 

previous distributed computing technologies such as DCOM, CORBA, and RMI. 

Microsoft, IBM and Sun are already promoting XML web services way to improve 

business systems through the use of industry standard XML protocols like SOAP, 

WSDL, UDDI etc [21],[22]. Web services can be utilised to 
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call an application specific computation on a remote machine using simple web 

methods. 

perform parallel computing behind the scenes on several computers to have better 

execution speed than on a single machine.  

Therefore, by the careful design of the appropriate back-ends, they can hide any 

high-performance processing resource – whether it is a supercomputer, a cluster, or 

even the grid as a whole as shown in Figure 2.8 [22]. By using simple interfaces, 

computational web services allow users to get computing power as easily as one can 

get electrical power through a wall socket [22]. 

Figure 2.8: A grid based on computational web services (CWS). 

The Simple Object Access protocol (SOAP) provides a way to create widely 

distributed, complex computing environments that can run over the Internet using 

existing Internet infrastructure [23]. It overcomes the limitation where most firewalls 

are configured to block non-HTTP request to remote objects [24]. 
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The SOAP technology is language and platform independent through the use of an 

Extensible Markup Language (XML) [25] scheme. The two participating 

applications can be written in different languages and can run on different operating 

systems [26]. The SOAP defines encoding techniques of a set of built-in and users 

defined data types. It allows the passing of almost any type of data between two 

applications. However, when it is used to make remote procedural calls (RPCs), it 

behaves as a request/response protocol. [26]. Figure 2.9 explains the request/response 

message formats of SOAP. The client wraps a method call into SOAP/XML packet, 

which is then sent over HTTP to the server. The XML request is parsed to read the 

method name and parameters passed and delegated for processing at the server side. 

The XML response is then sent back to the client, containing the result or fault data 

of the method call. Finally, the client may parse the response XML to make use of 

the return value [27]. 

Figure 2.9: SOAP uses the standard HTTP request/response model 

Figure 2.10 shows the data flow between client and server. The server runs in 

listening mode to process SOAP requests. The listener is simply the server code at 
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the specified URL for parsing the XML request, making the procedure call, and 

wrapping the result in XML to send as the response to the client [27].

Figure 2.10: Data flow between client and the server of a SOAP call 

SOAP specifications define how HTTP is employed to send and receive SOAP 

messages. Though SOAP messages can be sent over any protocol, HTTP is used in 

most applications. However, the message format can be extended to support custom 

applications [26]. Figure 2.11 explains the entire procedure of making a RPC by 

SOAP using HTTP [26]. 

Figure 2.11: Activation of RPC by Application A and return of the result by 

Application B over the Internet. 
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2.4 The Boolean satisfiability (BSAT) problem 

The BSAT problem [1] is a decision problem where the answer is either TRUE or 

FALSE. An "instance" is satisfied when the Boolean expression is TRUE for some 

assignment to the variables [28]. Otherwise it is said to be "unsatisfiable". For a 

Boolean function of N variables, there exists a total number of 2N enumerations. So, 

in the worst case, a brute force/exhaustive method performing linear search will have 

to consider all 2N combinations to generate the decision. Due to the complexity of the 

problem, it will take several years to obtain a solution using the current fastest 

computer, even for N = 50 [29]. The Boolean SAT has a large number of applications 

in automatic test pattern generation (ATPG) to test digital systems [29], computer 

architecture, computer aided design, reasoning [1], [30], logic verification, 

equivalence checking, timing analysis [31] etc. Therefore, new techniques are 

constantly being proposed, either in software or in hardware, to accelerate the 

solution of SAT [28]. Relevant terminologies and methods are discussed in the 

following sections. 

2.4.1 Definition and Terminology 

Any Boolean expression/formula can be transformed to an equivalent satisfiable 

formula in Conjunctive Normal Form (CNF) in polynomial time [32]. CNF is the 

most frequently used format for the Boolean satisfiability problem [33]. 

In CNF, the variables of the formula appear in literals – it can be either a single 

variable (x) or the negation/complemented form of a single variable (~x). Literals are 

grouped into clauses, which represent a disjunction (logical OR) of the literals they 

contain. A single literal can appear in any number of clauses. The conjunction 
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(logical AND) of all clauses represents the whole formula [33]. For example, the 

CNF formula  

F = (x1 OR ~x2) AND (x3) AND (x2 OR ~x3) 

has the following properties- 

3 variables namely x1, x3 and x3 

3 clauses that are (x1 OR ~x2), (x3) and (x2 OR ~x3) 

3 literals are in positive/original form: x1, x3 and x2 

2 literals are in negative/complemented form: ~x2 and ~x3 

It can be noted that a variable assignment that satisfies all the clauses will satisfy this 

CNF formula. In this case, an assignment x1=1, x2=1 and x3=1 satisfies the formula 

and hence it is satisfiable. 

2.4.2 DP and DPLL methods 

The Davis and Putnam's (DP) method can be applied to test if a Boolean formula F is 

satisfiable and it was first described in the paper [34]. Modern general purpose SAT 

solvers are based on the Davis-Putnam-Logemann-Loveland (DPLL) [35], [36] 

backtracking search approach that eliminate variables by case analysis rather than 

ordered resolution [37]. These apply a learning mechanism to derive new clauses for 

representing an abstraction of unsatisfiable parts and this learning mechanism 

effectively uses a heuristic to implement the backtrack search [38]. However, every 

DPLL solver exhibits an exponential runtime [38]. The Davis-Putnam procedure [31] 

is described below. 
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while (true)  
{

if (decide())  {     // branching 
while (deduce ()==conflict) {   //BCP 

backtrack_level = analyse_conflicts(); // conflict analysis 
if (backtrack_level==0) 

return UNSATISFIABLE 
else

back_track (backtrack_level);  // backtrack 
}

}
else      // no unassigned variables 

return SATISFIABLE 
}

The decide() procedure chooses a variable that has not been assigned yet. Decisions 

are mostly based on heuristics and it can affect the performance up to some extent 

[39]. After each decide() call, the decision level is increased by one.  

The deduce() is the inference process also known  as Boolean Constraint Propagation 

(BCP) [38]. It extends the current assignment by following the logic consequence of 

the assignments made so far. If all literals in a clause are false then a conflict is 

reached. If all but one literal in a clause are false, then the clause is called a unit

clause. Similarly the remaining literal is called a unit literal. Undoubtedly, in order to 

make the clause true, the unit literal must be true. This is called an implication. Thus 

deduce() is to identify unit clauses and get the corresponding implications or find a 

conflict [31]. 

The analyse_conflicts() function is used to detect decisions which lead to the conflict 

and avoid making a wrong decision again. This is called conflict-based learning – 

obtaining knowledge about the decisions that will lead to immediate conflict. [31].
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The back_track() function is used to undo the latest assignment that caused the 

conflict. All the implications of these assignments are also invalid because of the 

conflict. However, it is apparent that not all the assignments made so far are 

responsible for the conflict and some decision levels can be skipped during 

backtracking. This is called non-chronological backtracking [31]. 

The following points must be considered carefully while implementing DP or DPLL 

methods 

Boolean Constraint Propagation 

A large amount of execution time is spent on the BCP. So, an efficient 

implementation of the BCP is vital to the performance. BCP basically does two 

things: first, identify unit clauses, hence unit literal; second, learning the implication 

or report a conflict. The straightforward strategy is checking each clause to identify if 

the clause is unit clause or not for any assignments. But this is a very inefficient 

method since most SAT problem database involves memory and accessing large 

memory will slow down execution speed. Execution speed can be improved by 

avoiding the clauses with two or more literals not false that means these literals are 

either true or currently unknown [31].

Decision Heuristic 

A SAT solver has two major concerns in the decision heuristic. The first one is 

which variable to choose, i.e., variable ordering and the second one is what value to 

assign the first [31]. 
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Variable ordering: This problem is resolved by a greedy approach based on the 

frequency of the variables. A counter is associated with each variable to record 

the number of times that the variable appears in the current clause and the first 

variable with the maximum counter value is chosen [31] 

Choosing value(s): Since the clauses are in OR-ed form of variables, values 

should be assigned in such a way that at least one literal is true in each clause 

[31].

Conflict Analysis & Non-Chronological Backtracking 

The most recent relevant decision level is the proper backtrack level and it indicates 

that all decisions below that level will lead to conflicts regardless of the decisions 

made. This can greatly reduce the search space and consequently improve the 

performance [31]. 

Binary Decision Diagrams (BDD) 

Binary decision diagrams (BDDs) [40] have also been widely used in Computer 

Aided Design (CAD) applications, for instance, logic synthesis, testing and formal 

verification [41]. This strategy transforms a circuit into a canonical form (CF), 

depending on an ordering of the Boolean variables. Two circuits are considered to be 

equivalent if and only if they have the same canonical form. For many kinds of 

circuits, BDDs work very well, especially when a good ordering of the variables can 

be found [37]. Equivalence checking of two circuits [42], [43] is of significant 

importance so that new or optimised circuit can be verified by showing that it is 

equivalent to an old and tested circuit [37]. However, satisfiability solvers based on 

Davis and Putnam method are more efficient than BDDs when there is limited 
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backtracking [37]. BDDs make use of an ordering of the variables which breaks the 

processing down into smaller steps that are easier to perform and thus can handle 

large formulae. 

2.4.3 Previous works 

An efficient implementation of DPLL can be found in [44]. [45] proposed a solution 

to verification problems by combining BDDs and satisfiability testers [37]. A method 

discussed in [46] tries all possible truth assignments to small subsets of the variables 

of a formula using breadth first search. Then the information, obtained about 

dependencies among the variables, from these assignments can be utilised to 

determine satisfiability. 

Chaff’s [47] algorithm based on DPLL follows a depth-first traversal through the 

decision tree where each node is a value assignment for a particular decision 

variable. The decision level of an assignment is the length of the path from the root 

to that assignment [38]. Chaff’s algorithm demonstrates 10-100x speed up compared 

to all previous software solutions and solutions can be found in reasonable 

computing time using SAT software packages running on general purpose processors 

[48].

A satisfiability procedure QSAT is discussed in [37] that replaces sub-formulae by 

simpler equivalent sub-formulae repeatedly. It tests satisfiability of a formula by 

successively eliminating variables from it, producing an equivalent formula, until all 

variables have been eliminated [37]. 
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A new parallel algorithm MP_SAT has been proposed in [48] that uses the fine grain 

parallelisms in the clause and variable operations. It speeds up SAT solver 

performance by exploiting the following points — 

efficient single processor SAT algorithms like Chaff. 

configurable processor cores that provide a practical low-cost alternative for 

custom processor design. 

integrated processor and DRAM chip 

Multiple-Instruction-Multiple-Data (MIMD) stream architecture 

MP_SAT uses a decomposition strategy for both data and function. Computationally 

expensive functions in all SAT algorithms repeatedly perform the same operations on 

a large set of data. Furthermore, there is no strong correlation among the data. 

Therefore, each processor can be assigned a subset of the clauses, variables and runs 

the functions on its own data subset in parallel as shown in figure 2.12 [48].

Figure 2.12: Task partitioning among several processors. 

Figure 2.13 shows the overall architecture with processing nodes arranged in a two-

dimensional mesh. Each node contains processor and communication hardware. 

Processors have in-built floating point cache and DRAM. The communication part 

(com) performs message routing and buffering. However, global synchronisation is 

necessary before MP_SAT makes a new decision. It must make sure that all the PPs 
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have completed with the BCP at the current level. Therefore, the MP needs to detect 

whether this condition has satisfied from time to time [48].  

Figure 2.13: System architecture with embedded DRAM in processor chip. 

The sequential DPLL algorithm is applied in parallel fashion by partitioning the 

entire search space into several disjoint parts and treating these in parallel [33]. 

However, for a SAT search space, it is difficult to predict the required time to 

explore a particular branch of the search space and therefore, it is not possible to 

partition the search space at the beginning statically. In [33], the problem is resolved 

by dynamic partitioning and assigning work load to the available threads at run-time. 

The partitioning is performed by the concept of guiding path. It associates a Boolean 

value to the variables and flag to indicate either both the values or one value has been 

assigned. Variables that have been assigned both values are called “closed” and those 

for which one value assignment has been performed is said to be “open”. These open 

variables represent junctions in the guiding path for unexplored search path. 

Therefore, another thread (called child thread) can start execution by flipping the 

value of the open variable and marking it as closed to stop another thread to start 

from this variable [33]. The thread that follows the main search path is the parent 
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thread and each thread searches only one path. The whole concept is depicted in 

figure 2.14. 

Figure 2.14: Parallel threaded Implementation of DPLL algorithm. 

[49] has proposed an algorithm derived from Chaff [47] for grid application. The 

computational grid provided by the Grid Application Development Software 

(GrADS) project [50] has been used to apply it on the SAT2002 benchmark [51], 

[52]. The algorithm is able to solve previously unsolved problems of the benchmark 

suit using the machines of GrADS located at various institutions of the United States 

[49]. The SAT problem is split into independent sub-problems that can be 

investigated for satisfiability. These sub-problems can be partitioned further in the 

similar fashion to form a recursive tree of problems. A new sub-problem consists of a 

set of variable assignments and a set of clauses. Variable assignments include all the 

assignments of the first level and complement of the first assignment of the second 

decision level and so on. Learned clauses from one machine are shared by the others 

so that single learning can propagate through all over the grid [49]. However, a 

learned clause can result in one of four cases: 

Open variable 

Closed variable 

Child 1 
thread 

Child 2 
thread 
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If the clause has only one unknown literal then it results in an implication. 

If the clause has more than one unknown literal then the clause is simply added to 

the set of learned clauses. 

If the clause has all literals false then there is a conflict and the sub-problem is 

unsatisfiable. 

If the clause evaluates to true then the clause is discarded since it does not prune 

any part of the search space. 

2.5 Genetic algorithm 

Genetic algorithms (GA) attempt to solve complex problems by modelling Darwin's 

theory of evolution where solutions of a particular problem are allowed to evolve 

over time. GAs are widely used for optimised searching [53]. A fitness function is 

applied to judge the eligibility of the probable solutions. Various aspects of GAs and 

suitablity of fitness functions can be found in [54].  

2.5.1 Definition and terminologies 

Chromosome: GAs consider simultaneous multiple solutions and each solution is 

called a chromosome. The target of a GA is to produce new chromosomes 

(solutions) that are better than the parent chromosomes. 

Gene: Each chromosome contains a number of genes and each gene carries one 

or a number of properties. However, genes are generally represented by a bit. 

Population: The nunber of solutions in a generation is called the population of the 

generation.
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The GA algorithm is shown in the figure 2.15. 

Figure 2.15: Flowchart of generic Genetic Algorithm 

2.5.2 Selection 

The selection mechanism chooses the best parents from the current generation to 

generate children for the next generation. Suitable parents are chosen based on the 

fitness value of the parents. The simplest form of selection is the roulette wheel 

selection where each solution is allocated a section of roulette wheel proportioned to 

its fitness. The wheel is spun a number of times and the solution landed is picked to 

form part of a new generation. This solution has survived to reproduce. 

Create initial population randomly or based on some criteria 

Selection: choose the best solutions based on fitness 
function value 

Reproduction: generate new solutions by taking good 
features from the selected solutions. This is called 

crossover. 

Mutation: Change some parts of the solutions randomly 
with expectation that they will get better. 

Continue? 

Yes

No

End
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2.5.3 Reproduction 

As in nature, reproduction is a mechanism that generates a child that carries 

properties of its parents. In case of GAs, the new child solution inherits the 

properties/data of the parent solutions. The process of generating new chromosome 

from parent chromosomes is called cross over. Figure 2.16 explains single point and 

multipoint cross over process. Unfortunately, it only works if the parents (patterns) 

are sufficiently differently. 

Figure 2.16a: Single point cross over. Figure 2.16b: Multi-point (two) cross over. 

2.5.4 Mutation 

To incorporate new properties in new solution, chromosomes have a small 

probability of changing. Since chromosomes are represented as bit strings, mutation 

simply means flipping a bit, i.e., changing a bit from 0 to 1 and vice versa at random 

location. Figure 2.17 shows mutation in 4th and 8th bit places from left. 

XXX YYY

AAA BBB

XXX BBB

AAA YYY

XX YYXY

AA BBAB

XX YYAB

AA BBXY

Parent 1 

Parent 2 

Child 1 

Child 2 

Parent 1 

Parent 2 

Child 1 

Child 2 

Cross over point Cross over points 



Chapter 2: Relevant Theory and Analysis 

32

Figure 2.17: Mutation of a chromosome. 

2.5.5 Previous GA works on BSAT 

A fuzzy-genetic approach to BSAT problem is presented in [29]  that uses fuzzy 

logic [55] , [56] to assign fitness to chromosomes/feasible solutions of the search 

space. The original binary domain {0, 1} is mapped into continuous fitness domain 

[0, 1] by fuzzy logic. GA is utilised to optimise the solution in the continuous domain 

and finally the derived solution is converted back (decoded) to the Boolean format. 

The entire process is depicted in the figure 2.18. However, it can be noted that the 

binary world limits the vertices to a unit hypercube. On the other hand, fuzzy domain 

involves any interior point of the unit hypercube [29]. 

Figure 2.18: Application of fuzzy logic for fitness value and GA optimisation 
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The fitness function for a GA based BSAT solution can be made intelligent by 

incorporating some sort of knowledge and can be allowed to be heuristic routine 

[57]. Some of the proposals for fitness function are listed below. 

Fitness is 1 (true) if the Boolean expression is true otherwise false. 

Convert Boolean expression into Conjunctive Normal Form (CNF) and fitness 

function returns the total number of top level conjuncts that evaluate to true. 

Fitness is associated to sub-expressions of the main Boolean expression. Then the 

final fitness is computed from intermediate fitness values.  

2.6 Summary 

The overviews of grid, SOAP, BSAT problem and GAs have been presented in this 

chapter. Previous works performed on BSAT using GA and distributed computing 

have also been discussed. 
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Chapter 3 

Design and partitioning of the algorithms 

3.1 Introduction 

Two algorithms: (1) brute force/exhaustive search algorithm and (2) a genetic 

optimisation algorithm have been developed for the Boolean satisfiability benchmark 

suit uf20-91 [58] and are executed on a single computer configuration and grid 

computing environment as mentioned before. The benchmark consists of 1000 

satisfiable Conjunctive Normal Form (CNF) instances where each instance has 91 

clauses in 20 variables and each clause has exactly 3 variables. This chapter 

describes both of the algorithms developed and coarse grained partitioning for 

parallel execution. All the programs can be found in the Appendices. 

3.2 A Brute Force/Exhaustive search algorithm 

The brute force/exhaustive search algorithm performs a linear search through the 

binary numbers/sequences starting from all zeros (00...0) to all ones (11…1) and 

returns as soon as the first solution is found. Since each instance of the benchmark 

[58] has 20 variables, the binary sequence has length 20 and each bit represents one 

variable. For 20 variables there will be 220 = 1048576 binary numbers (corresponding 

to decimal 0 to 1048575) and in the worst case, all these numbers will be checked for 

satisfiability. The search algorithm is explained with the help of flowchart in figure 

3.1. A detailed pseudo-code representation of the functions is given in the following 

sections.
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Figure 3.1: Flowchart representation of the Exhaustive search. 

3.2.1 Function EXHAUSTIVE_SEARCH() 

The function checks the satisfiability of a Boolean expression. The linear search 

method is shown below.  

Find the number of clauses satisfied by the 
binary number 
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End
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1.  Load the Boolean expression into EXPRESSION 
2. For VALUE = 0 to 1048575 do 
3.  CONVERT (VALUE, SOLUTION) 
4.  FITNESS = FIND_FITNESS (SOLUTION) 
5.  If FITNESS = C then 
6.   Print “Satisfiable” and SOLUTION 
7.   Return 
8.  End of if 
9. End of for 
10. Print “Unsatisfiable” 

EXPRESSION is a 2 dimensional array that stores the Boolean expression and each 

row stores one clause of the expression. VALUE is a long integer that generates the 

binary number for sequencing. SOLUTION is a 1-dimensional array and each cell 

stores TRUE or FALSE based on the corresponding bit value of the binary number 

stored in VALUE. C is the number of clauses in an instance. 

3.2.2 Function CONVERT(VALUE, SOLUTION) 

The function that converts the binary number into a sequence of TRUE / FALSE in 

an array is shown below.

1. For J=1 to V do 
2.  If bit J of VALUE is 1 then 
3.   SOLUTION[J] = TRUE 
4.  Else 
5.   SOLUTION[J] = FALSE 
6.  End of if 
7. End of for  

Variable V contains the number of variables (20) in the expression. The SOLUTION

array has 20 cells and cell k is set to TRUE if bit k of the binary number in VALUE is

1, otherwise it is set to FALSE. 
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3.2.3 Function FIND_FITNESS(SOLUTION) 

The FIND_FITNESS function returns the number of satisfied clauses by SOLUTION.

FIT is a local variable that keeps track of the number of satisfied clause so far and at 

the end of the function this value is returned. It should be noted here that, row J of 

EXPRESSION stores clause J. C is the number of clauses in the instance. 

1. FIT = 0 
2. For J=1 to C do 
3.  If SOLUTION makes the J th clause TRUE then 
4.   FIT = FIT + 1 
5.  End of if 
6. End of for 
7. Return FIT 

3.3 Partitioning of the exhaustive search algorithm 

The entire binary sequence space (from decimal 0 to 1048575) is partitioned into 3 

(three) disjoint or non-overlapping sub-sequences. On each computer, one sub-

sequence is executed independently. For the Boolean satisfiability problem, as soon 

as a solution is found on any computer, i.e., in a sub-sequence, the expression is 

Satisfiable and other sub-sequences can be aborted. Therefore, exhaustive BSAT 

search is highly suitable for grid computing where sub-tasks can execute without 

depending on each other. However, in this investigation, the minimum required time 

is considered in case of multiple solutions. The partitioning concept is depicted in 

figure 3.2. 
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 Sub-sequence A Sub-sequence B Sub-sequence C 

 From 0 to 349524 349525 to 699049 699050 to 1048575 

 Computer A Computer B Computer C 

   

Figure 3.2: Parallelisation of exhaustive algorithm among 3 grid computers for the 

BSAT problem. 

Entire search space 

Partition 1 Partition 2 Partition 3 
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3.4 Genetic algorithm search 

In this investigation, genetic algorithm (GA) is used to consider multiple probable 

solutions simultaneously. Crossover and mutation operations are applied to the 

solutions to improve them and to generate a solution eventually. For simplicity and 

speed, the fitness function returns an integer that is the number of clauses in the 

Boolean expression satisfied by a solution. The algorithm stops when a solution with 

fitness equal to the number of clauses (91) is found or a predefined number of 

generations (iterations) are observed. However, because of the nature of the 

algorithm, it does not guarantee that it will generate a solution for a Satisfiable 

expression.

3.4.1 Data structures 

For the next sections, it is assumed that- 

V: Number of variables in the Boolean expression/function 

C: Number of clauses in the Boolean expression/function 

P: Size of /number of solutions in current generation 

Q: Size of /number of solutions in next generation 

CURRENT_GENERATION: a PxV matrix that stores the current P probable 

solutions where P is the size of population. CURRENT_GENERATION[k] is the 

k-th solution.  

NEW_GENERATION: a QxV matrix that stores the new probable solutions after 

cross over and Q <= P.

GENERATION: Number of generations the algorithm is applied to the 

benchmark. 
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CURRENT_FITNESS: a Px1 matrix to store fitness of 

CURRENT_GENERATION solutions. 

NEW_FITNESS: a Qx1 matrix to store fitness of NEW_GENERATION 

solutions. 

EXPRESSION: A matrix that store the Boolean instance. Row k stores the k-th

clause.

Matrices for CURRENT_GENERATION and NEW_GENERATIONS 

Each solution/chromosome of CURRENT_GENERATION (CG) and 

NEW_GENERATION (NG) is a row vector of V components where component k

represents k-th variable in that solution. Each component is a Boolean variable that 

stores a 0 or 1. Here, CGij or NGij represents the j-th variable of i th solution. Figure 

3.3 shows the scenario when P and Q simultaneous soutions are considered and 

hence these two matrices store a generation.  

Figure 3.3: Data structures of CURRENT_GENERATION (CG) and 

NEXT_GENERATION (NG) of multiple solutions (a generation). 

Matrices for CURRENT_FITNESS and NEXT_FITNESS 

Two column vectors of size Px1 and Qx1 are maintained to store the fitness values of 

the solutions of current generation (CG) and next generation (NG), respectively. 

Fitnessi stores the fitness of i th solution. Since fitness of a solution is defined as the 
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number of clauses satisfied by that solution, it is an integer value that can range from 

0 to C inclusive. Figure 3.4 depicts fitness matrices. 

    

Figure 3.4: Data structures of CURRENT_FITNESS and NEXT_FITNESS of 

multiple solutions. 

Matrix for EXPRESSION 

The entire expresssion/instance is stored in a matrix. Each clause  is expressed by a 

row vector of length V. Here component k represents the k-th Boolean variable. 

Figure 3.5 depicts the data structure of storing a Boolean expression of C clauses. If 

the k-th variable appears in original form then it is a 1 else it is a 0 (complemented 

form). However, if the k-th variable is missing in the clause then k-th component is a  

Figure 3.5: Data structure of EXPRESSION. 

3.4.2 The proposed GA algorithm 

This section proposes a serial GA based Boolean satisfiability algorithm. Figure 3.6 

depicts the flowchart of the GA algorithm followed by pseudo-code representation of 

the search. The initial P chromosomes/solutions are generated with random values. 

Mutation is applied after every 100 (hundred) generations. 
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Figure 3.6: Flowchart representation of the GA BSAT algorithm. 
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A detailed pseudo-code representation of the functions is given in the following 

sections.

Function GA_BSAT_SEARCH() 

Function to check the satisfiability of a Boolean expression/instance using genetic 

algorithm search method. The Boolean expression is stored in 2-dimensional array 

EXPRESSION. 

1.  CURRENT_GENERATION = Generate initial P solutions randomly and  
 Set GENERATION_COUNT = 0 
2. For J = 1 to GENERATION do 
3.  For each solution in CURRENT_GENERATION do  
4.    Compute CURRENT_FITNESS[k] 
5.   End of for loop 
6.  If there exists a solution k for which fitness is C then 
7.   Print “Successful” and CURRENT_GENERATION[k] 
8.   Return 
9.  End of if 
10.  Copy the best Q solutions from CURRENT_GENERATION to  
  NEW_GENERATION based on fitness value 
11.  For each solution pair in NEW_GENERATION do 
12.   Apply cross over NEW_GENERATION[k] with  
   NEW_GENERATION[k+1] 
13.  End of for loop 
14.  For each solution in NEW_GENERATION do 
15.   Compute NEW_FITNESS[k] 
16.  End of for loop  
17.  Select the best P solutions from CURRENT_GENERATION and 
  NEW_GENERATION 
18.  Copy them to CURRENT_GENERATION 
19.  GENERATION_COUNT = GENERATION_COUNT + 1 
20.  If GENERATION_COUNT mod 100 = 0 then 
21.   Apply Mutation to all chromosomes/solutions 
22.  End of if 
23.  If GENERATION_COUNT = GENERATION then 
24.   Print “Unsuccessful” 
25.  End of if 
26. End of for loop 
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3.5 Partitioning of GA based BSAT search algorithm 

The number of generations to execute is simply partitioned into 3 (three) sub-

generations and each of the 3 (three) computers of the grid computing system 

executes one sub-generation. For instance, the first computer takes care of the first 3 

generations, the second one handles the next 3 generations and the third computer 

runs the last 4 generations until the total number of generations is 10. Therefore, each 

computer can execute its own sub-generations without depending on the other. Like 

parallelised exhaustive search algorithm, GA based BSAT aborts/discards the other 

two sub-generations whenever one computer obtains a solution. For multiple 

solutions, only the solution with the least time is considered. The partitioning 

concept is depicted in figure 3.7. 
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 Sub-generation A Sub-generation B Sub-generation C 

 GENERATION/3 GENERATION/3 GENERATION/3 

 Computer A Computer B Computer C 

Figure 3.7: Parallelisation of GA based BSAT algorithm among 3 grid computers. 

Total number of generations 

Sub-generation 1 Sub-generation 2 Sub-generation 3 
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3.6 Summary 

The same FIND_FITNESS (SOLUTION) function is used for both Exhaustive and 

GA BSAT algorithm. However, unlike [29] where the fitness function returns a 

real/floating point value based on fuzzy logic as discussed in chapter 2, 

FIND_FITNESS function simply returns the number of satisfied clauses that must be 

an integer. This makes it simple and allows executing faster. 

An “instance” might have more than one solution and any one solution makes BSAT 

decision TRUE. Each sub-sequence in case of exhaustive search is independent and 

can result in a solution. Similarly, all three sub-generations can be executed without 

depending on the other sub-generation. These allow to search solution in 3 parts in a 

parallel fashion. Therefore, this type of application is very much suitable for grid 

computing where sub-tasks are completely independent. 

The design of the overall grid computing environment consisting of 3 computers is 

discussed in the next chapter. 
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Chapter 4 

Design of the Grid computing system 

4.1 Introduction 

The entire grid consists of three computers connected via a local area network 

(LAN). The client splits the satisfiability task and sends them as Remote Procedural 

Call (RPC) using SOAP to 3 servers run on three different machines. This chapter 

explores various aspects of the system. 

4.2 Specification 

The grid is implemented with the following system specification 

Hardware: 

Each computer is equipped with the following hardware 

Processor: Pentium 4 computers with 2.66 MHz clock 

512 MB main memory and 60 GB hard disk 

100 Mbps LAN card, CD ROM etc.

Switch: NETGEAR 8 port 10/100/1000 Mbps Gigabit switch, Model GS 108 

Software: 

Each computer is installed with the following software 

Mandrake Linux 10.0 is used as the Operating System. 

Simple Object Access Protocol (SOAP) used for Remote Procedural Call (RPC). 

4.3 LAN topology 

All three computers are connected to a high speed switch and are assigned static IP 

addresses. The switch allows parallel communication among the computers. Both the 
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client and servers are installed with Mandrake Linux 10.0. The client and one of the 

servers are run on the same machine. When RPCs are sent by the client machine, it 

will then wait for results to arrive. Hence, the client machine can also be used to 

execute a server. Moreover, this avoids network overhead of sending RPC to another 

computer. The network topology is shown is figure 4.1. 

Figure 4.1: LAN topology of the grid System. 

4.4 Client design 

The client is designed as a Multi-threaded application using the C language. It 

launches 3 threads and each of these invokes an RPC SOAP call independently. Each 

thread waits for a corresponding server to finish. In this strategy the client does not 

need to wait for a server to finish current RPC before making another one. Two 

threads send RPC request to other machines and the other one sends to the server 

running on the same machine. No synchronisation is required among the threads or 

servers since each sub-task is completely disjoint and can be run independently. 

An alternative implementation follows a multi-process model using the fork call in 

the C language. However, this puts a heavier burden of creating new processes on the 
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client machine. On the other hand, threads are light weight processes that share data 

with the parent thread very easily. Moreover, they execute faster and avoid 

overheads associating with creating new processes. The client structure is depicted in 

figure 4.2. High port numbers are chosen to ensure that these user defined ports will 

not conflict with the operating system ports. The numbers 25000, 30000, 35000 are 

chosen arbitrarily. 

Figure 4.2: Multi-threaded architecture of the client application. 

4.5 Server design 

The server is written in the C language. It initiates the SOAP system and listens to a 

particular predefined port for SOAP request. Whenever a call arrives it reads the 

benchmark file into the main memory and then executes the call. After finishing the 

call it starts listening again. The behaviour of the server is shown in figure 4.3 with 

the aid of a flowchart. 
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Figure 4.3: Server execution on grid computers. 

4.6 Argument passing 

For both exhaustive / GA BSAT search the client passes arguments to the servers and 

in reply the server returns some values to the client. These are discussed in this 

section.

4.6.1 Exhaustive BSAT search 

The client passes two arguments to each server. The first and second values are the 

start and end values of the binary sub-sequence to be executed by the server. For 

example, the first server runs the sub-sequence from 0 to 349524. Therefore, 0 and 

349524 are passed as first and second arguments, respectively. 

In reply, the server returns the time required to read the benchmark file and status of 

execution: successful (satisfiable) or unsuccessful (unsatisfiable). If the instance is 

satisfied, the result is also returned. The mechanism is depicted in figure 4.4. 
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Figure 4.4: Argument passing between client and server for Exhaustive search. 

4.6.2 GA BSAT search 

In the GA case, the client passes two arguments that specify the number of iterations 

in sub-generation and size of population to each server. For example, for total 

100,000 generations and population size 20, 33,333 (100,000/3) and 20 are passed to 

each server. 

Each server responds by returning benchmark file reading time and satisfiability 

status. In case of satisfiable instance, the solution is also passed back to the client. 

Figure 4.5 shows the technique. 

Figure 4.5: Argument passing between client and server for Genetic BSAT search. 
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4.7 Time calculation 

Both the server and the client performs computation of elapsed time independently. 

This section explains how the client and server keep track of time. 

Client timing 

The client starts the timer just before initialising SOAP mechanism. Then it performs 

the SOAP call and stops the timer just after the soap call has returned. The elapsed 

time to complete each SOAP call is recorded by the client using the function 

gettimeofday(). It can be noted here that, gettimeofday() can be used to get the time 

elapsed. For example, an exhaustive search in the 3-computer grid, SOAP took 

321.13 ms to return. But, on a single server it took only 310.0 ms to execute. 

Server timing 

Each server performs two time computations. These are 

Benchmark File reading time: The clock starts just before reading the benchmark 

file and after finishing it are recorded using gettimeofday() function. Then from 

these times the time needed to read the benchmark file is computed and returned 

to the client. 

Execution/processing time: the clock() function is used to compute the time 

required by execution of the algorithm. It should be mentioned that the clock() 

function returns the number of CPU clocks for a program to execute. Then the 

execution/processing time can be obtained by dividing the number of clocks by 

CLOCKS_PER_SEC.
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Time computation on Client 

The client records the total elapsed time to complete a SOAP call. This time has 3 

(three) components: SOAP overhead time (this includes transmission, marshalling 

into XML etc.), benchmark file reading time and execution time on the server. In 

other words,

Elapsed time = SOAP overhead + Benchmark reading time + Execution time 

However, since the server returns the time for reading benchmark file, the client can 

compute the time for a SOAP call on a remote machine using the formula 

Total time = Elapsed time – Benchmark file reading time 

4.8 Benchmark File replication 

The benchmark file is copied / replicated to all the server machines so that each 

server can read the file in parallel as shown in figure 4.1. However, file reading time 

can vary depending on hard disk properties, like latency time, seek time etc.

4.9 Summary 

The parallel algorithm proposed in [48] uses special tightly coupled hardware that 

supports Multiple-Instruction-Multiple-Data (MIMD) stream architecture and fine 

grained parallelism. The processing nodes are assigned a subset of variables and 

clauses and are organised in 2-dimensional mesh as discussed in chapter 2.  

In contrast, this investigation uses loosely coupled grid system that supports coarse 

grained parallelism. Each processor is assigned a sub-sequence (Exhaustive search) 

or sub-generation (GA BSAT). Processing nodes are connected to a LAN via a high 

speed switch. 
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When a task is split into 3 parts and executed in parallel, theoretically it should run 3 

times faster than on a single computer. However, some time is wasted because of the 

overhead of SOAP and of transmission over the local network. 

The next chapter presents and analyses the results for the exhaustive search and 

genetic algorithm on a single computer and in the grid computing environment. 
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Chapter 5 

Implementation and Results 

5.1 Introduction 

This chapter provides the implementation details and results of execution times for 

four cases: the Exhaustive BSAT search on (1) a single computer and (2) on grid, 

GA BSAT search on (3) a single computer and (4) on grid. For each of these cases, 

two types of executable codes are generated: non-optimised and gcc compiler O3 

optimised [59], [60], [61] codes. Both positive and negative error bars for the 

readings are investigated and file sizes for non-optimised and O3 optimised codes are 

compared.  

5.2 Number of instances considered 

The benchmark suit uf20-91 [58] contains 1000 Satisfiable instances. Among these, 

50 instances are picked randomly for this investigation. Both the exhaustive and GA

BSAT search are applied to these 50 (fifty) instances/expressions and the results are 

observed.

5.3 Number of readings taken 

5.3.1 Exhaustive BSAT search on single computer 

The exhaustive BSAT algorithm performs a linear search in the search space. It finds 

the same solution in every execution instance and requires the same amount of time 

no matter how many times it is run on a single computer. So, in case of observation 

only one reading is required to be taken for the Exhaustive BSAT search on a single 

computer. 
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5.3.2 Exhaustive BSAT search on grid

Linear search in sub-sequences will result in the same execution time on grid 

computers for all executions. But, SOAP calls take different times to complete from 

one run to another. So, for each instance 30 readings are taken to obtain a stable and 

statistically interpretable result in the case of exhaustive grid based BSAT search. 

5.3.3 GA BSAT search on single computer 

As mentioned earlier, GA BSAT search does not guarantee a result even if the 

instance has one or more solution. Moreover, this algorithm might produce 

inconsistent execution time on the same computer. Because of these reasons, 30 

readings are considered for each expression/instance. 

5.3.4 GA BSAT search on grid 

When the GA based BSAT search algorithm is executed on the grid platform, 

completion time can vary because of the non-deterministic properties of GA as well 

as SOAP overhead. In the worst case, all 3 sub-generations might fail to find a 

solution. Like before, 30 readings are taken into account for each of the 50 instances 

considered.

5.4 Non-optimised vs O3 Optimised code 

The gcc compiler has options to generate various optimised executable codes. 

Without any type of optimisation, the compiler will try to reduce the cost of 

compilation. Statements become independent and breakpoints can be set between 

two statements to change values of variables. It allocates registers to only those 
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variables that have been declared as register. The compiler’s goal is to reduce code 

size and execution time [59], [60]. 

However, the gcc compiler supports several types of code optimisation options and 

turning on optimisation options will instruct the compiler to attempt to improve the 

performance and/or code size at the expense of compilation time and possibly the 

ability to debug the program [59], [60]. These options are discussed below. 

5.4.1 O1 Optimisation 

The O1 optimising option takes longer time to compile and more memory for a large 

function. It turns on several options. Some of these include [61]  

-fthread-jumps: Optimises the cases when a jump branches to a location where 

another comparison subsumed by the first. If so, the first branch is redirected to 

either the destination of the second branch or a point immediately following it, 

depending on whether the condition is known to be true or false. 

-fdelayed-branch: This attempts to reorder instructions to exploit instruction slots 

available after delayed branch instructions 

-fomit-frame-pointer: This does not reserve a register for frame pointer for 

functions that do not need one. This avoids the instructions to save, set up and 

restore frame pointers. Therefore, it also makes an extra register available in 

many functions 

5.4.2 O2 Optimisation 

The O2 optimisation option performs almost all supported optimisations that do not 

involve a space-speed tradeoff. However, it does not do loop unrolling, function in-

lining and register renaming [59], [60]. Some of the options are explained below. 
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-fforce-mem: It is turned on all machines and forces operands to be copied into 

registers before doing arithmetic operations on them. This produces better code 

by making all memory references potential common subexpressions. When they 

are not common subexpressions, instruction combination should eliminate the 

separate register-load [61]. 

Frame pointer elimination: This is turned on those machines where doing so does 

not interfere with debugging [59], [60]. 

5.4.3 O3 Optimisation 

The O3 optimisation option turns on all optimisations specified by O2 and also turns 

on the following features- 

-finline-functions: This integrates all simple functions into their callers. The 

compiler heuristically decides which functions are simple enough to be worth 

integrating in this way. If all calls to a given function are integrated and the 

function is declared static, then the function is normally not output as assembler 

code in its own right [61]. 

-frename-registers: This attempts to avoid false dependencies in scheduled code 

by making use of registers left over after register allocation. This optimisation 

benefits processors that supports lots of registers [61].

5.5 File size for Non-optimised and O3 optimised code 

For the Exhaustive and GA BSAT search on single computer there is only one 

application file. On the other hand, in case of the grid environment, there are two 

applications: the client and the server. The following sections discuss the results 

obtained.
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5.6 Exhaustive search on a single computer 

In Exhaustive search on a single computer, the execution time is dependent on the 

location of the first solution in the entire search space. In other words, if the first 

solution is located towards the beginning of the search space, it takes much less time 

to find it. 

5.6.1 Non-optimised vs. O3 optimised machine code 

It is apparent from figure 5.1 that O3 optimised code takes less time to execute than 

non-optimised code for all the instances. But due to the linear search method, search 

both the graphs have the same shape. The difference in execution time is significant 

when the solution is near the end of the search space. O3 optimised code executes at 

least twice faster than the non-optimised code and therefore it is proposed that 

Execution time of non-optimised Exhaustive BSAT search on single computer 

2 * Execution time of O3 optimised Exhaustive BSAT search on single computer 
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Figure 5.1: Execution time of Exhaustive BSAT search on single computer for non-

optimised and O3 optimised machine code. 
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5.7 Exhaustive search on grid 

The grid implementation shows better performance when the instance has more than 

one solution. In this case, more than one computer generates results and the best one 

is picked. Furthermore, the exhaustive BSAT search on the grid implementation 

executes faster if the solutions are located near the start of the sub-sequences. 

5.7.1 Non-optimised vs. O3 optimised machine code 

Figure 5.2 depicts the comparison between non-optimised and O3 optimised code. 

Each point of the figure represents the average of 30 readings. Error bars are 

computed as standard deviation both in positive and negative directions. 
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Figure 5.2: Execution time of Exhaustive BSAT search on grid for non-optimised 

and optimised machine code with error bars. 
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It is clear from figure 5.2 that in general, both the curves show the same behaviour 

(shape of curve) for all the instances. However, it can be established that 

Execution time of non-optimised Exhaustive BSAT search on grid 

2 * Execution time of O3 optimised Exhaustive BSAT search on grid 

5.8 Exhaustive search on single computer vs. on grid 

The grid approach incurs some SOAP overhead time for data type marshalling and 

network transmission. Since each sub-sequence is 3
1 rd of the entire search space, 

searching a sub-sequence should take 3
1 rd time. In general, it is obvious from figure 

5.3 and 5.4 that the grid shows better execution time than single computer for most 

of the instances. It can be proposed that the non-optimised and O3 optimised code 

support the following relationship

Execution time on single computer  3 * Maximum execution time on grid 

Theoretically, the exhaustive BSAT search on a single computer exhibits better 

performance than on the grid enabled one if the first sub-sequence contains a 

solution. The time to find the solution will be the same for the both cases but the grid 

will experience more overhead time for SOAP mechanism. This is apparent from 

figure 5.3 and 5.4 that show the comparison between non-optimised and O3 

optimised code, respectively. For some instances, the execution time of the 

exhaustive search on single computer is lower than that on the grid. 

5.8.1 Non-optimised machine code 

Figure 5.3 shows that maximum execution time for non-optimised and O3 optimised 

machine codes are approximately 15000 and 5200 ms, respectively.  



Chapter 5: Implementation and Results 

62

0

2000

4000

6000

8000

10000

12000

14000

16000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Instance/Boolean expression

Ex
ec

ut
io

n 
tim

e 
(m

s)

Exhaustive search on Grid NO optimisation (average of 30 readings)
Exhaustive search on single machine NO optimisation

Figure 5.3: Execution time of Exhaustive BSAT search on single computer and grid 

for non-optimised machine code. 

5.8.2 O3 optimised machine code 

According to the figure 5.4, highest execution times are around 6500 (non-optimised) 

and 2200 ms (O3 optimised).  
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5.8.3 File size 

Figure 5.5 depicts the comparison for the executable files for the exhaustive BSAT 

search. It is evident that optimisation has almost no effect on file size for the BSAT 

search on single computer. But for the grid enabled O3 optimised files are larger than 

non-optimised files and it can be inferred that for both server and client 

O3 Optimised grid file size  1.8 * non-optimised grid file size 

Figure 5.5: Comparison of executable file size on single computer and on grid 

(Server and Client) 

5.9 GA BSAT search on single computer 

The GA BSAT search method is applied for population size of 20 and 10,000 

generations. Since each expression has 20 variables, 20 random chromosomes / 

solutions are considered. It has been observed that population size larger than 20, for 

instance, 40 or 60 and generations higher than 10,000 do not have significant 

improvement in results. However, though every instance is satisfiable, a number of 

executions did not find any solution since this algorithm does not guarantee that it 

will find a solution if it exists. 
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5.9.1 Number of successful search 

The GA BSAT algorithm found a solution for all 30 executions in case of 24 (non-

optimised) and 22 (O3 optimised) instances as depicted in figure 5.6a and 5.6b. For 

both of the cases, the lowest probability to find a solution for an instance is around 

0.33.
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Figure 5.6a: No. of successful searches in 30 executions for GA BSAT on single 

computer for non-optimised machine code. 
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Figure 5.6b: No. of successful searches in 30 executions for GA BSAT on single 

computer for O3 optimised machine code. 
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5.9.2 Non-optimised vs. O3 optimised code for successful search 

For each instance, the executions that found a solution are considered. The average 

of these successful search times are plotted in figure 5.7. Due to the nature of genetic 

algorithms, there is no clear relationship between the execution time of non-

optimised and O3 optimised machine code. Even for some instances, non-optimised 

code shows better performance. However, for most of the instances, O3 optimised 

code exhibits less execution time and stays within 250 ms. 
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Figure 5.7: Execution time of GA BSAT search on single computer for non-

optimised and O3 optimised machine code. 

5.9.3 Error bars of non-optimised and O3 optimised machine codes 

Figure 5.8 and 5.9 depict the error bars for non-optimised and O3 optimised code, 

respectively. Each point of the figures represents the average of successful readings 

and error bars represent the standard deviation both in positive and negative 

directions. For higher execution time (1000 ms for non-optimised code and 200 ms 

for O3 optimised code), the error bars are comparatively larger. In some executions, 
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the feasible solutions become similar after a good number of generations and further 

crossover can not improve their fitness significantly. In this case, the algorithm is 

trapped at a local minima. 
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Figure 5.8: Graph with error bars of execution time of GA BSAT search on single 

computer for non-optimised machine code. 
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Figure 5.9: Graph with error bars of execution time of GA BSAT search on single 

computer for O3 optimised machine code. 
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5.10 GA BSAT search on the grid configuration 

The GA BSAT search was implemented on the grid configuration for population size 

20 and 3,333 (=10,000/3) generations on each of the grid computers. A search is 

classified to be successful if any of the computers finds a solution. However, in some 

cases, none of the computers was able to find a solution though every instance of the 

benchmark is Satisfiable.  

5.10.1 Number of successful search 

Figure 5.10a and 5.10b show that the GA BSAT is successful in all 30 executions for 

30 (non-optimised code) and 31 instances (O3 optimised code). It indicates that the 

O3 optimised executable code is able to produce solutions for more instances than 

the non-optimised code. It is apparent from these figures that the smallest probability 

for successful search is 0.03 (non-optimised code) and 0.33 (optimised code). 
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Figure 5.10a: No. of successful searches in 30 executions for GA BSAT on grid for 

non-optimised machine code. 
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Figure 5.10b: No. of successful searches in 30 executions for GA BSAT on grid for 

O3 optimised machine code. 

5.10.2 Non-optimised vs. O3 optimised code for successful search 

The average time of the successful searches is plotted in figure 5.11 for comparison. 
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Figure 5.11: Execution time of GA BSAT search on grid for non-optimised and O3 

optimised machine code. 
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There is no straightforward relationship between non-optimised and O3 optimised 

code. It is obvious that O3 optimised code exhibits lower execution time for more 

that 35 instances and maximum execution time stays below 400 ms. 

5.10.3 Error bars of non-optimised and O3 optimised machine codes 

The error bars for non-optimised and O3 optimised code are represented by figure 

5.12 and 5.13, respectively. In both of the cases, standard deviation (error bar) is low 

for execution time less than 100 ms. 
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Figure 5.12: Error bars of execution time of GA BSAT search on grid for non-

optimised machine code. 
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Figure 5.13: Error bars of execution time of GA BSAT search on grid for O3 

optimised machine code. 

5.11 GA BSAT search on single computer vs. on grid 

It is clearly understood that if the GA BSAT algorithm finds a solution on single 

computer and on a computer on the grid with the same time T, the grid will take 

more time (SOAP overhead) to return the solution to the client. Therefore, overall 

completion time will be higher than a single computer. Furthermore, because of 

random characteristics of GA BSAT search, successful searching time can not be 

predicted. Figure 5.14 and 5.15 show that the maximum execution time for 

successful search is higher for non-optimised code ( 1100ms) than that ( 600ms) of 

O3 optimised code. But, no clear correlation can be identified between the single 

computer and the grid approach. 
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5.11.1 Non-optimised code 

In general, the GA BSAT algorithm showed superior performance on the grid 

implementation. Figure 5.14 sketches the scenario that in 400 ms time, the grid found 

solutions for 48 instances, whereas single computer found 45 instance solutions.  
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Figure 5.14: Execution time of GA BSAT search on single computer and grid for 

non-optimised machine code. 

5.11.2 O3 optmised code 

For the O3 optimised code, the single computer approach exhibits better execution 

time than the grid implementation. Figure 5.15 shows that for most of the instances, 

successful search execution times lie within 200 ms for GA BSAT on single 

computer. 
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Figure 5.15: Execution time of GA BSAT search on single computer and grid for O3 

optimised machine code. 

5.11.3 Maximum execution time for un-successful search 

Figure 5.16 and 5.17 show the comparison of maximum execution time 

(unsuccessful search) for non-optimised and O3 optimised machine code, 

respectively. The sub-generations should take approximately 3
1 rd time of the entire 

generations to execute in case of unsuccessful search. Figure 5.16 and 5.17 both 

support this statement. 
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Figure 5.16: Maximum execution time of GA BSAT search on single computer and 

grid for non-optimised machine code. 
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Figure 5.17: Maximum execution time of GA BSAT search on single computer and 

grid for O3 optimised machine code. 
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5.11.4 File size 

Figure 5.18 represents the comparison among all the executable files for GA BSAT 

search. For GA BSAT on single computer, O3 optimisation has almost no effect on 

file size. On the other hand, O3 optimised files are much larger than the non-

optimised versions. In general for both server and client, the following relation can 

be identified 

GA BSAT search O3 optimised grid file size  1.8 * GA BSAT search non-

optimised grid file size 

Figure 5.18: Comparison of GA BSAT search executable file size on single computer 

and on grid (Server and Client) 

5.12 Summary 

This chapter has presented all the results of execution of the exhaustive and GA 

BSAT search on single computer and on grid in terms of number of successful 

search, execution time, error bars, maximum execution time, file size etc. The 

following chapter contains the conclusion of the report and future work plan. 
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Chapter 6 

Conclusion and Further work 

6.1 Discussion 

This thesis has developed and analysed various methods and technologies of grid 

computing which is of importance to the BSAT problem.  

The objective of the project was to partition a processing intensive task on the 

computers of a grid to take advantage of distributed execution. BSAT is one of the 

most studied NP complete problems for verification and testing. Therefore, it was 

chosen as the computation intensive task for this investigation.  

The same algorithm is executed on a single computer and on a grid containing three 

similarly configured computers. In case of the grid, each of the 3 sub-tasks is 

independent and deals with 3
1 rd of the entire task. However, executing on the grid 

incurs some time overhead for marshalling and transmission over a Local Area 

Network (LAN). 

The exhaustive BSAT algorithm explores the entire search space in a linear fashion 

and does not exhibit any type of intelligence. On the other hand, an artificial GA has 

been used for optimisation and searching using the theory of evolution. An algorithm 

for BSAT problem based on GAs has been proposed and implemented both on a 

single computer and on a grid. The GA BSAT algorithm refines the feasible 

solutions by fitness function to construct a desired solution. 
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The execution times for the non-optimised and O3 optimised machine codes 

generated by the gcc compiler are observed for all cases. Besides, the executable file 

sizes are also compared. 

The exhaustive BSAT search supports the following relationship on single computer 

and on the grid 

Execution time of non-optimised Exhaustive BSAT search 

2 * Execution time of O3 optimised Exhaustive BSAT search

The BSAT problem is highly suitable as a grid application since each sub-task can be 

executed independently. The grid implementation shows much better performance 

than a single computer where the instance has multiple solutions. For non-optimised 

and optimised machine code it was found that 

Execution time on single computer  3 * Maximum execution time on grid 

The GA BSAT search algorithm demonstrated diverse results for different cases. 

These are listed below. 

Single computer - non-optimised vs. optimised machine code: No straightforward 

relation was identified between non-optimised and O3 optimised machine code. 

But, for most of the instances, O3 optimised code takes less time to execute. 

Grid - non-optimised vs. optimised machine code: No clear correlation was 

established between non-optimised and O3 optimised code. It is obvious that O3 

optimised code exhibits lower execution time for more that 35 instances. 
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Non-optimised machine code - single computer vs. grid: In general, the GA 

BSAT algorithm showed superior performance on the grid by finding solutions 

for more instances than single computer. 

O3 optimised machine code - single computer vs. grid: The grid demonstrates 

worse execution time than single computer.  

6.2 Further work 

The GA BSAT search algorithm uses a simple fitness function that returns the 

number of satisfied clauses. The following researches can be carried out to observe 

the results in future 

Many applications describe the problem as a multi-valued SAT problem. For 

example, in logic verification it is often desirable to describe don’t care as a third 

value other than 0 and 1. By introducing the third value, the problem can be very 

efficiently formulated. [31]. 

Other technologies, for instance, XML-RPC, CORBA, DCOM, can be compared 

with SOAP in distributing the sub-tasks over the grid computers. 

Development of deterministic GA BSAT search algorithm with intelligent fitness 

function that will ensure to find the solution if there is any. 

Generalised version of the client application where the main task can be 

partitioned in N sub-tasks depending on the number of available nodes of the grid 

at that time.  
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6.3 Conclusion 

The exhaustive BSAT search is slower on single computer than on the grid for both 

non-optimised and optimised machine code. In case of the GA BSAT search, the 

non-optimised code performs well on the grid than on single computer. But, the grid 

implementation was unable to show any convincing improvements for O3 optimised 

GA BSAT search algorithm. However, it should be noted that GA does not ensure 

that it will find a solution if there is any. The GA BSAT search supports this fact 

since it could not find any solution during executions. 
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Appendix A: 

Header files for exhaustive search 

Contents of the header file: bsat.h 

// converts a 32 bit number into an array of 0 and 1 
void convert(unsigned long v, unsigned int sol[]) 
{
 unsigned long mask = 1; 
 int i; 

 for (i=0; i<20; ++i) 
 { 
  if ((v & mask) == 0) 
   sol[19-i] = 0; 
  else 
   sol[19-i] = 1; 
  mask = mask << 1; 
 } 
}

// returns clause value for a particular solution 
int find_clause_value (int sol[], int ter, char expr[][100]) 
{
 unsigned int tv = 0; 
 int v; 

 for (v=0; v<VARIABLE; ++v) 
 { 
  if (expr[ter][v]==EMPTY) 
   continue; 
  else if (islower(expr[ter][v])&&!sol[v] || 
!islower(expr[ter][v])&&sol[v])
   return 1; 
 } 
 return 0; 
}

// computes objective values of a generation 
int find_fitness (int sol[], char expr[][100], int cla) 
{
 int fit=0, t; 

 fit = 0; 
 for (t=0; t<cla; ++t) 
 { 
  fit += find_clause_value (sol, t, expr); 
 } 
 return fit; 
}
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Contents of the header file: sat_read.h 

/* This function reads the benchmark from file */ 

int load_expr (char e[][100], int original[], int complemented[]) 
{
 FILE *in; 
 int count=0, v, i, j; 
 char ch; 

 in = fopen ("/home/hasan/v20_c91.txt", "r"); 
 if (!in) 
 { 
  printf ("Unable to open the file. Exiting...\n"); 
  return -1; 
 } 

 for (i=0; i<100; ++i) 
 { 
  original[i] = complemented[i] = 0; 
  for (j=0; j<25; ++j) 
   e[i][j] = '-'; 
 } 

 while (!feof(in))   // remove c and p lines 
 { 
  ch = fgetc (in); 
  if (ch=='c'||ch=='p') 
  { 
   while (ch!='\n') 
    ch = fgetc(in); 
  } 
  else 
  { 
   ungetc (ch, in); 
   break; 
  } 
 } 

 while (!feof(in))   // now read the clauses 
 { 
  ch = fgetc (in); 
  if (ch=='%')  // end marker 
  { 
   printf ("End of file reached & count = %d", count); 
   break; 
  } 
  ungetc (ch, in); 
  ++count;   // new clause 
  for (i=0; i<3; ++i) 
  { 
   fscanf (in, "%d", &v); 
   if (v>0) 
   { 
    e[count-1][v-1]='A'; 
    original[v-1]++; 
   } 
   else if (v<0) 
   { 
    v = -v; 
    e[count-1][v-1]='a'; 
    complemented[v-1]++; 
   } 
  } 
  fscanf (in, "%d", &v);  // remove last 0 
 } 
 fclose (in); 

 printf ("Displaying %d clauses in each line: \n", count); 
 for (i=0; i<count; ++i) 
 { 
  for (j=0; j<20;++j) 
   printf ("%c ", e[i][j]); 
  printf ("\n"); 
 } 
 return count; 
}
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Appendix B: 

Implementation code for exhaustive search on single 

computer

Main program: bsat_exhaustive.c 

#define VARIABLE 20 
#define EMPTY  '-' 

#include <string.h> 
#include <time.h> 
#include <ctype.h> 
#include <stdlib.h> 
#include <stdio.h> 

#include "sat_read.h" 
#include "bsat.h" 

int main () 
{
 char expression[100][100]; 
 int clause, original[100], complemented[100], solution[100]; 

int fitness, i; 
 unsigned long value=0; 
 clock_t t1, t2; 

 // loads clauses from benchmark file 
 clause = load_expr (expression, original, complemented);  
 printf ("No of Clauses: %d\n", clause); 
 printf ("Exhaustive BSAT is running. Please wait...\n"); 

 t1 = clock (); 
 for (value=0; value < 1048576; ++value) 
 { 
  convert (value, solution); 
  fitness = find_fitness (solution, expression, clause); 

  if (fitness == clause) 
  { 
   printf ("\nA solution is found: \n"); 
   for (i=0; i<20; ++i) 
    printf ("%d ", solution[i]); 
   t2 = clock (); 
   printf ("\nTime required: %f ms\n", (float)(t2-
t1)/(float)CLOCKS_PER_SEC*1000.0);
   return; 
  } 
 } 
 printf ("The expression is not Satisfiable"); 
}



Appendix C: Implementation code for exhaustive search on grid environment 

89

Appendix C: 

Implementation code for exhaustive search on grid 

environment 

Client program: calcclientc 

#include "soapH.h" 
#include "calc.nsmap" 
#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <sys/types.h> 
#include <sys/wait.h> 
#include <pthread.h>
#include <time.h> 
#include <sys/times.h> 

const char server_1[] = "http://10.0.0.10:25000"; 
const char server_2[] = "http://10.0.0.11:30000"; 
const char server_3[] = "http://10.0.0.12:35000"; 

struct argument 
{
 struct soap mysoap; 
 char server[100]; 
 char unknown[100]; 
 char filename[100]; 
 double op1, op2, result; 
};

struct argument soap_1, soap_2, soap_3; 

void* ex_bsat(void* what) 
{
 struct argument *ptr = (struct argument*)what; 
 struct timeval t1, t2; 
 double soap_exe_time; 

 gettimeofday (&t1, NULL);  
 soap_init(&ptr->mysoap); 
 // file reading time by server is returned in result 
 soap_call_ns__msh(&ptr->mysoap, ptr->server, ptr->unknown, ptr->filename, 
ptr->op1, ptr->op2, &ptr->result); 
 gettimeofday (&t2, NULL); 

 soap_exe_time = (double)(t2.tv_sec-t1.tv_sec)*1000.0+(double)(t2.tv_usec-
t1.tv_usec)/1000.0; // elapsed time 
 soap_exe_time -= ptr->result; // elapsed time - file reading time 
 ptr->result = soap_exe_time; // soap overhead + execution time 
}

int main(int argc, char *argv[]) 
{
 pthread_t  p_thread_1, p_thread_2, p_thread_3; 
 int thr_id_1, thr_id_2, thr_id_3; 
 void *retval_1, *retval_2, *retval_3; 
 float tmp; 

 strcpy (soap_1.server, server_1); 
 strcpy (soap_1.unknown, ""); 
 strcpy (soap_1.filename, argv[1]); 
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 soap_1.op1 = 0.0; 
 soap_1.op2 = 349525.0; 
 soap_1.result = 0.0; 

 strcpy (soap_2.server, server_2); 
 strcpy (soap_2.unknown, ""); 
 strcpy (soap_2.filename, argv[1]); 
 soap_2.op1 = 349525.0; 
 soap_2.op2 = 699050.0; 
 soap_2.result = 0.0; 

 strcpy (soap_3.server, server_3); 
 strcpy (soap_3.unknown, ""); 
 strcpy (soap_3.filename, argv[1]); 
 soap_3.op1 = 699050.0; 
 soap_3.op2 = 1048576.0; 
 soap_3.result = 0.0; 

// fprintf (stderr,"All servers are running concurrently\n"); 

 thr_id_1 = pthread_create(&p_thread_1, NULL, ex_bsat, (void*)&soap_1); 
 thr_id_2 = pthread_create(&p_thread_2, NULL, ex_bsat, (void*)&soap_2); 
 thr_id_3 = pthread_create(&p_thread_3, NULL, ex_bsat, (void*)&soap_3); 

 pthread_join(p_thread_1, &retval_1); 
 pthread_join(p_thread_2, &retval_2); 
 pthread_join(p_thread_3, &retval_3); 

 // compute the minimum time among three servers and print 
 if (soap_1.result < soap_2.result) 
  tmp = soap_1.result; 
 else 
  tmp = soap_2.result; 

 if (tmp < soap_3.result) 
  printf ("%0.2f ", tmp); 
 else 
  printf ("%0.2f ", soap_3.result); 

 return 0;  
}

Server program: calcserver.c 

#include "soapH.h" 
#include "calc.nsmap" 

#define VARIABLE 20 
#define EMPTY  '-' 

#include <string.h> 
#include <time.h> 
#include <ctype.h> 
#include <stdlib.h> 
#include <stdio.h> 

#include "sat_read.h" 
#include "bsat.h" 

int main(int argc, char **argv) 
{
 int m, s; /* master and slave sockets */ 
 struct soap soap; 

 soap_init(&soap); 
 if (argc < 2) 
 { 
  fprintf (stderr, "No port number, serving as CGI application\n"); 
     soap_serve(&soap); /* serve as CGI application */ 
 } 
 else 
 {  
  m = soap_bind(&soap, NULL, atoi(argv[1]), 100); 
  if (m < 0) 
  {  
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   soap_print_fault(&soap, stderr); 
   exit(-1); 
  } 
  fprintf(stderr, "Socket connection successful: master socket = %d\n", 
m);
  for ( ; ; ) 
  {  
   s = soap_accept(&soap); 
   fprintf(stderr, "Socket connection successful: slave socket = %d\n", 
s);
   if (s < 0) 
   {  
    soap_print_fault(&soap, stderr); 
    exit(-1); 
   }  
   soap_serve(&soap); 
   soap_end(&soap); 
  } 
 } 
 return 0; 
}

int ns__msh(struct soap *soap, char filename[], double a, double b, double 
*result)
{
 char expression[100][100]; 
 int clause, original[100], complemented[100], solution[100], fitness, i; 
 double value, file_time, exe_time; 
 struct timeval t1, t2; 
 clock_t clk_t1, clk_t2; 

 // loads clauses from benchmark file  
 gettimeofday (&t1, NULL); 
 clause = load_expr (filename, expression, original, complemented); 
 printf ("Benchmark instance: %s\n", filename); 
 printf ("No of Clauses: %d\n", clause); 
 printf ("Exhaustive BSAT is running. Please wait...\n"); 
 printf ("Start value %0.0f\n", a); 
 printf ("Finish value %0.0f\n", b); 
 gettimeofday (&t2, NULL); 
 file_time = (double)(t2.tv_sec-t1.tv_sec)*1000.0 + (double)(t2.tv_usec-
t1.tv_usec)/1000.0;
 *result = file_time; 

 clk_t1 = clock();  
 for (value=a; value < b; ++value) 
 { 
  //printf ("Current value %0.0f\n", value); 
  convert ((long int) value, solution); 
  fitness = find_fitness (solution, expression, clause); 

  if (fitness == clause) 
  { 
   printf ("A solution is found: \n"); 
   for (i=0; i<VARIABLE; ++i) 
    printf ("%d ", solution[i]); 
   clk_t2 = clock (); 
   exe_time = (double)(clk_t2-clk_t1)/(double)CLOCKS_PER_SEC*1000.0; 
   printf ("\nExecution time: %f ms\n", exe_time); 
   printf ("File time: %f\n", file_time); 
   break; 
  } 
 } 
 if (value==b) 
  printf ("The expression is not Satisfiable\n"); 
 else 
  printf ("Satisfiable\n"); 
 return SOAP_OK; 
}
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Appendix D: 

Header files for GA BSAT search 

Contents of the header file: ga_bsat.h 

// initialiser 
ga_bsat (char expr[][MAX_VAR], int var, int ter, int original[], int 
complemented[], int population) 
{
 int s, v; 

 variable = var; 
 term = ter; 
 solution = population; 
 new_solution = population; 

 for (s=0; s<ter; ++s) 
  strcpy (expression[s], expr[s]); 

 // assign the first solution based on original and complemented 
 for (v=0; v<variable; ++v) 
 { 
  if (complemented[v]>original[v]) 
   current_generation[0][v] = 0; 
  else 
   current_generation[0][v] = 1; 
 } 
 // assign other n-1 solutions with random values 
 for (s=1; s<solution; ++s) 
 { 
  for (v=0; v<variable; ++v) 
   current_generation[s][v] = rand()%2; 
 } 
}

unsigned int find_clause_value (unsigned int generation[][MAX_VAR], int sol, 
int ter) 
{
 unsigned int tv = 0; 
 int v; 

 for (v=0; v<variable; ++v) 
 { 
  if (expression[ter][v]==EMPTY) 
   continue; 
  else if (islower(expression[ter][v])&&!generation[sol][v] || 
!islower(expression[ter][v])&&generation[sol][v])
   return 1; 
 } 
 return 0; 
}

// computes objective values of a generation 
void find_fitness (unsigned int generation[][MAX_VAR], int sol, unsigned int 
fitness[])
{
 unsigned int fit; 
 int s, t; 

 for (s=0; s<sol; ++s) 
 { 
  fit = 0; 
  for (t=0; t<term; ++t) 
  { 
   fit += find_clause_value (generation, s, t); 
  } 
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  fitness[s] = fit; 
 } 
}

// copies best new_sol parents to new_generation 
void choose_parents () 
{
 int considered[MAX_SOL]; 
 unsigned int fit_value; 
 int take_it, s, p, k; 

 for (s=0; s<solution; ++s) 
  considered[s] = FALSE; 
 for (s=0; s<new_solution && s<solution; ++s) 
 { 
  fit_value = 0; 
  take_it = NONE; 
  for (p=0; p<solution; ++p) 
  { 
   if (considered[p]) 
    continue; 
   else if (current_fitness[p]>fit_value) 
   { 
    fit_value = current_fitness[p]; 
    take_it = p; 
   } 
  } 
  if (take_it==NONE) 
  { 
   printf ("Error in computing new generation and exiting..."); 
   exit (1); 
  } 
  else 
  { 
   for (k=0; k<variable; ++k) 
    new_generation[s][k] = current_generation[take_it][k]; 
   considered[take_it] = TRUE; 
  } 
 } 
}

// crosses sol and sol+1 at point p 
void cross_parent (int p, int sol) 
{
 unsigned int tmp; 
 int v; 

 for (v=0; v<p; ++v) 
 { 
  tmp = new_generation[sol][v]; 
  new_generation[sol][v] = new_generation[sol+1][v]; 
  new_generation[sol+1][v] = tmp; 
 } 
}

// multipoint cross over 
void cross_over() 
{
 int point=1, i; 

 for (i=0; i<new_solution-1; i=i+2) // cross between i and i+1 
 { 
  point = rand ()%variable; 
  cross_parent (point, i); 
  //++point; 
 } 
}

void next_generation() 
{
 int taken_current[MAX_SOL], taken_new[MAX_SOL]; 
 unsigned int tmp_generation[MAX_SOL][MAX_VAR], tmp_fitness[MAX_SOL]; 
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 int from_current, from_new; 
 unsigned int fit_value; 
 int i, j, k; 

 for (i=0; i<solution; ++i) 
  taken_current[i] = FALSE; 
 for (i=0; i<new_solution; ++i) 
  taken_new[i] = FALSE; 

 for (i=0; i<solution; ++i) 
 { 
  fit_value = 0; 
  from_current = from_new = NONE; 
  for (j=0; j<solution; ++j) // current generation search 
  { 
   if (taken_current[j]) 
    continue; 
   if (current_fitness[j] > fit_value) 
   { 
    fit_value = current_fitness[j]; 
    from_current = j; 
   } 
  } 
  for (j=0; j<new_solution; ++j) // new generation search 
  { 
   if (taken_new[j]) 
    continue; 
   if (new_fitness[j] > fit_value) 
   { 
    fit_value = new_fitness[j]; 
    from_new = j; 
    from_current = NONE; 
   } 
  } 
  if (from_current==NONE && from_new==NONE) 
  { 
   printf ("Error in generating next generation and exiting..."); 
   exit(1); 
  } 
  if (from_current!=NONE)  // taken from current generation 
  { 
   for (k=0; k<variable; ++k) 
    tmp_generation[i][k] = current_generation[from_current][k]; 
   tmp_fitness[i] = current_fitness[from_current]; 
   taken_current[from_current] = TRUE; 
  } 
  else // from new generation 
  { 
   for (k=0; k<variable; ++k) 
    tmp_generation[i][k] = new_generation[from_new][k]; 
   tmp_fitness[i] = new_fitness[from_new]; 
   taken_new[from_new] = TRUE; 
  } 
 } 
 for (i=0; i<solution; ++i) 
 { 
  for (j=0; j<variable; ++j) 
   current_generation[i][j] = tmp_generation[i][j]; 
  current_fitness[i] = tmp_fitness[i]; 
 } 
}

int finished (int* index) 
{
 int i; 

 for (i=0; i<solution; ++i) 
 { 
  if (term-current_fitness[i] == 0) 
  { 
   *index = i; 
   return TRUE; 
  } 
 } 
 return FALSE; 
}
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void mutate_all () 
{
 int v, s; 

 for (s=0; s<solution; ++s) 
 { 
  v = rand()%variable; 
  if (current_generation[s][v]) 
   current_generation[s][v] = 0; 
  else 
   current_generation[s][v] = 1; 
 } 
}

void take_snapshot (unsigned int past[][MAX_VAR], unsigned int 
current[][MAX_VAR])
{
 int s, v; 

 for (s=0; s<solution; ++s) 
  for (v=0; v<variable; ++v) 
   past[s][v] = current[s][v]; 
}

void run_ga_bsat (unsigned long int iteration) 
{
 int sol_index=NONE, count=0; 
 int done, v; 
 unsigned int i; 

 find_fitness (current_generation, solution, current_fitness); 

 for (i=0; i<iteration; ++i) 
 { 
  done = finished (&sol_index); // sol_index = solution index when 
finished
  if (done) 
  { 
   printf ("Desired solution found: \n"); 
   for (v=0; v<variable; ++v) 
    printf ("%u ", current_generation[sol_index][v]); 
   printf ("\n"); 
   return; 
  } 

  choose_parents(); 
  cross_over(); 
  find_fitness (new_generation, new_solution, new_fitness); 

  next_generation(); 

  ++count; 
  if (count==100)  // mutate after 100 generations 
  { 
   mutate_all (); 
   find_fitness (current_generation, solution, current_fitness); 
   count = 0; 
  } 
 } 
 printf ("Solution not found in %u generations\n", iteration); 
}
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Contents of the header file: sat_read.h 

/* This function reads the benchmark instance from file v20_c91.txt */ 

int load_expr (char fname[], char e[][100], int original[], int 
complemented[])
{
 FILE *in; 
 int count=0, v, i, j; 
 char ch; 

 in = fopen (fname, "r"); 
 if (!in) 
 { 
  printf ("Unable to open the file. Exiting...\n"); 
  return -1; 
 } 

 for (i=0; i<100; ++i) 
 { 
  original[i] = complemented[i] = 0; 
  for (j=0; j<25; ++j) 
   e[i][j] = '-'; 
 } 

 while (!feof(in))  // remove c and p lines 
 { 
  ch = fgetc (in); 
  if (ch=='c'||ch=='p') 
  { 
   while (ch!='\n') 
    ch = fgetc(in); 
  } 
  else 
  { 
   ungetc (ch, in); 
   break; 
  } 
 } 

 while (!feof(in))   // now read the clauses 
 { 
  ch = fgetc (in); 
  if (ch=='%')  // end marker 
  { 
   printf ("End of file reached & count = %d", count); 
   break; 
  } 
  ungetc (ch, in); 
  ++count;   // new clause 
  for (i=0; i<3; ++i) 
  { 
   fscanf (in, "%d", &v); 
   if (v>0) 
   { 
    e[count-1][v-1]='A'; 
    original[v-1]++; 
   } 
   else if (v<0) 
   { 
    v = -v; 
    e[count-1][v-1]='a'; 
    complemented[v-1]++; 
   } 
  } 
  fscanf (in, "%d", &v);  // remove last 0 
 } 
 fclose (in); 
 printf ("Displaying %d clauses in each line: \n", count); 
 for (i=0; i<count; ++i) 
 { 
  for (j=0; j<20;++j) 
   printf ("%c ", e[i][j]); 
  printf ("\n"); 
 } 
 return count; 
}
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Appendix E: 

Implementation code for GA BSAT search on single 

computer

Main program: ga_bsat.c 

#define MAX_CLA  100 
#define MAX_VAR  100 
#define MAX_SOL  100 
#define EMPTY  '-' 
#define NONE  -1 
#define TRUE  1 
#define FALSE  0 
#define POPULATION 20
#define GENERATION 10000

 // global variables 
 int variable, term, solution, new_solution;  
 char expression[MAX_CLA][MAX_VAR]; 
 // current generation data struct 
 unsigned int current_generation[MAX_SOL][MAX_VAR]; 
 unsigned int current_fitness[MAX_SOL]; 
 // new generation data struct 
 unsigned int new_generation[MAX_SOL][MAX_VAR]; 
 unsigned int new_fitness[MAX_SOL]; 

#include <string.h> 
#include <time.h> 
#include <ctype.h> 
#include <stdlib.h> 
#include <stdio.h> 

#include "sat_read.h" 
#include "ga_bsat.h" 

int main () 
{
 char expr[100][100]; 
 int clause, original[100], complemented[100], found; 
 double file_time, exe_time; 
 struct timeval t1, t2; 
 clock_t clk_t1, clk_t2; 
 time_t moment; 

 // loads clauses from benchmark file 
 gettimeofday (&t1, NULL); 
 clause = load_expr (expr, original, complemented); 
 gettimeofday (&t2, NULL); 
 file_time = (double)(t2.tv_sec-t1.tv_sec)*1000.0 + (double)(t2.tv_usec-
t1.tv_usec)/1000.0;

 time (&moment); 
 srand (moment); 
 clk_t1 = clock(); 
 ga_bsat (expr, 20, clause, original, complemented, POPULATION); 
 found = run_ga_bsat(GENERATION); 
 clk_t2 = clock (); 

 exe_time = (double)(clk_t2-clk_t1)/(double)CLOCKS_PER_SEC*1000.0; 
 if (found) 
  printf ("%0.2f %0.2f ", 1.0, exe_time); 
 else 
  printf ("%0.2f %0.2f ", 0.0, exe_time); 
 return 0; 
}
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Appendix F: 

Implementation code for GA BSAT search on grid 

environment 

Client program: calcclientc 

#include "soapH.h" 
#include "calc.nsmap" 
#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <sys/types.h> 
#include <sys/wait.h> 
#include <pthread.h> 
#include <time.h> 
#include <sys/times.h> 

#define ITERATION 3333 
#define POPULATION 20

const char server_1[] = "http://10.0.0.10:25000"; 
const char server_2[] = "http://10.0.0.11:30000"; 
const char server_3[] = "http://10.0.0.12:35000"; 

struct argument 
{
 struct soap mysoap; 
 char server[100]; // segmentation fault if char* is used 
 char unknown[100]; // segmentation fault if char* is used 
 char filename[100]; 
 double op1, op2, result; 
};

struct argument soap_1, soap_2, soap_3; 

void* ga_bsat(void* what) 
{
 struct argument *ptr = (struct argument*)what; 
 struct timeval t1, t2; 
 double soap_exe_time; 

 gettimeofday (&t1, NULL); 
 soap_init(&ptr->mysoap); 
 // file reading time by server is returned in result 
 soap_call_ns__msh(&ptr->mysoap, ptr->server, ptr->unknown, ptr->filename, 
ptr->op1, ptr->op2, &ptr->result); 
 gettimeofday (&t2, NULL); 

 soap_exe_time = (double)(t2.tv_sec-t1.tv_sec)*1000.0+(double)(t2.tv_usec-
t1.tv_usec)/1000.0; // elapesd time 
 soap_exe_time -= ptr->result; // elapsed time - file reading time 
 ptr->result = soap_exe_time; // soap overhead + execution time 
}

int main(int argc, char *argv[]) 
{
 pthread_t  p_thread_1, p_thread_2, p_thread_3; 
 int thr_id_1, thr_id_2, thr_id_3; 
 void *retval_1, *retval_2, *retval_3; 
 float tmp; 

 strcpy (soap_1.server, server_1); 



Appendix F: Implementation code for GA BSAT search on grid environment 

99

 strcpy (soap_1.unknown, ""); 
 strcpy (soap_1.filename, argv[1]); 
 soap_1.op1 = (double)ITERATION;  // generations 
 soap_1.op2 = (double)POPULATION; // population 
 soap_1.result = 0.0; 

 strcpy (soap_2.server, server_2); 
 strcpy (soap_2.unknown, ""); 
 strcpy (soap_2.filename, argv[1]); 
 soap_2.op1 = (double)ITERATION;  // generations 
 soap_2.op2 = (double)POPULATION; // population 
 soap_2.result = 0.0; 

 strcpy (soap_3.server, server_3); 
 strcpy (soap_3.unknown, ""); 
 strcpy (soap_3.filename, argv[1]); 
 soap_3.op1 = (double)ITERATION;  // generations 
 soap_3.op2 = (double)POPULATION; // population 
 soap_3.result = 0.0; 

// fprintf (stderr,"All GA BSAT servers are running concurrently\n");  

 thr_id_1 = pthread_create(&p_thread_1, NULL, ga_bsat, (void*)&soap_1); 
 thr_id_2 = pthread_create(&p_thread_2, NULL, ga_bsat, (void*)&soap_2); 
 thr_id_3 = pthread_create(&p_thread_3, NULL, ga_bsat, (void*)&soap_3);  

 pthread_join(p_thread_1, &retval_1); 
 pthread_join(p_thread_2, &retval_2); 
 pthread_join(p_thread_3, &retval_3); 

 // compute the minimum time among three servers and print 
 if (soap_1.result < soap_2.result) 
  tmp = soap_1.result; 
 else 
  tmp = soap_2.result; 

 if (tmp < soap_3.result) 
  printf ("%0.2f ", tmp); 
 else 
  printf ("%0.2f ", soap_3.result); 

 return 0;  
}

Server program: calcserver.c 

#include "soapH.h" 
#include "calc.nsmap" 
#include <string.h> 
#include <time.h> 
#include <ctype.h> 
#include <stdlib.h> 
#include <stdio.h> 

#define MAX_CLA  100 
#define MAX_VAR  100 
#define MAX_SOL  100 
#define EMPTY  '-' 
#define NONE  -1 
#define TRUE  1 
#define FALSE  0 

 // global variables 
 int variable, term, solution, new_solution;  
 char expression[MAX_CLA][MAX_VAR]; 
 // current generation data struct 
 unsigned int current_generation[MAX_SOL][MAX_VAR]; 
 unsigned int current_fitness[MAX_SOL]; 
 // new generation data struct 
 unsigned int new_generation[MAX_SOL][MAX_VAR]; 
 unsigned int new_fitness[MAX_SOL]; 

#include "sat_read.h" 
#include "ga_bsat.h" 
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int main(int argc, char **argv) 
{
 int m, s; /* master and slave sockets */ 
 struct soap soap; 

 soap_init(&soap); 
 if (argc < 2) 
 { 
  fprintf (stderr, "No port number, serving as CGI application\n"); 
     soap_serve(&soap); /* serve as CGI application */ 
 } 
 else 
 {  
  m = soap_bind(&soap, NULL, atoi(argv[1]), 100); 
  if (m < 0) 
  {  
   soap_print_fault(&soap, stderr); 
   exit(-1); 
  } 
  fprintf(stderr, "Socket connection successful: master socket = %d\n", 
m);
  for ( ; ; ) 
  {  
   s = soap_accept(&soap); 
   fprintf(stderr, "Socket connection successful: slave socket = %d\n", 
s);
   if (s < 0) 
   {  
    soap_print_fault(&soap, stderr); 
    exit(-1); 
   }  
   soap_serve(&soap); 
   soap_end(&soap); 
  } 
 } 
 return 0; 
}

int ns__msh(struct soap *soap, char filename[], double a, double b, double 
*result)
{
 char expr[100][100]; 
 int clause, original[100], complemented[100]; 
 double file_time, exe_time; 
 struct timeval t1, t2; 
 clock_t clk_t1, clk_t2; 
 time_t moment; 

 // loads clauses from benchmark file 
 gettimeofday (&t1, NULL); 
 clause = load_expr (filename, expr, original, complemented); 
 printf ("Benchmark instance: %s\n", filename); 
 printf ("No of Clauses: %d\n", clause); 
 printf ("No of generations: %f\n", a); 
 printf ("No of population: %f\n", b); 
 printf ("Genetic BSAT is running. Please wait...\n");  
 gettimeofday (&t2, NULL); 
 file_time = (double)(t2.tv_sec-t1.tv_sec)*1000.0 + (double)(t2.tv_usec-
t1.tv_usec)/1000.0;
 *result = file_time; 

 time (&moment); 
 srand (moment);  
 clk_t1 = clock(); 
 ga_bsat (expr, 20, clause, original, complemented, b); 
 run_ga_bsat(a); 
 clk_t2 = clock(); 

 printf ("\n"); 
 exe_time = (double)(clk_t2-clk_t1)/(double)CLOCKS_PER_SEC*1000.0; 
 printf ("\nExecution time: %f ms\n", exe_time); 
 printf ("File time: %f\n", file_time); 

 return SOAP_OK; 
}


