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Chapter 1  

Introduction 

 

 

1.1 Background  

 

In an industrial fire, there are many hazardous circumstances that fire-fighters 

and rescuers will face, such as explosions, airborne chemical contamination, building 

collapse, senses impairment due to thick smoke and other uncertain situations. These 

not only endanger the fire-fighters and rescuers, but also impede the rescue of 

casualties due to time delay.  

 

Time is critical, especially at search and rescue incidents. Generally, fire-fighters 

initially need to lay out guidelines and mark out a route to the fire or casualties, along 

with a safe route back to outside. Yet, this can lead to tragedies. In one case two 

fire-fighters died at Gillender Street, London in 1992 when they lost track of their 

exit route due to thick smoke when their air apply ran out. [1] 

 

With the purpose of improving safety assessment whilst saving time , two 

miniature explorer robot systems named “ViewFinder” and “Guardians” are being 

developed by Sheffield Hallam University and several European partners including 

South Yorkshire Fire and Rescue Services to assist in search and rescue [2]. 

“ViewFinder” explorer robots will firstly enter the dangerous building before 
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fire-fighters and rescuers to map safe paths for the fire crew to access to fire and 

casualties respectively. Whereas, “Guardians” which will be sent in after, will help 

assess human safety by detecting fires and planning escape routes, which are then 

reported back to fire-fighters. Hence, path planning and risk assessment precedes 

fire-fighting and rescuing operation, and are then continually reviewed while the 

operations are on-going.  

 

Both of these explorer robots will address key issues related to map building, 

autonomous robot navigation, multi-robot system, communication system, 

human-robot interfaces, and safety assessment. 

 

1.2 Motivation 

 

The existence of the “ViewFinder” explorer robot demonstrates a real life 

application of map building and shows how important map building is. In the event 

of fire, the ability to build maps under unknown environment is paramount for 

reliable localisation and real time navigation. Relying on original building 

ichnography may lead to unreliably measure due to dynamic environment.  

 

Autonomous navigation systems without the “revisiting” problem, path planning 

algorithms and obstacle avoidance are all essential elements to glean all information 

within short enough time, so to fasten search and rescue job under safety mode. 

Without a map of environment, a robot can neither plan a path, nor search casualties 

effectively as it may retrace its step repeatedly.  

 

As a result, an idea was proposed according to this “ViewFinder” concept – 

develop an autonomous navigation mobile robotic system with map building 

capability.  
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1.3 Block Diagram and Description 

 

Figure 1.1 Block diagram of robot system 

 

With reference to Figure 1.1, this dissertation will focus on map building and 

autonomous navigation for laser-guided robot in an unknown 2D and static 

environment for sake of simplicity. Obstacle avoidance, path exploration without 

revisiting and path planning will be considered as well in navigation.  

 

However, this dissertation addresses the issue of a warehouse search in a limited 

space with no real smoke, hence safety assessment will be excluded. To fasten the 

progress of programming and ease troubleshooting, the Player/Stage robot simulator 

is used instead of creating real robot hardware.   

 

1.4 Deliverables/Objectives 

 

The deliverables from or objectives of this dissertation are: 

1. the simulated robot possesses map building capability with obstacle detection and 

avoidance using laser sensor, 

2. the robot is able to navigate or explore path without retracing the same place, 

3. the design of path planning algorithm to find shortest path to destination desired,  

4. use of Player/Stage to simulate robot client program, and 

5. characterise the critical limitations of algorithms programmed.  

Robot Laser Scanner 

Map Building Navigation 

Obstacle 

Avoidance 

Path Exploration 

without Revisiting 

Path  

Planning 
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1.5 Dissertation Foundation 

 

During the implementation of this project, several inevitable constraints are 

firstly needed to be taken into consideration before the project commenced in order 

to make this project a success. These constraints are time taken, equipments and cost 

required, technical limitations, and potential hazards.  

 

1.5.1 Schedule 

  

Due to time constraint of 6 months and having 2nd semester study from October 

until January, a systematic work planning (as shown on Table 1.1) with well time 

management is a must.   

 

Task June July Aug Sept Oct  Nov Dec Jan 

Research on Player/stage         

Familiar in using Linux         

Research on map building         

Research on sensor          

Programming and testing of map building         

Research on navigation algorithm          

Research on revisiting problem         

Programming and testing of navigation         

Research on path planning         

Programming and testing of path planning         

Research on multi-robot communication 

system 

        

Research on distributed map building         

Dissertation writing         

Table 1.1 Work Plan 
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1.5.2 Equipments and cost required 

 

 The work in this dissertation is carried out on a laptop running at 1.86GHz with 

512 MB of RAM. The software simulator is Player/Stage which is performed via 

Kubuntu Linux OS. Thus, there is no expenditure for implementing this project. 

 

1.5.3 Technical limitations 

 

Due to the robot simulator and operating system being used is relatively new to 

author, long period of time was needed in doing research and familiarise with both 

Player/Stage and Kubuntu Linux. Since Player/Stage simulator is open source and 

still under development, some technical limitations are encountered as well:  

� Less information related about Player/Stage  

� Some essential and useful functions of Player/Stage are still in developing 

stage 

� Difficulty in fine tuning the algorithm due to time restriction 

 

1.5.4 Potential hazards 

 

Awareness of safety issues will prevent unnecessary physical or mental harm. 

Working with laptop for long period will cause vision harm, waist strain, finger 

cramp and suffer a dull mentality as well. Some precautionary measures are 

recommended as following: 

� Positioning monitor and chair to a comfortable pose 

� An erect sitting posture is paramount 

� Taking short break at regular intervals to prevent strain and cramp, whilst 

refresh mind 
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1.6 Dissertation Guidelines / Structure 

 

Chapter 2 discusses Player/Stage simulator in details. Chapter 3 discusses the 

literature review or relevant theory of current work and picks novelty algorithm 

solution. Based on these well proven theories, algorithms development and 

methodology are attempted to be defined at Chapter 4. Chapter 5 carries out 

extensible suite of benchmarks which allow for the empirical evaluation of map 

building paradigm. For proof-of-concept, some simulation-based analyses has been 

performed, Chapter 6 investigates the results as well as critical analysis of the results 

obtained. Chapter 7 concludes the dissertation and recommends further work to 

improve the functionalities of the system. 

 

1.7 Summary 

 

This chapter highlights the source and importance of the dissertation relevant to 

one of European Funded Research Project – “ViewFinder”. It also identifies work 

plan, equipment setup and safety issues, followed by layout of the following 

chapters. 
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Chapter 2  

Player/Stage Robot Simulator 

 

 

2.1 Robot Simulator 

 

2.1.1 Introduction 

 

Robot simulation is an important element in robotics research for testing control 

schemes to be ported onto real robots. The robot simulator provides model of a real 

robot and its environment, which in particular provides the benefit of: 

1. evaluating, predicting and monitoring the behavior of robot  

2. reducing testing and development time 

3. avoiding robot damage and operator injure due to control algorithm failure, 

which indirectly reducing robot repair cost and medical cost  

4. fastening error finding in control algorithm implemented 

5. offering data access that are hard to be measured on real mobile robot 

6. allowing testing on various kind of mobile robot without need of significant 

adaptation of the implemented algorithm 

7. easily switching between simulated robot and real one 

8. providing high probability of getting success when implemented on real 

robot if the algorithm tested in simulation is proved to be successful  
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Yet, robot simulators are unable to calculate the real measurement due to system 

error and non-system error such as angle drift, sensor noise. 

 

2.1.2 Existing robot simulators 

 

In the past, several robot simulators have been developed, such as Player/Stage, 

Khepera and SIMROBOT. All of these robot simulators can simulate one or more 

robot in 2D environment.  

 

The Stage Simulator provides various sensor models such as sonar, laser range 

finder, pan-tilt-zoom camera and odometry. It supports several programming 

languages including C, C++, Java, Tcl and Python. For Khepera Simulator, infrared 

sensor is the only type of implemented sensor. The control algorithm can be written 

in C/C++. MATLAB interface is also available. SIMROBOT is a robot simulator for 

MATLAB. It provides 2 types of implemented sensor, which are sonar and laser 

range finder.  

 

Player/Stage is probably the most widely used. Most of the major intelligent 

robotics journals and conferences regularly publish papers featuring real and 

simulated robot experiments using Player, Stage and Gazebo [6].  

 

2.2 Player/Stage Robot Simulator 

 

The Player Project [6] (formerly called “Player/Stage Project”, or 

“Player/Stage/Gazebo Project”) was founded in 2000 by Brian Gerkey, Richard 

Vaughan and Andrew Howard. It creates Free Software that enables research in robot 

and sensor systems. The Player software runs on POSIX-compatible operating 

system, including Linux, Solaris, BSD and Mac OSX (Darwin). A port to Microsoft 

Windows is still under planning stages.  
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Figure 2.1 Block diagram of control system without Player 

 

 

Figure 2.2 Block diagram of control system using Player 

 

The comparison between Figure 2.1 and Figure 2.2 shows the use of Player ease 

the implementation of client program. Refer to Figure 2.3, Player [7,9], which is 

Hardware Abstraction Layer (HAL) for robot device, provides flexible interface to 

various sensors and actuators hardware. Player supports multiple devices on the same 

interface, enabling distributed and collaborative sensing and control. It provides code 

repository and transport mechanism, allowing data exchange among drivers. 

Common used transport mechanism is client/server TCP socket-based transport. 
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Figure 2.3 Interaction Relationship between robot and client via Player/Stage 

 

There are three concepts of Player defines interface specification supported by 

more drivers: 

1. interface – a specification of how to interact with certain class of sensor,      

actuator and algorithm, for example, laser 

2. driver – is a software which making it appear to be same as any other entity 

in its class, for an instance, sicklms200, urglaser 

3. device – is a driver bound to interface, for example, laser interface 

supported by both sicklms200 and urglaser 

 

 Stage [8], which is 2D robot platform simulator, simulates a population of robots 

moving in and sensing a 2D bitmapped environment.  

 

2.3 Methodology of using Player/Stage 

 

2.3.1 Configuration and executable files 

 

 A common way to use Player is to run the Player server on robot, then to access 

robot’s device with client program [10]. Using Player with Stage requires 2 
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configuration file, which are .world file (stage configuration file) and .cfg file (player 

configuration file). .world file defines simulated world with virtual device inside it, 

whereas .cfg file map the virtual device to Player device and instantiate device to 

access and control robot. (refer to Appendix A and Appendix B) 

 

 Another two important files used are .png file and .cc file. The .png is a 

graphical of the environment or world. .cc file (refer to Appendix C) is C++ based 

executable file to execute client program into simulated robot. 

 

2.3.2 Client programming steps  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pseudo Code 2.1 Client programming steps 

 

In writing a client program [17], firstly, the user needs to establish a connection 

to Player server to instantiate simulated robot using PlayerClient proxy. Then, 

appropriate device proxies (such as LaserProxy [15], PositionProxy [16]) are created 

int main (int argc, char **argv) 

{ 

 // establish connection 

 PlayerClient robot(gHostname, gPort); 

 // instantiate device 

 LaserProxy lp(&robot,0); 

 PositionProxy pp(&robot,0); 

 

 While(1) 

 { 

  // data acquisition  

  robot.Read(); 

  // process data  

  speed = …..; // calculate new speed and turnrate based on laser data 

  turnrate = …;   

// send motor command  

  pp.SetSpeed(speed, turnrate); 

 } 

} 
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to instantiate devices of the instantiated robot. By utilizing the member functions of 

these proxies, user can acquire data, process the data, and lastly send appropriate 

command. (refer to Pseudo code 2.1) 

 

2.3.3 Client program compilation linkages 

 

 For Kubuntu Linux operating system, the compilation linkage for client program 

is $ g++ `pkg-config --cflags playerc++` -o filename filename.cc `pkg-config --libs 

playerc++`. Firstly, run the .cfg file, then simply type command $./filename to 

execute the corresponding client program.  



 
Chapter 3. Literature Review and Relevant Theory 

 

Created by CHUI CHING YEE                                                              13                                                                                           

 

 

 

 

Chapter 3  

Literature Review and Relevant Theory  

 

 

3.1 Map Building 

 

3.1.1 Introduction 

  

Map building is the process of generating a model of the surrounding area for 

autonomous robot motion in unknown environment. An accurate model of the 

robot’s surrounding environment facilitates fast-timing and reliable completion of a 

variety of complex tasks, such as path planning, path exploration. 

 

3.1.2 Historical overview 

 

In the 1980s and early 1990s, the field of robot mapping [21, 72] was widely 

divided into metric and topological approaches. An early representative of metric 

mapping algorithm, known as “occupancy grid mapping algorithm” developed by 

Elfes and Moravec [47, 95], which represents metric maps by fine-grained grids that 

model the occupied and free space of the environment. This approach has enjoyed 

enormous popularity, such as [55, 57, 96, 97, 99, 100, 119]. Examples of topological 

approaches include [51, 102, 103, 106, 107, 119]. 
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Since the 1990s, the field of robot mapping has been dominated by probabilistic 

techniques, which basically use Bayes theorem to model a maximum likelihood map 

based on data. There are series families of probabilistic approaches, such as Kalman 

Filter (use Gaussians to estimate the robots pose) [55, 104, 108], Expectation 

Maximization [111, 118], Object Maps [81, 110]. 

 

Incremental techniques are designed to work in real time easier than 

probabilistic methods. Incremental methods include occupancy grids [47, 48, 49], 

and DOGMA. The basic principle of occupancy grids is to calculate the binary 

occupancy of a location (x,y) and incrementally update each grid cell. DOGMA 

(Dynamic Occupancy Grid Mapping Algorithm) is an extension of occupancy grid 

approach that operates in dynamic environment. 

 

Simultaneous localization and mapping (SLAM) [84 ,114] is a breakthrough in 

modern robot mapping. The robots start in an unknown pose and incrementally 

mapping an unknown environment while simultaneously using this map model to 

update its location. Significant progress has been made towards the solution of the 

SLAM problem [86, 104, 108], such as SLAM extension from 2D to 3D [114, 116], 

online SLAM for dynamic environment [85], FastSLAM [50], topological SLAM 

[51], multiple-hypothesis approach for underwater robot [87], multirobot SLAM 

[53]. 

 

3.1.3 Categories of map representation 

 

Map model representation can be categories into Metric (grid based) map, 

Topological map and Metric Topological map. Metric map, which is cell-based 

structure, records the properties of each cell. The cell is generally represented as a 

square of grid. Topological map is graph-based structure that only records the 

existence of recognisable places and the paths between them without distance 

information. Metric Topological maps are similar to topological maps, but provide 
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additional distance information about the path between locations. Comparison of 

these 3 types of maps is shown as Table 3.1. 

 

 Metric (grid based) 

Map 

Topological  

Map 

Metric 

Topological Map 

Characteristics - cell-based structure 

- store information of 

obstacle and spatial   

relationship 

- graph-based structure  

- no geometry relation 

between path 

- graph-based structure  

- possesses geometry 

relation between path 

Examples 

 

map divided into evenly 

size square with obstacle 

shaded black (occupied) 

and free space blank 

 

nodes represent places,  

edge is navigable path 

between places 

 

the distance between 

place A and place B is 

10 metre 

Pros - easy to construct 

- useful in map matching 

- can dissimilar identical 

places or objects 

- enable estimation of 

robot’s and obstacle’s 

pose  

- require less storage 

- less computation 

time 

- faster path planning 

using Dijkstra 

Algorithm [34], but 

path chose may not 

the shortest 

- require less storage 

- less computation 

time 

- path planning 

algorithms more 

optimal compare to 

Topological Map 

Cons - require huge storage 

- large computation time 

- path planning may not 

efficient, but the path 

chose may shorter than 

that of Topological Map  

- harder to construct 

- not valid for map 

matching 

- perceptual aliasing in 

recognizing identical 

place 

- harder to construct 

- not valid for map 

matching 

- perceptual aliasing in 

recognizing identical 

place 
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- sensitive to noise 

  

- cannot estimate the 

pose of robot and 

obstacle 

- cannot estimate the 

position of robot and 

obstacle 

Table 3.1 Comparison of 3 types of map categories 

 

This dissertation is primarily concerned with the acquisition of the Metric Map, 

due to its usefulness, popularity and ease of construction. However, the size of grid 

for Metric Maps depends on the clock pulse and accuracy of sensor used. Higher 

resolution comes at a higher computational time, but it helps to solve various hard 

problems. 

 

3.1.4 Metric Map building approaches 

 

Many metric mapping techniques use occupany grid approach coupled with 

probabilistic approach, in order to handle uncertainty during estimating map and 

robot pose. Several paradigms currently used are Probabilistic Occupancy Grid 

theory put forward by Moravec and Elfes [47, 95], Bayesian based Occupancy Grid 

methods by Matthies and Elfes [48], and MURIEL method (Multiple Representation, 

Independent Evidence Log) by Kurt Konolige [49].  

 

Probabilistic representation is a method for measuring a probability value using 

numbers in the range [0, 1] to record the occupancy status (unknown, empty, or 

occupied), with 0 representing an absolutely empty area, 1 indicating an absolutely 

occupied cell, and 0.5 representing unknown area. The advantage of this is that when 

the number 0.5 is put into Bayes equation [48], meaning that nothing new about the 

environment, no change is made to the cell value. 

 

Since this dissertation only focuses on initial stage of map building, thus the 

probabilistic mapping techniques will not be discussed. However, in order to ease 

improvement of grid value accuracy in future, three values of 0, 0.5 and 1 will be 
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used to indicate grid occupancy status: emptied, unknown and occupied respectively. 

 

3.1.5 Inherent problems of map building 

 

 In mapping an environment, some difficulties are encountered: 

 

1. Inaccurate estimation of robot’s and object’s poses  

The goal of robot mapping is for an autonomous robot to be able to render 

map and localize itself in it. However, robot may suffer errors in odometry such 

as angular drift and wheel slippage, eventually render a large error-prone map. 

This need compensated with self-localization techniques, such as dead reckoning 

[19, 43], Monte-Carlo Localization [46], landmark based matching algorithm.  

 

2. Difficulty in translating sensor reading into knowledge about the environment 

Without vision system, it is difficult to interpret sensors reading as objects in 

real world, such as stair, wall, human, table.  

 

3. Dimensionality of environment 

For purpose of map updating, all information about the environment needed 

to be stored. Thus, more memory capacity and computation time is required for 

larger surface area of two-dimensional (2D) map. Since three-dimensional (3D) 

map is much more tangled, it goes without saying that huge amounts of data and 

complex algorithm are needed.  

 

4. Dynamic environment 

Under dynamic environment, such as opening door, movable human and 

objects, the map that a robot built may no longer be valid after a period of time. 

For example, a robot facing a closed door that previously was open. This can be 

explained by two hypotheses, either the door status changed, or that the robot is 

not where it believes to be. 
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5. Path exploration during mapping 

The task of generating robot motion in the pursuit of building a map is 

commonly referred to as robotic exploration. Exploring robots in the unknown 

environment have to cope with partial and incomplete models, and “revisiting” 

problem. Hence, any viable exploration strategy has to be able to accommodate 

contingencies that might arise during map acquisition. 

 

3.1.6 Graphics library for Metric Map – PNGwriter 

  

During Metric Map acquisition, a graphic library is used for sake of image 

creation. It generally deals with a rectangular table (M*N pixels) with each pixel has 

its own colour. Once the information or value for the cells (small evenly size square 

in grid) are stored or updated, graphics library will translate these values into 

specific colour to indicate the property of the cells (occupied or emptied). Normally, 

black colour is used to represent obstacle (cell occupied), and white colour is used to 

represent free space (cell emptied).  

 

Existing graphics libraries are GD Graphics Library [22], JavaScript Vector 

Graphics Library [23], PNGwriter Graphic Library [24], PGPLOT Graphics Subroutine 

Library [25] and others. 

 

In this dissertation, PNGwriter Graphic Library [24] is used for Metric Map 

creation in map building due to its simplicity and portability. PNGwriter Graphic 

Library is an easy-to-use graphics library that plots a high quality PNG image pixel 

by pixel from C++ program. It runs under Linux, Unix, Mac OS X and Windows.  

 

Due to its characteristic, during map building using Player/Stage robot simulator, 

PNGwriter provides the benefits of: 

1. enabling fast image creation, as it can directly create the Metric Map model 

from C++ source code used by Player, 
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2. creating reusable image file, as PNGwriter can create, read and update the 

output image, and 

3. ease in map matching between map model created by PNGwriter and original 

map used by Stage simulator, as both of these maps are in PNG format 

 

3.1.7 Sensing model used for map building 

 

In modeling map in an unknown environment, sensor plays an essential role in 

retrieving data on properties of the environment, enabling robot to perceive the world. 

Sensors commonly brought to bear this task include sonar [44, 48, 95, 98], laser [58, 

116], infrared [98], stereo vision [48, 58, 76, 98, 110], wheel encoder and touch 

sensors, each has its pros and cons as shown in Table 3.2.  

 

For sonar sensors, the distance relationship between robot and surrounding 

object is measured via acoustic pulse emitted. Using total time elapsed (t) for 

emitting acoustic pulse and receiving echo, the range (D) can be calculated using 

formula D = (v*t)/2, where v is the speed of sound. Speed of sound (v) is 

proportional to temperature (T), that is v = 20*√T.  

 

The operating principle of lasers is same as sonar, it emits a short pulse of light 

(laser). The time elapsed (t) between emission and detection is used to determine 

distance (D) using the speed of light (c), D = (c*t)/2. It is able to emit laser beams 

with around 0.5 o spread, which are much narrower than sonar beams of 25 o – 30 o.  

 

Stereo vision is an optimal sensing method that uses two cameras placed in 

different positions to capture images, detect object, analyse profile of object and 

determine the distance to the object. 

 

Unlike the three sensors described formerly, wheel encoder (also called 

odometry) does not provide information about environment, it only determines 
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distance and angle raveled by the robot itself, thus able to estimate the position and 

orientation of robot. The distance (D) is measured by multiplying the number of 

revolutions of the wheels (n) by perimeter per revolution (p), i.e. D = n*p.  

 

A touch sensor is a simple on-off switch, it is activated when the robot hits an 

obstacle. It is usually used in object avoidance system as last line of defense.  

 

Robot sensor type Advantages Drawbacks 

Sonar sensor - relatively low cost 

- fast computational time 

due to less or no process 

of determine obstacle 

position 

- able volumetric sensing 

- inaccurate and noisy, as 

roughness surface causes 

scattering reflections or 

angle of reflection is too 

large that acoustic pulse 

reflected is away from 

receiver 

- specular reflections give 

rise to erroneous readings 

- arrays of sonar sensors 

can experience crosstalk, 

which one sensor detects 

the reflected beam of 

another sensor 

- unable to determine the 

exact position of objects 

Laser sensor  - less chance of specular 

reflections due to its 

shorter wavelength  

- high accuracy 

- able to determine exact 

- more expensive 

- only able to detect 

objects in plane 

- require higher processing 

power and memory 
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position of object relative 

to robot 

- gives detailed description 

of the field of view 

Stereo vision - able to detect objects that 

sonar and laser may miss 

- able to identify and 

dissimilar objects 

- suit for 3D environment  

- higher processing as 

more information needed 

for each object 

 

Wheel encoders - useful in navigating 

robot 

- able to estimate the 

position and orientation of 

robot  

- measurement of distance 

and angle travelled is  

inaccurate due to wheel 

slippage or angular drift, 

which leads to error in 

estimating robot position 

and orientation 

Touch sensor - no algorithm needed 

- high reliability  

- not suitable for map 

building, as it only gives 

signal when hit object 

Table 3.2 Advantages and drawbacks for a variety of sensors 

 

 Sonar, laser and stereo vision are non-contact sensing model, thus they are less 

reliable compare to touch sensor due to environment effects. Environmental factors 

such as humidity and temperature affect the output of the sonar systems. Natural 

light interference is a problem in laser scanners because it can interfere with the 

readings. Stereo vision is influenced by brightness and degree of visibility.  

 

The Stage Simulator provides various sensor models such as sonar, laser range 

finder, pan-tilt-zoom camera and odometry. Regardless of environment effects, laser 
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sensor is an optimal sensing for 2D map building due to its accuracy in providing 

information about surrounding environment and its ability of determining exact 

position of objects relative to robot. Odometry device is used for navigation and 

localisation, it helps in estimating object pose in map model when combining with 

laser reading data.  

 

3.2 Autonomous Navigation System 

 

3.2.1 Introduction 

 

Motion is ubiquitous in both the real world and synthetic environments. In the 

field of unmanned robotic systems, autonomous navigation system is obligatory for 

industrial robot. Current industrial robot lack flexibility and autonomy, as these 

robots perform pre-programmed sequences of operation in highly constraint 

environment, and are not able to operate in new environment or to face unexpected 

situation. This is inevitable problem, as the autonomous navigation system is 

typically designed according to demands and environment limitations. 

 

In this dissertation, the navigation system is designed for sake of map acquisition 

in 2D indoor unknown environment, thus effective path exploration, shortest path 

finding and obstacle avoidance must be well-designed. Path exploration and path 

finding are challenging navigating problem, which is often solved sub-optimally via 

simple heuristics.  

 

3.2.2 Obstacle avoidance system 

 

One of the challenges in designing intelligent autonomous mobile robots is 

reliable obstacle avoidance. Obstacle avoidance [56, 58, 76, 96] plays an important 

role in prevent both robot and object hit from damage. Obstacle avoidance can be 
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divided into two parts, obstacle detection and avoidance control.  

 

There are 2 sensors that widely used in detecting and avoiding obstacle, which 

are sonar [44] and laser [58, 116] sensors. Numerous methods for obstacle 

avoidance have been suggested, for example, stationary sonar sensors, a rotating 

sonar sensor and laser scanner system. As only 2D environment is focused, 

vision-based system [76] using camera is not necessary. 

 

For stationary sonar sensors system with decentralized locating of several sonar 

sensors, only the region in which the obstacle lies can be determined. Conversely, 

neither the exact obstacle pose nor obstacle size can be determined.  

 

The rotating sonar system compensates the weakness of stationary sonar sensors 

system. It gives more accurate position for the obstacle. However, it is relatively 

costly due to additional drive mechanism and requires complex programming to 

control the drive mechanism. The motor has to rotate slowly so that the transducer 

has enough time for the acoustic pulses transmission. Also, the vibration of the drive 

motor causes data noise. Another disadvantage is the error in width detection because 

of low angular accuracy. Both stationary and rotating sonar systems suffer to 

problem of reflection and scattering of sound waves.  

 

Laser scanners are found to be more reliable, it provides high position and 

angular accuracy due to its high resolution of 0.25 degrees and tightly focused beam. 

It is also able to detect multiple obstacles.  

 

Table 3.3 shows the comparison of these three systems. Obviously, laser scanner 

system is the best choice as obstacle avoidance system in this dissertation, due to its 

benefits over sonar system. 
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Criterion Stationary sonar Rotating sonar Laser scanner 

Position of obstacle 

Region in which it lies 

can be determined 

Approximately 

estimation 

Exact position can 

be determined 

Orientation of 

obstacle 

No 
Approximately 

estimation 
Yes 

Distance accuracy Low Low High 

Angular accuracy - Low High 

Obstacle size Cannot be determined Cannot be determined Can be determined 

Multiple obstacle  

detection 

No No Yes 

Data noise High High Low 

Environment effect High High Low 

Table 3.3 Comparison of three obstacle avoidance systems 

 

3.2.3 Path exploration algorithm 

 

Two major difficulties in path exploration is the need to cope with the large 

amount of uncertainty environments and revisiting problem. Robots, which perform 

pre-programmed sequences of operation, are lack of flexibility and are not able to 

operate in new environment or to face unexpected situation. This may leads to 

inefficient operation and time delay, especially in uncertainty or dynamic 

environment.  

 

In addition, during path exploration, the mobile robot will never know itself that 

it was retracing its steps and revisit the same terrain. As a consequence, it will not be 

able know if it have build the whole indoor map completely. Revisiting will exhaust 

more time and result to ineffective map building. 

 

Many algorithms done [92, 93] are on-line exploration and navigation. 
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Hoffmann, Icking, Klein and Kriegel [94] have described a competitive on-line 

strategy for polygon exploration. Important work done by Fox, Ko, Konolige and 

Stewart [69] developed a hierarchical Bayesian approach to address with revisiting 

problem. 

 

A systematic search strategy is a significant solution to encounter the exploration 

problems. Due to unknown state spaces, uninformed search algorithm [27, 28, 29, 30, 

42] is suit for solving revisiting problem. There are two uninformed search strategies  

that widely used in 2D search scheme: 

 

1. Breadth-first Search  

Breadth-first Search (BFS) is a graph search 

algorithm that begins at a given vertex, which is at 

level 0 and explores all vertices at level 1, then 

explores all vertices at level 2, and so on. Refer to 

Figure 3.1, the path generated is A – B – C – B – 

D – E – F. 

  

2. Depth-first Search   

Depth-first Search (DFS) is another way of 

traversing, which starts at a root and explores as 

far as possible along each branch before 

backtracking. It goes deeper and deeper until hits a 

node that has no children, then backtracking to the 

most recent node it has not explored. It is easy to program as a recursive routine. 

Refer to Figure 2.4., the path generated is A – B – D – B – E – B – A – C – F. 

 

  Both BFS and DFS use marks to keep track of the vertices that have already 

been visited, and not visit them again. And both BFS and DFS are used to search 

until goal is found. However, target or object finding is not concerned in path or map 

Figure 3.1 

Breadth-first Search 

Figure 3.2 Depth-first 

Search (DFS) 
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exploration. Yet, these search approaches still can be applied theoretically in 

exploration and navigation system to cope with revisiting problem.  

 

For simplicity, DFS is a more suitable, optimal and effective algorithm to be used 

as path exploration algorithm for map building. In consideration of effectiveness, 

DFS will be modified, the detail will be discussed in Chapter 4.  

 

3.2.4 Path finding algorithm 

 

Once the navigable paths are found through path exploration algorithm, the 

robot can move to the navigable paths. To make the robot to be useful and intelligent, 

path finding algorithm is required to plan a safety and shortest route from source 

(initial state) to destination (goal state) without possible obstacle collision. 

 

 Informed/Heuristic Search Algorithms [27, 31, 60] is widely used in path 

finding. It uses heuristic function [62] that estimates “distance” (cost) from the 

current node/state to goal to guide search.  

           

The A* Search [67, 82, 83] is common and widely used Informed Search 

Algorithm for path planning. A* Search uses the known cost combined with an 

estimate heuristic to choose a node to expand. It incrementally searches a sequence 

of state transitions that leads a robot from its initial point to desired goal. A* is well 

for static and deterministic environment.  

 

Hierarchical Pathfinding A* (HPA*) [40] is a better version of A* using “divide 

and conquer” technique. HPA* possesses Pre-processing Phase prior to Pathfinding 

Phase, that divides the large grid into smaller clusters and builds a subgrid 

connectivity graph. 

 

To find exact the shortest path, Dijkstra's algorithm [34] is the best choice. It 
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searches by expanding out equally in every direction, determines the distances 

between one point to all other points, and eventually chooses the exact shortest path. 

Dijkstra's algorithm usually ends up exploring a much larger area before the goal is 

found. This generally makes it slower than A*.  

 

The D* algorithm (Dynamic A*) [63, 64] is most widely used for path 

re-planning at dynamic environment, due to its efficient use of heuristic and 

incremental updates. It repairs or re-plans the path once new information is 

discovered. 

 

Stentz has developed Focussed D* [65] that repeatedly determines a shortest 

path from the current robot coordinates to the goal coordinates while the robot moves 

along the path. It is able to replan faster than planning from scratch.  

 

Lifelong Planning A* (LPA*) [67] generalizes both A* and a version of 

DynamicSWSF-FP. It is an incremental heuristic search method that repeatedly 

determines shortest paths between two given vertices as the edge costs of a graph 

change. This algorithm reconstructs only the areas affected by the changes to the 

environment’s state.  

 

A* algorithm is selected to be implemented in this project, since environment 

concerned is static and deterministic, and A* provides faster computation and uses 

smaller data storage than that of Dijkstra's algorithm.  

 

3.3 Control Algorithm for Map Building with Autonomous 

Navigation 

 

 In autonomous robotics system, control algorithm is a vital architecture that 

enables distributed and collaborative sensing and control. Three different approaches 



 
Chapter 3. Literature Review and Relevant Theory 

 

Created by CHUI CHING YEE                                                              28                                                                                           

have been proposed: 

 

1. Traditional approach – Sense Plan Act (SPA) Architecture 

In the traditional approach [32], perception, planning and execution follow 

each other in exact order (Figure 3.3). This theoretically enables robots to deal 

with complex problems, yet its top-down behaviour makes it slow deliberative 

and inflexible, and not suited for fast changing environments.  

 

 

Figure 3.3 Sense Plan Act (SPA) Architecture 

 

2. Subsumption / Reactive architecture 

Rodney Brooks [74] criticised the weakness of traditional approach, to 

provide deliberative architecture, Brooks created Subsumption Architecture 

(refer to Figure 3.4), which advocates layering of behaviors architecture [35, 52]. 

All layers running in parallel with little interaction between them.  

 

 

Figure 3.4 Subsumption Architecture  

 

However, this approach is inflexibility at run time with relatively slow 
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response, significant processing power is required to maintain accurate up-to-date 

all the time. Thus, it is well with low-level behaviours, such as obstacle 

avoidance and wall following, but not suit for higher-level functions such as 

learning or planning. This approach has been worked by some researchers [75, 

77,117]. 

 

3. Hybrid architecture 

To compensate the lack of higher functions, Hybrid architecture was 

proposed. It applies behaviour-based, reactive system for low-level control, and a 

central planning device for higher-level behaviours such as planning and 

mapping. For an instance, SSS [36] is a hybrid 3-layer architecture applied by 

Jonathan H. Connell. An interesting development of Hybrid architecture is the 

use of a deliberative layer to perform higher-level functions like mapping and 

navigation. This layer can be implemented through neural networks or genetic 

algorithms, among others. 

 

To ease construction, Sense Plan Act Architecture is concerned in this project. It 

enables easy implementation of mapping, path planning and obstacle avoidance 

algorithms in static environment.  
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Chapter 4  

Methodology/ Algorithm 

 

 

4.1 Specifications and Assumptions 

 

 The specifications of the robot simulation presented in this dissertation is given 

below: 

1. Player/Stage server environment will be configured to simulate the Pioneer robot 

inside a series of 2D industrial warehouse terrains, each with square area of 

16x16m2.  

2. Only odometry device and laser scanner device are required. 

3. The laser scanner device is able to scan a planar field of 180o with 0.5o resolution, 

which consists of 361 samples of reading data (up to 4 meters).  

4. The origin location of robot in environment is known.  

5. The map model built is a grid of 160x160 cells (represents 16x16 m2), with 

internal of 0.1m for each x-axis and y-axis.  

 

Due to the nature of real world imperfections, some assumptions has been made 

in this simulation, as given below: 

1. The operation of the robot is ideal, i.e. there is neither systematic nor 

non-systematic error which leads to measurement error, hence, localisation 

techniques are not addressed 
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2. The environment is under normal temperature with good visibility and good 

condition that do not impair the accuracy of the laser reading 

3. High precision laser and odometry devices do not deal with inaccuracies and 

errors in reading 

 

Assumptions made about the environment: 

1. Static (unchanging) 

2. Observable (can sense its initial and current state) 

3. Discrete (world carved up into towns) 

4. Deterministic (no unexpected events) 

 

Other assumptions made during execution: 

1. The rate of environmental change is zero and only a static environment is 

addressed 

2. The sequences are not overly complete so they do not perform computations that 

take a long time which cause further time delay 

3. Whole processes complete within one clock cycle of the robot execution. 

 

4.2 Usage of Player/Stage Proxy Class 

 

 In this project, the simulated Pioneer robot is implemented with a p2os [12] 

controller to provides position2d [14] and laser [13] interfaces. Player/Stage 

provides a C++ client library for a variety of devices of Player server, each 

associated with appropriate and ready-to-use proxy classes.  

 

In this robot simulation, for the laser scanner device, sicklms200 driver [11] 

with laser interface [13] is used, which is associated with LaserProxy [15] class for 

data acquisition. The Position2dProxy [16] class is associated with position2d 

interface [14] to return odometry data, and accepts velocity commands. 
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4.3 Map Building Algorithm 

 

4.3.1 Map building architecture 

 

 

Figure 4.1 Map building architecture 

 

The map building architecture is described herewith. Figure 4.1 decribes map 

building architecture possesses 4 major algorithms: 

 

1. Computation of the position of laser reading in map model 

First and foremost, the laser scanner reading data, with total of 361 samples, 

must be translated into Cartesian [x,y] form. This will provide an outline of the 

perimeter of the laser scanning area. 

 

2. Interpretion of laser scanner reading into knowledge 

All the 361 positions (cells in map model) must then be evaluated and 

interpreted into useful knowledge. The knowledge is information that define the 

property of the corresponding cell, whether the cell is occupied (indicates 

obstacle in real world) or emptied (indicates free space in real world).  

Interpretion of laser scanner reading 

into knowledge 

Determination of  

occupancy value 

Map building using 

PNGwriter Graphic Library 

Computation of position of 

Laser reading in map model 
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3. Determination of occupancy value using Probability Occupancy Grid Theory 

Based on Probability Occupancy Grid Theory, cells are given certain 

occupancy value of 0, 0.5 and 1, representing the property of the cell.  

 

4. Map building using PNGwriter Graphic Library 

Finally, with the occupancy values computed, the simulated environment 

model can be created using the PNGwriter Graphic Library.  

 

4.3.1.1 Computation of position of laser reading 

 

As the origin location of the robot is known, intuitively, with odometry data, the 

location of robot can be computed and defined in [x,y,θ] form, representing the 

position and orientation of robot in map model. Then, by combining the laser reading, 

the position of the laser reading at corresponding time can be computed.  

 

 

Figure 4.2 Computation of position of laser reading 
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 Refer to Figure 4.2, 

  Given that origin location of robot in map model = (Xoffset, Yoffset, θoffset) 

  After a duration of time, the new location of robot = (Xrobot, Yrobot, θrobot)  

 

based on odometry data (Xodometry, Yodometry, θodometry), 

  Xrobot = Xoffset + Xodometry*cos(θoffset) + Yodometry*cos(п/2 +θoffset)  ---Equ 4.1 

  Yrobot = Yoffset + Xodometry*sin(θoffset) + Yodometry*sin(п/2 +θoffset)  ----Equ 4.2 

  θrobot = θoffset + θodometry           ------------------------------------------- Equ 4.3 

 

To calculate the position of laser reading Rj, first, the sample number of 

0-360 must be convert to [-90o, 90o], 

   

  notice from Figure 4.3(a), θ0 (sample no. 1) = - 90o  

         θ180 (sample no. 181) = 0o 

θ360 (sample no. 361) = 90o 

   thus, it can be deduced that θj (sample no. j+1) = j/2 - 90o 

 

  then, from Figure 4.3(b),  

θj (sample no. j+1) = (j/2 - 90o )*п/180 o + θrobot  (in radian ) ----Equ 4.4 

 

 

Figure 4.3 Computation of θj with (a) zero θrobot , (b) non-zero θrobot 
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  Using Equ 4.4, the position of laser reading (Xj, Yj) in Figure 4.2 can be 

found, 

   Xj (sample no. j+1) = Xrobot + Rj * cos θj 

                  = Xrobot+ Rj * cos((j/2 - 90o )*п/180 o+θrobot) --Equ 4.5 

   Yj (sample no. j+1) = Yrobot + Rj * sin θj 

                  = Yrobot+ Rj * sin((j/2 - 90o )*п/180 o+θrobot) --Equ 4.6 

 

 With Equ 4.5 and Equ 4.6, the location for every sample of laser reading (Xj, Yj) 

can be computed, and thus the closed curve bounding the sensoring area can be drew 

into environment model later.  

 

4.3.1.2 Interpretation of laser reading into knowledge 

 

Refer to Figure 4.4, the laser 

reading data acquired with a value of 

4 meters indicates the cell is 

absolutely emptied. On the other 

hand, if the data range, Rj is shorter 

than 4m, then this implies the cell 

may be either occupied or emptied.  

 

As a result, to distinguish if the 

cell is occupied or emptied, apart 

from laser reading data (Rj), the Euclidean distance between two successive points 

need to be taken into account as well. If the Euclidean distance (DEud) between the 

current point (sample no. j) and next successive point (sample no. j+1) is smaller 

than 0.2m and the range of current reading (Rj) is less than 4m, then the cell 

evaluated from the current reading is occupied. Otherwise, the cell is defined as 

freespace.  

  

Figure 4.4 Information extraction from 

laser reading 
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Pseudo Code 4.1 Interpretation of laser reading into knowledge 

 

Pseudo Code 4.1 describes a methodology of interpreting laser reading into 

knowledge about property of a cell. The profile of the size, shape, distance and 

orientation of the obstacle in the scanned area thus can be estimated. 

 

4.3.1.3 Determination of occupancy value 

 

The objects are small areas tessellating the space and the basic property is the 

fact that a cell is occupied or not. For simplicity, cells are given certain occupancy 

values, where 0 represents an empty cell, 1 represents a cell that is occupied, and 0.5 

is an unknown or unexplored cell.  

 

 In this map building algorithm, to produce an up-to-date map, all occupancy 

values will be updated, in such a way simply overwrote or replaced by new 

information.  

 

4.3.1.4 Map building using PNGwriter Graphic Library 

 

Lastly, the image of map model can be created using the PNGwriter Graphic 

Library. The image presents an occupancy grid map (Metric Map) with 160x160 

pixels/cells. With occupancy value of 0.5, the cell will be grey in colour. Whereas, 

for occupancy value of 0 and 1, the cell is white and black respectively.  

If (Rj = 4) 

 then (Xj,Yj) is emptied 

 

else if (Euclidean distance between (Xj,Yj) and (Xj+1,Yj+1) <0.2) 

 then (Xj,Yj) is occupied 

 

else 

 then (Xj,Yj) is emptied 
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4.3.2 Map building algorithm 

 

 

Flow Chart 4.1. Map building algorithm 

 

 The complete map building algorithm is illustrated in Flow Chart 4.1. For every 

sample of laser reading, the position of the laser reading is firstly computed, then 

interpreted into property of cell as either occupied or emptied using occupancy value 

[0,1], finally specific colours are given for map model rendering using PNGwriter 

Graphic Library.   

 

For ( j = 0, j <361, j++) 

Compute position (Xj,Yj) 

If Euclidean distance 

between (Xj,Yj) and 

(Xj+1,Yj+1) <2 ? 

(Xj,Yj) = 1  

(occupied) 

(Xj,Yj) = 0  

(emptied) 

Yes No 

Map creation 

(Xj,Yj) = 1 ?  

 

(Xj,Yj) = 0 ?  

 

cell is black 

cell is white 

cell is grey 

Yes 

Yes 

No 

No 

Yes No Rj= 4? 
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4.4 Autonomous Navigation Algorithm for Map Exploration 

 

4.4.1 Autonomous navigation architecture 

 

 In the robot control system, an 

autonomous navigation system is used for 

map exploration in an unknown environment. 

Hence, obstacle avoidance and path finding 

are essential parts in avoiding uncertainty 

obstacle and navigating robots effectively. 

The navigation architecture is shown in 

Figure 4.5. 

  

4.4.1.1 Obstacle avoidance algorithm 

 

  

Flow Chart 4.2 Obstacle avoidance algorithm 

  

In this obstacle avoidance system, the simulated robot simply avoid the obstacle 

in front. It can be divided into 2 parts, obstacle detection and avoidance control 

(Flow Chart 4.2). 

If any obstacle detected 

within obstacle 

detection area? 

Robot control system 

Take suitable action 

to evade the obstacle 

Yes 

No Obstacle  

detection 
Obstacle 

avoidance 

system 

Avoidance 

control 

 

Figure 4.5 Autonomous 

 navigation architecture 

 

Obstacle avoidance algorithm 

Path exploration algorithm 

Path finding algorithm 
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For obstacle detection part, initially the maximum detection range needed to be 

considered, in such a way that the robot is able to move very close toward the front 

obstacle without hitting it. Next, the detection angle also needed to be determined, so 

that the robot only will avoid the front obstacle that located within certain angle.  

 

 

Figure 4.6 Obstacle detection area  

 

 Figure 4.6 shows the obstacle detection area of simulated robot. The simulated 

robot is a polygon with approximately 0.4m in width. Intuitively, the width of 

obstacle detected (W) must be larger than width of simulated robot to avoid obstacle 

collision. Hence, the value of W will be set to 0.5 meters. In considerating of time 

delays, the maximum detection range (R) will then set to 0.6 meters. so that enabling 

the simulated robot to move towards until 0.6m far from front obstacle.  

 

 To obtain obstacle detection area desired, some mathematical calculations must 

be applied as following:   
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  Assume θ is small enough, that r ≈ R,  

  Given that W=0.5 and R=0.6, 

   sin θ = W / (2*R) 

         θ ≈ 25 o 

θ1 = 90o – θ = 65o  

θ2 = 90o + θ = 115o 

   

Since the resolution of laser sensor is 0.5o,  

thus, the sample no. corresponding to θi = 2*θi + 1 

   sample no. of θ1= 2*θ1 + 1 = 131 

   sample no. of θ2= 2*θ2 + 1 = 231 

 

The obstacle detection area is thus a cone shape, with a radius of 0.6m and angle 

of 50 o, start from 65o (sample no. 131) until 115o (sample no. 231). Once an obstacle 

is detected within this area (Pseudo Code 4.2) irrespective of the type of obstacle, 

reasonable avoidance action (Pseudo Code 4.3) will be taken by turning the robot at 

its current position until there is no obstacle detected, it then move forward for 

another 2 seconds before it can perform other tasks.  

 

The direction of turning depends on the position of the obstacle. If the minimum 

laser reading of sample number 131-181 is smaller than that of sample number 

181-231, indicating the right upper corner of robot closer to the obstacle, then the 

robot should turn to the left, and vice versa.  

 

 

Pseudo Code 4.2 Obstacle detection 

 

For (laser sample no. 143 until 219) 

{ 

 if laser reading[sample no.] < 0.6 

  then obstacle is detected  

} 
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Pseudo Code 4.3 Avoidance control 

 

4.4.1.2 Path exploration algorithm using modified DFS paradigm 

 

 The path exploration algorithm is vital for searching navigable paths/points and 

determining which path/point should robot move to for map acquisition without 

revisiting. To compute the navigable points, first, the interpretion of sensory data into 

knowledge must be done (as explained in section 4.3.1.1 and section 4.3.1.2) to 

determine free space and obstacle. The middle point (Xmid,Ymid ) between 2 obstacles 

(X1,Y1) and (X2,Y2 ) then is computed and evaluated as navigable point (Equ 4.7).  

 

 

Figure 4.7 Determination of navigable points for path planning 

If obstacle detected  

{ 

 for (laser sample no. 131 until 181) 

  find minimum laser reading, MinRight 

 

 for (laser sample no. 181 until 231) 

  find minimum laser reading, MinLeft 

 

 if (MinLeft <= MinRight) 

  turn to right until no obstacle detected 

 else  

  turn to left until no obstacle detected 

 

 move forward for 2 seconds 

} 



 
Chapter 4. Methodology/ Algorithm 

 

Created by CHUI CHING YEE                                                              42                                                                                           

From Figure 4.7, 

(Xmid,Ymid ) = ( (X1+X2)/2 , (Y1+Y2)/2 ) --------------------------------- Equ 4.7 

 

Next, by using the Depth-First Search (DFS) concept, one of navigable points is 

chosen and followed until an dead end is reached, the robot then backs up until the 

point (“parent”) has unvisited “child” and continue the unvisited “child”. Hence, the 

path generation by robot in Figure 4.7 is P – Q – P – R. 

 

To reduce map exploration time, the DFS algorithm is modified to eliminate 

redundancy. In Figure 4.7, both R and Q are childs of P, the robot reverse directly 

from Q to R without passing through their parent P. The path will then be P – Q – R. 

 

 

Figure 4.8 Path generated using 

 (a) DFS algorithm 

        (b) modified DFS algorithm 

 

To explain this further, Figure 4.8(a) and Figure 4.8(b) show the comparison of 

the paths generated using DFS and the Modified DFS algorithm respectively.  

Obviously, the path generated using Modified DFS is shorter than that of DFS due to 

shortcut between D-E and B-C.  

 

Furthermore, the Modified DFS algorithm is created in such that it can deal with 

complex and cross-link paths, as shown in Figure 4.9(a). Once an unvisited “child” 

is being scanned twice, the “child” will be erased to avoid revisiting. 
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Figure 4.9 Modified DFS algorithm for complex and cross-link paths exploration   

 

Below are the steps of path exploration for Figure 4.9: 

(a) Initial node A is marked as “Visited”, and the robot scans 360o and finds the 

unvisited child node B and C, B is chose to navigate to.  

(b) Reaches B, marks B “Visited”, scans and finds out unvisited child D and E, chose 

to forward to D. 

(c) Reaches D, marks D “Visited”, scans and finds out unvisited child F, navigate to 

child F. 

(d) Reaches F and marks F “Visited”, scans, seeks out child G and discovers C being 

re-scanned twice, C is erased and replaced by G, move to G. 

(e) Reaches G and marks G “Visited”, scans, discovers unvisited child H, move to H. 

(f) Reaches H and marks H “Visited”, scans, discovers it is a dead-end without 

further unvisited child, decides to reverse to unvisited E via G (H’s parent), F 

(G’s parent) and D (F’s parent). 
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(g) Reaches E and marks E “Visited”, scans and dead-end is found, since there is no 

other unvisited nodes, implies that all possible paths have been explored and 

visited, robot terminates.   

 

In complex and cross-link paths, the robot may have a few of transition paths 

from one node to another. For an instance, at step (f) above, when the robot reverse 

from node H to node E, there are more than one navigation paths, i.e. H – G – F – D 

– E path, H – G – A – B – E path. To fasten the navigation time, a shortest path 

should be evaluated. A path planning algorithm herewith play an essential role, 

which will be discussed later. 

 

To put into practice, the modified DFS path exploration algorithm can be 

implemented using a state machine as shown in Figure 4.10.  

 

 

Figure 4.10 State machine of path planning algorithm using modified DFS  
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find navigable points,  

add to list L 

Set point at end of L as 

goal (LIFO) 

Navigate to goal using 

path planning algorithm 

Goal has been 

visited before 

Goal not yet 

visited before 

Reverse 

by remove 

end point 

of L 

L not empty  

Dead-end 
New unvisited points 

are added to List L 

L is empty  



 
Chapter 4. Methodology/ Algorithm 

 

Created by CHUI CHING YEE                                                              45                                                                                           

 

Pseudo Code 4.4 Path exploration algorithm using modified DFS paradigm 

 

Below is the step by step implementation along with its pseudo code shown in 

Pseudo Code 4.4: 

1. Initially, the state = 0. 

2. The robot scans 360o and checks if any unvisited point in list L is located in 

current scanning field. If yes (means that point is linked to current point), 

remove that point from list L. Otherwise, do nothing.  

state = 0; 

list L = empty 

 

while ( state !=4 ) 

{ 

 if state = 0 

  scan 360o 

  if an unvisited point in L is re-scanned 

remove that point from L 

  determine new navigable points and add into L 

if point at end of L is unvisited 

state = 1 

  else 

state =3 

  

else if state = 1 

  if L not empty  

set point at end of L as goal , state = 2 

  else  

state = 4 

 

 else if state = 2 

  navigate robot towards goal 

  if the goal has been visited, state = 3 

  else mark goal as visited, state = 0 

 

 else if state = 3 

  remove point from end of L, state = 1 

}  
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3. Determines all navigable points using Equ 4.7, then push only new and 

unvisited points into list L. If the last point in list L is unvisited (indicates 

new unvisited points are added), then state = 1 (go to step 4). Otherwise, 

robot is assumed experiences a dead-end, state = 3 (go to step 7). 

4. If the list L is not empty, using LIFO (Last -In First-Out), set the point in the 

end of list L as goal, state = 2 (go to step 5). Otherwise, map building is 

assumed complete, state = 4 (go to step 8). 

5. Navigate robot towards goal with assist of a path planning algoritm 

6. Repeat step 5 until the robot reaches the goal, if the goal originally mark 

unvisited, then mark it as visited and state = 0 (go to step 2). If the goal 

already marked as visited, then state = 3 (go to step 7) 

7. Pop out the point in the end of list L, state = 1 (go to step 4) 

8. Break from while loop 

 

4.4.1.3 A* path finding algorithm 

 

Once a goal is determined, the A* path finding algorithm is implemented to plan 

a shortest and safest route from the initial state to goal. This improves efficiency, 

provides time saving and removes the obstacle collision problem which the robot 

may face without A* algorithm.  

 

Instead of searching every point, A* expands the node/state that appears to be 

closest to the goal and avoids expanding paths that are already expensive. A* uses 

evaluation function (Equ 4.8) to select which nodes/state to expand. 

 

f(n)=g(n) + h(n)    -------------------------------------------------------- Equ 4.8 

     where g(n) - the cost (so far) to reach the node n 

        h(n) - estimated cost to get from the node n to the goal 

f(n) - estimated total cost of path through n to goal 
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 Two fundamental issues need to be known before getting start to A* algorithm: 

1. Method for estimating heuristic, H [62] 

Manhattan Method (Equ 4.9), Diagonal Shortcut Method (Equ 4.10) and 

Euclidean Distance Method (Equ 4.11) are widely used methods for calculating 

heuristic, H. The closer estimated H is to the actual remaining distance along the 

path to the goal, the faster A* will find the goal.  

 

Manhattan Method:  

H = 10 * (∆x +∆y)    -------------------------------------------------------- Equ 4.9 

 

Diagonal Shortcut Method:  

 -------------------------- Equ 4.10 

 

  Euclidean Distance Method: 

   H = 10 *√(∆x2 + ∆y2 )   ------------------------------------------ Equ 4.11 

 

where ∆x = abs(currentX-targetX), ∆y = abs(currentY-targetY) 

 

2. G scoring and arrow interpretation  

In Figure 4.11(a), a cost of 1 should be assigned to G for each horizontal or 

vertical move, and a cost of 1.414 (√2) for a diagonal move. For simplicity sake, 

10 and 14 are used as shown in Figure 4.11(b). 

 

 

Figure 4.11 G scoring and arrow interpretation 
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The arrows shown in Figure 4.11(a) indicate all of the neighbouring squares 

are “child” squares of the middle grey square (“parent” square). This parent 

square pointing is important for tracing path. To interpret the arrow pointing into 

word for programming, chain coding with 8-connectivity representation [37, 38] 

is used to define the position of one square relative to its “parent” square, as 

shown in Figure 4.11(b). 

 

 

Pseudo Code 4.5 A* path planning algorithm 

 

 Below is the implementation of the A* algorithm (refer to Pseudo Code 4.5): 

1. The initial square is added to open list. 

2. If the open list is empty, go to step 5. Otherwise, select a square with lowest F 

cost in open list, set it as “parent” square and swap it to closed list. 

3. For each of the 8 adjacent/“child” squares to this “parent” square,  

i. if it is the goal, adds it to closed list, with chain code as well, go to step 4. 

ii. if it is not walkable or it is in the closed list, skip step iii and iv. 

open list O = empty, closed list C = empty, bool success = true, int state = 1 

add starting square into list O 

while (current point !=goal) 

{  

if (state =1) 

  if O is empty, success = false, break 

else, selects lowest F square in O as “parent”, moves it form O to C 

state = 2  

 else  

for (each “child” square)  

 if (“child” square is walkabe and not in C) 

    if (“child” square not in O) 

     calculate F, G, H, add to O with chain code 

    else 

     if(new G < existing G) 

      replace with new chain code, F, G, H 

    if “child” square is 8
th
, state = 1  

} 

if (success), find path form C by working backwards from goal to starting square 
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iii. if it is not in open list, adds it to the open list. Simultanously, the F, G and 

H scores of the square are computed, and appropriate chain code (points to 

current “parent” square) is recorded. 

iv. if it is in the open list already, check if new calculated G lower than existing 

G. If so, means the new G gives better path, replace an appropriate chain 

code to the existing square (indicates current “square point” it should point 

to), and recalculate the G and F scores. 

v. if it is the 8th “child” square, go to step 2. Otherwise, go to step 3. 

4. From closed list, find out the goal square, go reverse to its parent (which chain 

code point to), then go from that square to its parent again, and so on, until 

starting square. This is the path. Path finding task terminates. 

5. Fail to find goal, path finding task terminates with failure.   

  

4.4.2 Autonomous navigation algorithm 

 

 

Flow Chart 4.3 Autonomous navigation algorithm 
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Flow Chart 4.3 shows the autonomous navigation algorithm. First and foremost, 

the simulated robot checks if any obstacle is detected within the obstacle detection 

area. If there is an obstacle, then it executes avoidance algorithm. Otherwise, it will 

proceed to path exploration or path finding processes. The appropraite commands 

will then be executed.  

 

4.5 Control Architecture – Sense-Plan-Act (SPA) Approach 

 

By using the Sense-Plan-Act approach, the autonomous robotics first attempts to 

interpret its sensory data to build a model of the world, and next the robot uses the 

model to plan its actions, and finally it would act on those plans. 

 

 

Figure 4.12 Structure of robot control system using SPA paradigm 
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Figure 4.12 illustrates the structure of robot control system using 

Sense-Plan-Act concept for autonomous navigation with map building. Obviously, 

Player provides the benefit of acquiring the laser scanner reading (Sensing Layer) 

and generating the motion command (Acting Layer).  

 

For the Planning Layer, client program interprets the sensory data into 

knowledge, implements obstacle detection and executes avoidance action if required. 

Otherwise, it produces the model map of world. The model map then served as input 

along with goal (determined by path exploration algorithm) to the path finding 

process, develops a path for robot. Appropriate speed and direction of robot are 

evaluated and determined.  

 

Finally, the decided motion command is issued to the Player for execution, 

which means down to the actuator level (robot motor).  
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Chapter 5  

Map Benchmarking Suite 

 

 

The accuracy of map model is crucial in estimating the effectiveness and 

reliability of the map building algorithm. A fitness function must be used to evaluate 

the quality of the map created in order to guide the map building algorithm. In order 

to gauge the accuracy and effectiveness of the map building system, a variety of 

benchmarking methods [44, 71] for comprehensive analysis of maps generated have 

been carried out. The comprehensive suite of map benchmarking techniques 

includes: 

1. Cross Correlation [28] 

2. Map Score 

3. Map Score of Occupied Space 

 

5.1 Cross Correlation 

 

Baron’s Cross Correlation Coefficient [80, 81] is a basis image comparison 

algorithm for evaluating map. It is based on template matching, which was initially 

used for face reorganization [79]. Baron’s cross correlation coefficient, CN (Equ 5.1), 

rescales the energy distributions of the template and the image, in order to match 

their averages and variances.  
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    -------------------------------------------------- Equ 

5.1 

 

where  CN(y) = cross correlation coefficient over the area being 

matched 

<IT> = , average or mean of generated map, IT   

<T> = , average or mean of ideal map, T 

<IT T > = , average of 2 combined maps  

σ(IT) =  , standard deviation of a map IT 

  σ(T) = , standard deviation of a map T 

 

where ix,y= value of cell at (x,y) in map IT 

tx,y= value of cell at (x,y) in map T 

           n = number of cells in map IT    

 

This benchmark is quite robust to noise, and can be normalised to allow pattern 

matching independently of scale and offset in the images. A higher coefficient value 

indicates the map being tested has a high degree of similarity to ideal map. 

 

However, Cross Correlation also has drawback of having possibility to get high 

correlation value even when the map generated is inaccurate. This is due to the fact 

that it factors the average and standard deviation of the map, instead of cell by cell 

comparison.  

 

For an instance, Figure 5.1(a) shows an ideal map and Figure 5.1(b) shows a 

generated map with curved obstacle distorted by robot odometry error, even they are 
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quite difference, these two maps’ average values are similar through coincidence as 

they have equal number of occupied and emptied cells, as a consequence, they might 

be given a high correlation value. 

 

 

Figure 5.1 A typical corridor (a) ideal map, (b) generated map with curved obstacle 

(source from [44]) 

 

5.2 Map Score 

 

Martin and Moravec [78] proposed Map Score, a map comparison measure 

specifically for probabilistic maps. Unlike correlation, map scoring calculates the 

difference of two maps based on a cell-by-cell comparison. The lower the difference, 

the greater the similarity is. Given two maps, M and N, the score between them is 

calculated using equation: 

--------------------------------------------- Equ 

5.2 

 

where mX,Y = value of the cell at position (x,y) in map M  

nX,Y = value of the cell at position (x,y) in map N 

 

The weakness of this map matching technique is that it overestimates the empty 

regions of space. This is because in many environments, there are large amounts of 

unoccupied spaces, with a few small obstacles distributed within that space. Even if 

the sensor model misses an obstacle, it is only slightly increase score value, since it 
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computes the wrong value for small number of cells.  

 

5.3 Map Score of Occupied Cells 

 

To remedy the weakness of the Map Score explained above, the Map Score is 

modified in such a way only testing the correctness of the obstacles in the map, 

ignoring the free space areas. For any two maps M and N, if either the value mX,Y 

>0.5 or nX,Y >0.5, then the squared difference between those two cells is added to the 

final score. Otherwise, they are ignored.  

 

This technique is able to indicate the strengths and weaknesses of the laser 

model used. If the sensor model misses an obstacle that it should detect, it will give a 

worse (higher) score. Besides, if the reading is too long which results in shadows 

behind the obstacle, then the worse score will be given as well.  

 

 

Figure 5.2 A typical corridor with ‘shadow’ (source from [44]) 

 

In Figure 5.2, when scoring using Map Score method, it would seem to be a 

very good map, again due to well-defined and large amount of the free space. 

However when comparing just the occupied cells, the score will be much more 

higher since there are many more occupied cells than there should be. 

 

Unfortunately, both Map Score and Map Score of Occupied Cells methods rely 

on the two maps being in the exact same orientation and translation, with no 

odometry error or with very effective localisation algorithms. 
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Chapter 6  

Empirical Evaluation 

 

 

6.1 Obstacle Avoidance Algorithm 

 

The obstacle avoidance system is a key part of the control system and it is 

sensitive to time delays. A lack of synchronisation will effectively end-up in a 

collision. 

 

6.1.1 Ideal case 

  

 

Figure 6.1 Ideal obstacle detection and avoidance 
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 Figure 6.1 demonstrates the response of the mobile robot once the obstacle is 

detected within a preset range (0.6m in front of obstacle) in an ideal case without any 

delay. However, mobile robots nowadays are designed to be autonomous, intelligent 

and robust, so that it has capability of executing series of tasks. Thus, the processes 

comprise a series of computational functions, which may cause time delay and affect 

the performance of obstacle avoidance system.  

 

6.1.2 Case of asynchronous lower layer functions 

 

 

Figure 6.2 Series of obstacle avoidance algorithm empirical results for 

(a) ≈0, (b) ≈500, (c) ≈1000, (d) ≈1500, (e) ≈2000, (f) ≈2500, (g) ≈3000, (h) ≈3500, 

lines of lower layer functions 

 

Figure 6.2 shows the case of asynchronous processes which execute simple 

computational functions for lower layer functions, such as wall following. Obviously, 

Figure 6.2(a), Figure 6.2(b) and Figure 6.2(c), which execute approximately 0, 500 

and 1000 lines of computational instructions respectively, are able to perform real 

time obstacle detection and avoidance. This is due to the processes can be executed 

within one clock pulse. 
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Figure 6.2(d) describes the robot addresses to time delay problem due to 

execution of approximately 1500 lines of computational instructions, thus it only 

executes obstacle detection and avoidance at 0.5m away from obstacle. This become 

worse for Figure 6.2(e) and Figure 6.2(f), obstacle avoidance only executed when the 

robot is 0.4m and 0.3m respectively far from obstacle. 

 

When the robot executes more than 3000 computational instruction lines, due to 

long computational time, the robot is not able to detect obstacle within reasonable 

time. As a consequence, the robot crashes with the obstacle and become jammed. 

 

 

Graph 6.1 Obstacle avoidance empirical results for lower layer functions 

 

 Graph 6.1 outlines the performance of obstacle avoidance system in term of 

number of simple computational instruction lines executed using formula below: 

 

   --------------------------------Equ 6.1 

where D = the distance between robot and obstacle where avoidance 

action took place 
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 For the sake of executing fast obstacle avoidance, high accuracy of at least 90% 

must be obtained such that the robot able to detect the obstacle once it reaches 5.54m 

– 6m far from the obstacle, and appropriate action can be took instantly to avoid 

collision.  

 

6.1.3 Case of asynchronous higher layer functions 

 

In the case of executing higher layer functions, such as path planning and map 

building which embeds file reading and writing processes, the time consumed is 

much higher than that of lower layer functions.  

 

 

Figure 6.3 Series of obstacle avoidance algorithm empirical results for 

(a) 1, (b) 2, (c) 3, (d) 4, higher layer functions 

 

Figure 6.3(a) shows robot detects the obstacle at 0.5m from it when 

implementing one higher layer function, gives accuracy of 83.33% using Equ 6.1. 

When implementing two higher layer functions (Figure 6.3(b)), obstacle detection 

occurs at 0.4m with accuracy of 66.67%. Besides, the robot collides with obstacle 

when implementing more than two higher layer functions as shown in Figure 6.3(c) 

and Figure 6.3(d).  
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Graph 6.2 Obstacle avoidance empirical results for higher layer functions 

 

Graph 6.2 illustrates that the execution of one higher layer function is acceptable 

for fast obstacle avoidance, which provides accuracy of 83.33%. In other words, 

execution of more than two asynchronous higher layer functions will significantly 

affect the performance of the obstacle avoidance system. 

 

6.1.4 Discussion 

 

A fast or real time obstacle avoidance system is able to detect and avoid the 

obstacle instantly. Conversely, a slow response obstacle avoidance system may not 

able to detect and avoid the obstacle which it should be. In the worst case, a high 

time delay due to asynchronous, complex and time-consuming process will cause the 

obstacle avoidance system lost its function, lead to collision and robot damage. To 

combat this problem, synchronous processes should be used.  

 

6.2 A* Search Algorithm for Path Finding 

 

 There are four important criteria [31, 45, 50] for the search algorithm: 

1. Completeness – ability of finding solution if one exists 

2. Optimality – ability of finding the best solution from a set of possible solutions 
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3. Time complexity – defines how fast the algorithm perform a search 

4. Space complexity – defines how much memory the algorithm requires to perform     

a search 

 

6.2.1 Evaluation of A* search algorithm 

 

 The A* search algorithm is evaluated based on the four criteria for various 

terrain. Three heuristic estimation methods are evaluated as well for comparison, 

they are Manhattan Method, Diagonal Shortcut Method and Euclidean Distance 

Method. 

 

 For Figure 6.4 until Figure 6.11 (all maps are 160x160 cells in size), the 

following representation is used: 

 

    source cell/node,  destination cell/node 

    unexplored free space cell,  obstacle 

   explored cell (saved in open list) 

 explored cell (saved in closed list) 

    path evaluated by A* search algorithm 

 

 

Figure 6.4 A* search algorithm evaluation from node (10,10) to (10,150) using  

(a)Manhattan Method, (b)Diagonal Shortcut Method, (c)Euclidean Distance Method 
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Figure 6.5 A* search algorithm evaluation from node (10,10) to (150,150) using  

(a)Manhattan Method, (b)Diagonal Shortcut Method, (c)Euclidean Distance Method 

 

 

Figure 6.6 A* search algorithm evaluation from node (10,10) to (80,150) using  

(a)Manhattan Method, (b)Diagonal Shortcut Method, (c)Euclidean Distance Method 

 

 

Figure 6.7 A* search algorithm evaluation from node (80,10) to (80,150) using  

(a)Manhattan Method, (b)Diagonal Shortcut Method, (c)Euclidean Distance Method 
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Figure 6.8 A* search algorithm evaluation from node (10,10) to (10,153) using  

(a)Manhattan Method, (b)Diagonal Shortcut Method, (c)Euclidean Distance Method 

 

 

Figure 6.9 A* search algorithm evaluation from node (10,10) to (10,90) using  

(a)Manhattan Method, (b)Diagonal Shortcut Method, (c)Euclidean Distance Method 

 

 
Figure 6.10 A* search algorithm evaluation from node (80,70) to (10,90) using  

(a)Manhattan Method, (b)Diagonal Shortcut Method, (c)Euclidean Distance Method 
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Figure 6.11 A* search algorithm evaluation from node (10,10) to (70,90) using  

(a)Manhattan Method, (b)Diagonal Shortcut Method, (c)Euclidean Distance Method 

 

All the figures above show that the A* algorithm is able to find a solution/path if 

one exists. All measurements are records in Table 6.1 for comparison. 

 

Optimal Space (memory) 

  

Figure 

Complete 

if one 

exists? 

No. 

of 

cells 

Length 

No. of 

turning 

points 

Time 

taken 

Space 

in 

close 

list 

Space 

in 

open 

list 

Total 

space 

(a) Yes 471 626.2 14 33 10876 307 11183 

(b) Yes 471 626.2 24 38 12439 264 12703 6.4 

(c) Yes 471 626.2 32 40 12709 261 12970 

(a) Yes 236 312.8 8 2 237 404 641 

(b) Yes 222 287.6 20 11 5785 246 6031 6.5 

(c) Yes 222 287.6 24 16 7948 254 8202 

(a) Yes 185 249 6 6 3771 488 4259 

(b) Yes 185 249 8 8 4613 254 4867 6.6 

(c) Yes 185 249 19 9 5339 260 5599 

(a) Yes 210 278 10 16 5874 269 6143 

(b) Yes 210 278 11 26 9135 488 9623 6.7 

(c) Yes 210 278 23 25 10224 419 10643 

(a) Yes 1146 1586.4 30 14 6761 299 7060 

(b) Yes 1146 1586.4 37 15 7083 171 7254 6.8 

(c) Yes 1146 1586.4 38 16 7134 172 7306 

(a) Yes 411 554.2 12 23 8696 269 8965 

(b) Yes 411 554.2 22 28 10567 226 10793 6.9 

(c) Yes 411 554.2 30 27 10863 147 11010 
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(a) Yes 376 507.2 13 23 8697 269 8966 

(b) Yes 376 507.2 23 28 10568 226 10794 6.10 

(c) Yes 376 507.2 31 28 10864 147 11011 

(a) Yes 1134  1578.8 30 33 10698 67 10765 

(b) Yes 1134  1578.8 31 33 10787 61 10848 6.11 

(c) Yes 1134  1578.8 38 36 10794 63 10857 

Table 6.1 A* search algorithm evaluation for various terrain using  

(a)Manhattan Method, (b)Diagonal Shortcut Method, (c)Euclidean Distance Method 

 

From Table 6.1, all of the three heuristic methods generally assess same number 

of cells/nodes for path generated with same length, this mean the paths searched are 

the best and optimal.  

 

 In considering of time complexity, searching using A* can be very time 

consuming if lots of obstacles exist between source and destination (such as Figure 

6.7 and Figure 6.10) or estimated H is inadmissible (such as Figure 6.4, Figure 6.8, 

Figure 6.9, Figure 6.10, Figure 6.11). Otherwise, A* algorithm can operate well with 

reasonable time consumed.  

 

When considering space complexity, since all cells/nodes expanded must be 

saved in memory, a large amount of memory is required for existence of either many 

obstacles or inadmissible H estimated, these are proved in Figure 6.4, Figure 6.9, 

Figure 6.10, and Figure 6.11. 

 

Again refer to Table 6.1, among the three heuristic methods, Manhattan Method 

has predominance which always provides the least number of turning points. 

Furthermore, compared to others, Manhattan Method always consumes the least time 

and space complexity (refer Graph 6.3 and Graph 6.4), and provides faster path 

finding.  

 

However, Manhattan Method may not give shortest or optimal path, for an 
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instance in Figure 6.5, A* using Manhattan Method evaluate path with 312.8 in 

length, which is longer than that of both Diagonal Shortcut and Euclidean Distance 

Methods (287.6 in length). 

 

Time complexity for three heuristic methods
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Graph 6.3 Time complexity for Manhattan, Diagonal Shortcut  

and Euclidean Distance Methods 

 

Space complexity for three heuristic methods
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Graph 6.4 Space complexity for Manhattan, Diagonal Shortcut  

and Euclidean Distance Methods 
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Figure 6.12 A* algorithm evaluation from (10,10) to unreachable node (40,35) using  

(a)Manhattan Method, (b)Diagonal Shortcut Method, (c)Euclidean Distance Method 

 

Optimal Space (memory) 

Figure 

Complete 

if one 

exists? 

No. 

of 

cells 

Length 

No. of 

turning 

points 

Time 

taken 

Space 

in 

close 

list 

Space 

in 

open 

list 

Total 

space 

(a) - - - - 75 14764 0 14764 

(b) - - - - 69 14764 0 14764 6.12 

(c) - - - - 83 14764 0 14764 

Table 6.2 A* search algorithm evaluation for unreachable goal using  

(a)Manhattan Method, (b)Diagonal Shortcut Method, (c)Euclidean Distance Method 

 

The A* algorithm faces problem of exponentially time and space complexity 

increasing. Seaching for an unreachable goal (Figure 6.12) exacerbates the problem, 

this is due to the searching only stop when the open list is empty (Table 6.2). In other 

words, all possible nodes are expanded. If a huge map is used, then time complexity 

will increase dramatically or even to infinity due to unlimited space complexity. 

 

6.2.2 Discussion 

 

In general, the A* search algorithm provides complete and optimal solution. It is 

well for existance of less obstacles between source to destination. The closer 

estimated H is to the actual remaining distance along the path to the goal, the faster 
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A* will find the goal. If there is lots of obstables between two points that make H 

inadmissible, then A* will face dificulty or even failure in finding the path to goal. 

Besides, the time and space complexity are vary within range [0,∞] depending on 

terrain and size of terrain.   

 

Manhattan Method has predominance over both Diagonal Shortcut and 

Euclidean Distance Methods due to its advantages of lower time and space 

complexity, even the path found may not be optimal. 

 

6.3 Modified DFS Algorithm for Path Exploration 

 

6.3.1 Evaluation of Modified DFS algorithm 

 

 

Figure 6.13 Modified DFS algorithm evaluation (a) original map (b) map model 

 

 Figure 6.13 illustrates how the Modified DFS algorithm operates for path 

exploration and navigation. Figure 6.13(a) shows an ideal map environment, and 

Figure 6.13(b) shows the exploration process and how the exploration is carried out 

by the robot from point A to point V.  

 

Note that, by implementing the Modified DFS algorithm, the revisiting problem 

that is inherent in the original DFS has effectively been solved. In the example 

illustrated, during path exploration, points I and O are dynamically deleted and thus 
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will not be visited.  

  

 

Figure 6.14 Steps of path exploration and navigation using modified DFS algorithm 

 

Existing unvisited points 

Step 

Robot 

located 

at 

Unvisited 

points 

detected 

Points 

detected 
Corresponding 

action 

Any 

unvisited 

points in 

list? 

Action/ 

Navigation 

1 A(10,10) 
B(46,14) 

C(21,43) 
- - Yes Moves to B 

2 B D(82,14) - - Yes Moves to D 

3 D E(118,14) - - Yes Moves to E 

4 E F(137,14) - - Yes Moves to F 

5 F - - - Yes Moves to C 

6 C G(31,58) - - Yes Moves to G 

7 G 
H(65,59) 

I(21,89) 
- - Yes Moves to H 

8 H J(99,58) - - Yes Moves to J 

9 J K(123,56) - - Yes Moves to K 

10 K L(139,77) - - Yes Moves to L 

11 L M(139,99) - - Yes Moves to M 
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12 M 
N(139,132) 

O(102,105) 
- - Yes Moves to N 

13 N P(105,145) - - Yes Moves to P 

14 P Q(68,144) - - Yes Moves to Q 

15 Q R(36,144) - - Yes Moves to R 

16 R S(20,124) - - Yes Moves to S 

17 S T(20,104) I Erase I Yes Moves to T 

18 T U(57,104) - - Yes Moves to U 

19 U V(93,103) - - Yes Moves to V 

20 V - O Erase O No Stop (complete) 

Table 6.3 Steps of path exploration and navigation using modified DFS algorithm 

 

 Figure 6.14 and Table 6.3 illustrate the step of path exploration and navigation in 

detail using the modified DFS algorithm. A list structure is used to store points. 

Starting at point A(10,10), the robot scans and finds out unvisited points B and C. 

Points C and B are then pushed into the list, and using LIFO (Last-In First-Out) the 

robot chooses to navigate to point B.  

 

Once point B has been reached (at step 2), the algorithm marks B as “visited”, it 

then scans, identifies unvisited point D, pushes D into the list and chooses to 

navigate to D, and so on and so forth.  

 

 At step 5, since the does not scan or “see” any unvisited point, it assumes there is 

a dead-end. Hence, the robot will reverse to unvisited point C. Once point C has been 

reached (at step 6), the processes of scanning, identifying unvisited points, 

navigating to goal determined are repeated until step 20. At step 20, since the list 

possesses no unvisited point, the map model of environment is inferred completely 

built, the client program is terminated and the robot is stop. 

 

Note that, at step 17, the existing unvisited point I in the list is detected within 

the current range of the laser scanner, thus point I is assumed visited and is erased 

from the list to avoid the revisiting problem. Point O is re-scanned and erased at step 

20 as well, again to avoid revisiting.  
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6.3.2 Discussion  

 

Overall, the Modified DFS algorithm works well. The simulated robot is able to 

explore an unknown environment without retracing its steps, and thus avoiding the 

problem of ending up in a permanent loop.  

 

However, for certain terrain, the robot may not be 

able to detect the navigable points. For an instance, refer 

to Figure 6.15. Figure 6.15(a) shows the simulated robot, 

which is located at A. It scans unvisited point B. In 

Figure 6.15(b), point B is reached, the robot scans and finds out a navigable point C. 

But point C has been visited at a previous step, the robot thus infers C should be 

ignored. As a result, no new unvisited points will be added to the list, indicating a 

dead-end is met. The robot will not proceed forward, but instead reverses. 

 

6.4 Quality of Map Model Using Laser Scanner 

 

6.4.1 Evaluation of map model quality 

 

 

Figure 6.16 Grid-based map building algorithm  

(a) original map, (b) map model built (1
st
 test), (c) map model built(2

nd
 test) 

Figure 6.15 Problem 

of Modified DFS 
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Figure 6.17 Grid-based map building algorithm  

(a) original map, (b) map model built (1
st
 test), (c) map model built(2

nd
 test) 

 

 

Figure 6.18 Grid-based map building algorithm  

(a) original map, (b) map model built (1
st
 test), (c) map model built(2

nd
 test) 

 

Map Model 
Cross 

Correlation 
Map Score 

Map Score 

with 

Occupied 

Cells 

(b) 1st testing 68.58% 4.35% 26.47% 
Figure 6.16 

(c) 2nd testing 68.48% 4.36% 26.53% 

(b) 1st testing 66.75% 3.74% 31.57% 
Figure 6.17 

(c) 2nd testing 69.57% 3.42% 28.81% 

(b) 1st testing 63.09% 4.50% 40.64% 
Figure 6.18 

(c) 2nd testing 65.09% 4.29% 38.71% 

Table 6.4 Quality of map model evaluated using  

Cross Correlation, Map Score and Map Score with Occupied Cells Methods 
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 From Figure 6.16 to Figure 6.18, and as shown in Table 6.4, the Cross 

Correlation benchmark (template matching) shows a reasonable high degree of 

similarity of ideal map. Besides, the Map Score (cell by cell comparison) 

demonstrates a considerably low error indicating that the maps have been constructed 

fairly accurately.  

 

However, Map Score benchmark overestimates the empty regions of space, 

missing an obstacle only increases the score value slightly. An alternative criterion – 

Map Score with Occupied Cells Method is used to compare just the occupied cells. 

Thus, missing an obstacle will increase the score value significantly. Table 6.4 shows 

all maps model produce over 25% of score value, indicating relatively high error 

percentages.  

 

6.4.2 Discussion 

 

Since laser scanner is assumed ideal during simulation, all of the score values are 

dependent on how good is a map building algorithm. The map building algorithm 

used is simply an occupancy grid mapping, results relatively high error percentages 

of Map Score with Occupied Cells. 

 

In reality, severe noise and inherent imperfections in the sensor may cause 

further deterioration in the simulated map quality, and will lead to a lower percentage 

of Cross Correlation score and higher percentages in the Map Score benchmark and 

Map Score with Occupied Cells. 

 

 In order to alleviate this problem, the occupancy grid mapping algorithm should 

be coupled with a probabilistic approach, such as Bayesian Theorem.
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Chapter 7  

Conclusion and Further Work 

 

 

7.1 Conclusion 

 

 The SPA control approach that has been implemented is a reactive model. It 

eases the construction of online and incremental algorithms for map building. All 

tests made have investigated the related algorithms implemented, regardless of time 

delay, noise measurement, dynamic environment. 

 

 In an ideal case, starting from a known location, laser-guided exploration enable 

robot to explore unknown environment without revisiting same place using Modified 

DFS algorithm.  

 

Priot to robot naviagtion, the optimal and effective path is always found using 

the A* algorithm with Manhattan Method (Diagonal Shortcut Method and Euclidean 

Distance Method are discussed and compared as well).  

 

Using laser data acquired, the map environment of various warehouse terrains 

can be built successfully using occupancy grid mapping technique. The map models 

are created through PNGwriter Library. 
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For the sake of safety, obstacle avoidance algorithm is put into operation. Again 

ignoring time delay, obstacle can be detected instantly once the obstacle is located 

within specific range of laser scanner, and appropriate action is executed to avoid 

collision.   

 

However, in reality, time delay and noise measurement must be taken into 

account during designing and programming. The planning layer of SPA architecture 

is where map building and path planning take place. These processes are usually 

computationally complex and time consuming. Apart from that, these processes 

operate asynchronously exacerbate the problem of time delay.  

 

As a consequence, the plan built from map model may turn out to be 

inadequate to the environment actually encountered. Besides, the existence of sensor 

reading noise and pose error influences the inferring of map structure. Thus, 

alternative algorithms or improvements must be implemented. 

 

7.2 Further Work 

 

7.2.1 Sensor deployment 

 

The accuracy of the occupancy grid mapping and related algorithm is dependent 

on the noisy or incomplete sensor data acquired. Even if the robot poses are known, 

it is difficult to infer that the environment is exactly occupied or emptied, due to 

ambiguities in the sensor data reading.  

 

Hence, a better simulated map quality requires combination of various range 

sensors [48, 90, 98], such as sonar sensors, laser range finders, and camera. This 

comes up with integration of sonar, laser and stereo range data by combining their 

strengths and nullifying their drawbacks, eventually increases the reliability of map 
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acquisition.  

 

In addition, sensor fusion is required for data integration. Various methods have 

been subjected, such as Kalman filtering [115], Bayesian reasoning [112], artificial 

networks [109] and fuzzy logic [113]. 

 

7.2.2 Self-localisation technique 

 

The robot’s accumulated pose error might be unboundedly large, ultimately 

render a large error-prone map. This is compensated with self-localization techniques, 

such as dead reckoning [19, 43], Monte-Carlo Localization [46], or landmark based 

matching algorithm. 

 

7.2.3 Map building algorithm 

 

In this paper, occupancy grid map paradigm applied only consists of three values 

0, 0.5, and 1 indicating cell emptied, unknown, and occupied respectively for ease of 

construction. However, again environment inferring may not be reliable due to 

ambiguous data acquired. To alleviate this problem, occupancy grid mapping 

coupled with a probabilistic approach (Bayesian Theorem [21, 47, 101]) is 

suggested.  

 

7.2.4 Simultaneous Localization and Mapping (SLAM) 

 

During mapping, vehicle and map estimates are highly correlated. By using the 

SLAM algorithm [20, 53, 54, 84, 104, 108], the vehicle can start in an unknown 

location in an unknown environment and proceed to incrementally build a navigation 

map of the environment while simultaneously use this map to update its location. 

Extended Kalman Filter (EKF) SLAM and FastSLAM [50] are two examples of 

SLAM algorithms. 
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7.2.5 Path finding algorithm 

 

 The A* search algorithm for path finding must reconstruct a new path when the 

state of the environment changes, gives rise to time consuming and inefficiency. D* 

search algorithm [63, 64, 65] is an alternative technique to cope with dynamic 

environment.  

 

7.2.6 Distributed map building using multirobot system 

 

Future exploration missions will use cooperative robots [88, 89, 90, 91, 101, 120] 

to explore and sample terrain, especially for the mission subjected to time critical, 

such as search and rescue job.  

 

To proceed to distributed map building using multi-robot system, some problems 

needed to be considered, such as robot’s capability of distinguishing obstacle and 

different robot, the way the robots exchange data, requirement of contingency and 

reactive model.  

 

In the Player/Stage simulator, the use of fiducial interface provides access to 

devices that detect coded fiducials (markers) placed in the environment, enables 

robot to differentiate obstacle, unique robot and even natural landmarks. Besides, the 

use of opaque interface allows relay driver to repeat all commands it receives as data 

packets to all subscribed clients, thus enabling data exchange between robots.  

 

When a robot detects another robot (via fiducial interface) during execution, it 

will then react to the new information by developing a new plan for data exchange 

(via relay driver) instead of navigation. Map model will be updated according to the 

data received, eventually generates fast map building. The new information is also   

used for avoiding revisiting problem, in other words, the corresponding robot will 

not re-visit the place another robot has visited.
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Appendix A: .world configuration file 

 

# Description: 1 pioneer robot with laser  

 

include "pioneer.inc" 

include "map.inc" 

include "sick.inc" 

size [16 16] 

 

# set the resolution of the underlying ray trace model in meters 

resolution 0.02 

 

# update the screen every 10ms (we need fast update for the stest demo) 

gui_interval 20 

 

# configure the GUI window 

window 

(  

   size [ 640.000 640.000 ]   

   center [0.000 0.000]     

 scale 0.028  

) 

 

# load an environment bitmap 

map 

(  

  bitmap "bitmaps/example1.png" 

  size [16 16] 

  name "example1" 

) 

 

# create a robot 

pioneer2dx 

( 

  name "robot1" 

  color "red" 

  pose [-7 -7 45] 

  sick_laser( samples 361 laser_sample_skip 4 ) 

) 
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Appendix B: .cfg configuration file 

 

# Description: Player sample configuration file for controlling Stage devices 

 

# load the Stage plugin simulation driver 

driver 

(   

   name "stage" 

   provides ["simulation:0" ] 

   plugin "libstageplugin" 

 

   # load the named file into the simulator 

   worldfile "example1.world"  

) 

 

driver 

( 

   name "stage" 

   provides ["map:0"] 

   model "example1" 

) 

 

# Create a Stage driver and attach position2d and laser interfaces to the model "robot1" 

driver 

(  

   name "stage" 

   provides ["position2d:0" "laser:0" ] 

   model "robot1"  

) 
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Appendix C: .cc executable file 

 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

/// Description: A C++ client program for a laser-guided robot,  

///          the mobile robot possesses capability of building an unknown warehouse map with autonomous 

///          navigation system, the starting location of the robot is known 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

 

#include <iostream> 

#include <math.h> 

#include <pngwriter.h> 

#include <fstream> 

//#include <conio.h> 

#include <vector> 

#include <list>   

#include <algorithm>  

#include <iterator> 

#include <string> 

using namespace std; 

#include <libplayerc++/playerc++.h> 

using namespace PlayerCc; 

#include "args.h" 

 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

/// functions declaration 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

void scan(LaserProxy* LP , Position2dProxy& P2P , PlayerClient & ROBOT); 

void mapbuilding(LaserProxy* LP , Position2dProxy& P2P , PlayerClient & ROBOT, pngwriter* PW); 

void eraseOverlap (LaserProxy* LP , Position2dProxy& P2P); 

bool finishMapping ( ); 

bool pathPlanning ( int DepX , int DepY, int DestX , int DestY ); 

int findG ( int g , int arrow); 

int findH ( int depX , int depY, int destX , int destY ); 

int findF ( int g , int h); 

int lowestFloc( vector < vector <int> > *vec); 

bool extendSize( vector< vector <int> > *vec, int size ); 

int checkLocAvailable(vector< vector <int> > *vec , int size); 

void findDepXY ( int arrow , int parentX , int parentY , int &DepX , int &DepY ); 

bool notInCL ( vector< vector <int> > *vec , int x , int y);  
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int inOLloc ( vector< vector <int> > *vec , int x , int y); 

bool isObstacle ( int x , int y , int arrow ); 

void insertRow( vector< vector <int> > *vec , int loc , int x, int y, int arrow , int g , int h , int f); 

void clearRow(  vector< vector <int> > *vec , int loc ); 

void pathDecision ( vector< vector <int> > *vec , bool found); 

void moveRobot(LaserProxy* LP , Position2dProxy& P2P , PlayerClient & ROBOT); 

 

template<typename T> 

inline T approximate(T a); 

 

template<typename T> 

inline T sq ( T a); 

 

template < typename T >  

void printList( const list< T > &listRef ); 

 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

/// global variables declaration 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

#define PI 3.1415927 

struct mapData 

{ 

int gridNum; 

    int gridX; 

    int gridY; 

    double value; 

}; 

 

vector< vector<double> > matrixVal(161, vector<double>(161,0.5)); 

vector< vector<int> > navigablePath ( 1, vector<int>(2,0));  

list <int> XX; 

list <int> YY; 

list <int> sampleNo; 

list <int> planX; 

list <int> planY; 

list <int> visited;  // 0 = not visited, >0 = visited 

list <int>::iterator listIteratorX; 

list <int>::iterator listIteratorY; 

list <int>::iterator listIteratorV; 

double opacity = 1.0;  //0.0 to 1.0 

double minfrontdistance = 0.5; 

double speed = 0.200; 
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double offsetX =10, offsetY=10 ; 

double offsetAngle = 45.0/180.0*PI;     

double maxLaser = 4.0; 

double turn180; 

int mapDestX, mapDestY, mapDepX, mapDepY, oriDepX, oriDepY; 

bool forward = true; 

int state=0; 

int gocount = 0; 

double newturnrate=0.0f, newspeed=0.0f; 

 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

/// main program 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

int main(int argc, char** argv) 

{ 

   parse_args(argc,argv); 

   LaserProxy *lp = NULL; 

   FiducialProxy *fp = NULL; 

   pngwriter *image = NULL; 

 

   try 

   { 

      PlayerClient robot(gHostname, gPort); 

      Position2dProxy pp(&robot, gIndex); 

      lp = new LaserProxy (&robot, gIndex); 

      fp = new FiducialProxy (&robot, gIndex); 

  image = new pngwriter(160,160,0.5,"out.png");  ///grey as background colour  

image->close(); 

 

    int input; 

    int randint; 

    int randcount = 0; 

    int avoidcount = 0; 

    bool obs = false; 

    double minleft, minright; 

  int unused = 0;  

  bool startPathPlanning= true; 

  bool incompletePath = false; 

  int incompCount = 0; 

     

  planX.push_back( (int) offsetX *10); 

  planY.push_back( (int) offsetY *10); 



 
Appendices 

 

Created by CHUI CHING YEE                                                              99                                                                                           

  visited.push_back(1); 

    

 

 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

  /// SPA control algorithm  

 

 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

do 

      { 

   pp.SetMotorEnable (true); 

   robot.Read(); 

    

  

 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

   /// obstacle detection 

  

 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

obs = false; 

   for (uint i = 143; i < 219; i++)  

          { 

            if((*lp)[i] < minfrontdistance) 

             obs = true; 

          } 

 

  

 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

/// an obstacle detected, obstacle avoidance is implemented     

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

////// 

   if(obs || avoidcount || pp.GetStall ()) 

        { 

           if(obs ) 

           { 

     randcount = 0; 

     gocount = 0; 

     minright = (*lp)[131]; 

     minleft = (*lp)[231]; 

 

     for ( uint j = 132 ; j < 181 ; j++) 

     { 

      if ( minright > (*lp)[j] ) 

       minright = (*lp)[j]; 

     } 

         



 
Appendices 

 

Created by CHUI CHING YEE                                                              100                                                                                           

     for (uint k = 230 ; k >179 ; k--) 

     { 

      if (minleft > (*lp)[k]) 

       minleft = (*lp)[k]; 

     } 

 

     if (minleft <= minright ) 

      newturnrate = -0.5;      

     else if ( minleft > minright) 

      newturnrate = 0.5; 

     newspeed = 0.0; 

     avoidcount = 50; 

       } 

           

    else if (avoidcount) 

    { 

     newturnrate = 0.0; 

     newspeed = 0.2; 

            avoidcount--; 

    } 

    pp.SetSpeed(newspeed, newturnrate); 

        } 

         

  

 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

/// no obstacle detected, path exploration or navigation is implemented     

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

////// 

   else   

   { 

           avoidcount = 0; 

     

   

 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

    /// scans unvisited navigable points 

   

 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

    if (state == 0)     

    { 

     eraseOverlap (lp,pp); 

     scan (lp,pp,robot); 

     eraseOverlap (lp,pp); 

     mapbuilding(lp,pp,robot,image); 
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     if (visited.back() == 0) 

     { 

      state =1; 

      forward = true; 

     } 

 

     else 

     { 

      state =3; 

      forward = false; 

     } 

  

     oriDepX = mapDepX = mapDestX; 

     oriDepY = mapDepY = mapDestY;        

     pp.SetSpeed(0.0,0.0);         

    } 

     

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

/////// 

/// plan to go which point           

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

/////// 

    else if (state == 1)     

    { 

     if ( !planX.empty() && !planY.empty() && !finishMapping() ) 

     { 

      mapDestX = planX.back(); 

      mapDestY = planY.back(); 

              

if ( mapDestX < 6 || mapDestX >154 || mapDestY < 6 || mapDestY >154 ) 

      { 

       if (  mapDestX < 6 ) 

        mapDestX = 6; 

       else if (  mapDestX > 154 ) 

        mapDestX = 154; 

 

       if (  mapDestY < 6 ) 

        mapDestX = 6; 

       else if (  mapDestX > 154 ) 

        mapDestX = 154; 

      } 

          

      if ( (matrixVal [mapDestX][mapDestY] <0.5) ) 

       state = 2; 
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      else 

       state = 3; 

       

      pp.SetSpeed(0.0,0.0);   

     } 

     else  

      state = 4;  /// map building completed 

    } 

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

/////// 

/// path finding, robot navigates to the goal        

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

/////// 

    else if (state ==2)     

    { 

     /// path finding 

     if ( startPathPlanning == true) 

     {  

      if ( (mapDepX != mapDestX) || (mapDepY != mapDestY) ) 

      { 

       /// shortest and safest path is found  

   if ( pathPlanning ( mapDepX , mapDepY , mapDestX , mapDestY) ) 

        startPathPlanning = false; 

 

       /// fail to find path 

       else  

        state = 3; 

      } 

      navigablePath.resize(navigablePath.size()-1); 

      mapDestX = navigablePath[navigablePath.size()-1][0]; 

      mapDestY = navigablePath[navigablePath.size()-1][1]; 

     } 

      

     /// navigate to the goal 

     else  

     { 

      moveRobot(lp, pp,robot); 

 

      if ( (navigablePath.size()==0) ) 

      {  

       startPathPlanning = true;  

       incompCount = 0;       

       if (visited.back() == 0 ) 

       { 



 
Appendices 

 

Created by CHUI CHING YEE                                                              103                                                                                           

        visited.pop_back(); 

        visited.push_back(1); 

        state = 0;  

       } 

 

       else 

       { 

        state = 3; 

        mapDepX = mapDestX; 

        mapDepY = mapDestY; 

       } 

      } 

}     

    } 

 

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

/////// 

/// reverse, remove the point located at the end of the list      

  

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

/////// 

    else if (state == 3)   

    { 

     planX.pop_back(); 

     planY.pop_back(); 

     visited.pop_back(); 

     state = 1;  

     pp.SetSpeed(0.0,0.0); 

      

if (visited.back() == 0) 

      forward = true; 

     else 

      forward = false; 

    }  

        } 

  } while (state !=4); 

 } 

 

   catch (PlayerCc::PlayerError e) 

   { 

     std::cerr << e << std::endl; 

     return -1; 

   } 

} 
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///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

/// scans 360o and finds out unvisited navigable points        

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

void scan(LaserProxy* LP , Position2dProxy& P2P, PlayerClient & ROBOT) 

{ 

int X1,X2,Y1,Y2,S1,S2,midX,midY; 

 int obsX , obsY ; 

 int preX, preY; 

 int proX, proY; 

double x = P2P.GetXPos()*cos(offsetAngle)+ P2P.GetYPos()*cos(PI/2.0 + offsetAngle);    

double y = P2P.GetXPos()*sin(offsetAngle) + P2P.GetYPos()*sin(PI/2.0 + offsetAngle);    

 double angle = P2P.GetYaw() + offsetAngle;     

 double angle2; 

 bool occupied = false; 

 bool findMid = false; 

 bool unoccupiedAngle0 = false; 

 bool unoccupiedAngle360 = false; 

  

 XX.clear(); 

 YY.clear(); 

 sampleNo.clear(); 

 

 for (int b = 0; b < 2 ; b++) 

 { 

  for (uint a = 0; a < 361; a++) //0.5 degree resolution 

  { 

   angle2 = angle + ((a/2.0-90.0)*PI/180.0); 

   if (a < 360) 

   { 

    proX = limit ( (int) approximate (((*LP)[a+1]*cos(angle2) + x + offsetX)*10.0) , 0 , 160); 

    proY = limit ( (int) approximate (((*LP)[a+1]*sin(angle2) + y + offsetY)*10.0) , 0 , 160);

  

   } 

 

   if (a==0)   

   { 

    obsX = limit ( (int) approximate (((*LP)[a]*cos(angle2) + x + offsetX)*10.0) , 0 , 160); 

    obsY = limit ( (int) approximate (((*LP)[a]*sin(angle2) + y + offsetY)*10.0) , 0 , 160);  

  

    if ((*LP)[a] == maxLaser && b == 0 ) 

    { 
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     occupied = false; 

     unoccupiedAngle0 = true; 

    } 

 

    else if ((*LP)[a] == maxLaser && b == 1 && unoccupiedAngle360) 

     occupied = false; 

 

    else if ((*LP)[a] == maxLaser && b == 1 && !unoccupiedAngle360) 

    { 

     occupied = false; 

     XX.push_front(obsX); 

     YY.push_front(obsY); 

     sampleNo.push_front(a); 

    } 

  

    else 

     occupied = true; 

   } 

 

   else if (a== 360) 

   { 

    if ((*LP)[a] == maxLaser && b == 0 && !occupied ) 

     unoccupiedAngle360 = true; 

 

    else if ((*LP)[a] == maxLaser && b == 0 && occupied ) 

    { 

     unoccupiedAngle360 = true; 

     occupied = false; 

     XX.push_front(obsX); 

     YY.push_front(obsY); 

     sampleNo.push_front(a); 

    } 

 

    else if ((*LP)[a] == maxLaser && b == 1 && unoccupiedAngle0  

&& !occupied) 

    { 

     XX.push_back(XX.front()); 

     YY.push_back(YY.front()); 

     sampleNo.push_back(sampleNo.front()); 

     XX.pop_front(); 

     YY.pop_front(); 

     sampleNo.pop_front(); 

    } 
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    else if ((*LP)[a] == maxLaser && b == 1 && !unoccupiedAngle0  

&& !occupied) 

    { 

     XX.push_front(obsX); 

     YY.push_front(obsY); 

     sampleNo.push_front(a); 

    } 

    

    else if ((*LP)[a] == maxLaser && b == 1 && unoccupiedAngle0 &&  

occupied) 

    { 

     XX.push_back(obsX); 

     YY.push_back(obsY); 

     sampleNo.push_back(a); 

    } 

 

    else 

     occupied = true; 

   } 

 

   else if (!occupied) 

   { 

    if ( sqrt ( sq(obsX-proX) + sq(obsY-proY) ) < 2.0 && (*LP)[a]<maxLaser ) 

    { 

     occupied = true; 

     XX.push_front(obsX); 

     YY.push_front(obsY); 

     sampleNo.push_front(a); 

    }       

   }       

 

   else   

   { 

    if (  (*LP)[a] == maxLaser   ) 

    { 

     occupied = false; 

     XX.push_front(preX); 

     YY.push_front(preY); 

     sampleNo.push_front(a); 

    } 

   }  

 

   preX = obsX; 

   preY = obsY; 
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   obsX = proX; 

   obsY = proY; 

  } 

 

  if (b == 0) 

  { 

   /// turn 180 degree 

   if (P2P.GetYaw() ==0) 

   {  

    turn180 = PI; 

 

    while ( (abs (P2P.GetYaw()- turn180)>0.005) && (abs (P2P.GetYaw() + turn180) 

>0.005) )  

    { 

     P2P.GoTo (x, y, turn180); 

     P2P.SetMotorEnable (true); 

     ROBOT.Read(); 

    } 

   } 

 

   else  

   {  

    if ( P2P.GetYaw() > 0 ) 

     turn180 = P2P.GetYaw() - PI; 

 

    else  

     turn180 = P2P.GetYaw() + PI; 

 

    while ( abs(P2P.GetYaw() - turn180) >0.005)  

    { 

     P2P.GoTo ( (x*cos(offsetAngle)) + (y*sin(offsetAngle)) ,  (y*cos(offsetAngle)) –  

(x*sin(offsetAngle)), turn180); 

      

P2P.SetMotorEnable (true); 

     ROBOT.Read(); 

    } 

   } 

 

   P2P.SetSpeed(0.0, 0.0); 

   P2P.SetMotorEnable (true); 

   ROBOT.Read(); 

 

   x = P2P.GetXPos()*cos(offsetAngle) + P2P.GetYPos()*cos(PI/2.0 + offsetAngle);   

   y = P2P.GetXPos()*sin(offsetAngle) + P2P.GetYPos()*sin(PI/2.0 + offsetAngle);   
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   angle = P2P.GetYaw() + offsetAngle; 

  } 

 } 

  

 if (  !XX.empty() && !YY.empty() ) 

 { 

  if ( XX.size() % 2 == 1) 

  { 

   XX.pop_front(); 

   YY.pop_front(); 

   sampleNo.pop_front(); 

   cout << "size recorrect" <<endl; 

  } 

 

  while ( !XX.empty() && !YY.empty() ) 

  { 

   if ( !findMid ) 

   { 

    X1 = XX.front(); 

    XX.pop_front(); 

    Y1 = YY.front(); 

    YY.pop_front(); 

    S1 = sampleNo.front(); 

    sampleNo.pop_front(); 

    findMid = true; 

   } 

         

   else 

   { 

    X2 = XX.front(); 

    XX.pop_front(); 

    Y2 = YY.front(); 

    YY.pop_front(); 

    S2 = sampleNo.front(); 

    sampleNo.pop_front(); 

    findMid = false; 

          

    if ( sqrt (sq(X1-X2)+sq(Y1-Y2)) > 10.0 && abs (S2-S1) > 2) 

    { 

     midX = (int)(X1+X2)/2; 

     midY = (int)(Y1+Y2)/2; 

 

     if ( matrixVal [midX][midY] == 0.5) 

     { 
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      planX.push_back(midX); 

      planY.push_back(midY); 

      visited.push_back(0); 

     } 

    } 

   }   

  } 

 } 

} 

 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

/// map building, map model created in .png file usinf PNGwriter       

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

void mapbuilding (LaserProxy* LP , Position2dProxy& P2P , PlayerClient & ROBOT, pngwriter* PW) 

{ 

int obsX , obsY ; 

 int preX,preY; 

 int proX, proY; 

 int obsXX , obsYY; 

 double val; 

 int count = LP->GetCount(); //count = 361 

 double x = P2P.GetXPos()*cos(offsetAngle) + P2P.GetYPos()*cos(PI/2.0 + offsetAngle);   

 double y = P2P.GetXPos()*sin(offsetAngle) + P2P.GetYPos()*sin(PI/2.0 + offsetAngle);   

 double angle = P2P.GetYaw() + offsetAngle;     

 double angle2; 

 bool occupied = false; 

 

 obsX = (int) approximate((x+offsetX)*10.0); 

 obsY = (int) approximate((y+offsetY)*10.0); 

 val = 0.0; 

 PW->plot_blend ( obsX, obsY,opacity, (1.0-val)*1.0,(1.0-val)*1.0,(1.0-val)*1.0); 

 matrixVal [obsX][obsY] = val; 

 

 for ( int b = 0 ; b<2 ; b++) 

 { 

  for (uint a = 0; a < count; a+=1) 

  {    

   for (double i = 0.1; i<(*LP)[a];i+=0.1) 

   { 

    obsXX = limit ( (int) approximate ((i*cos(angle2) + x + offsetX)*10.0) , 1 , 160); 

obsYY = limit ( (int) approximate ((i*sin(angle2) + y + offsetY)*10.0) , 1 , 160); 

    val = 0.0; 
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PW->plot_blend (obsXX ,obsYY ,opacity , (1.0-val)*1.0 , (1.0-val)*1.0 , (1.0-val)*1.0 ); 

    matrixVal [obsXX][obsYY] = val;   

   } 

   angle2 = angle + ((a/2.0-90.0)*PI/180.0); 

   if (a <( count-1 )) 

   { 

    proX = limit ( (int) approximate (((*LP)[a+1]*cos(angle2) + x + offsetX)*10.0) , 1 , 160); 

    proY = limit ( (int) approximate (((*LP)[a+1]*sin(angle2) + y + offsetY)*10.0) , 1 , 160);

  

   } 

 

   if (a==0)   

   { 

    obsX = limit ( (int) approximate (((*LP)[a]*cos(angle2) + x + offsetX)*10.0) , 1 , 160); 

    obsY = limit ( (int) approximate (((*LP)[a]*sin(angle2) + y + offsetY)*10.0) , 1 , 160);  

 

    if ((*LP)[a] == maxLaser) 

    { 

     val = 0.0; 

     occupied = false; 

    } 

    else 

    { 

     val = 1.0; 

     occupied = true; 

    } 

   } 

 

   if (a==(count-1)) 

   { 

    if ((*LP)[a] == maxLaser) 

     val = 0.0; 

    else 

     val = 1.0; 

   } 

 

   else if (!occupied) 

   { 

    if ( sqrt ( sq(obsX-proX) + sq(obsY-proY) ) < 2.0 && (*LP)[a]<maxLaser ) 

    { 

     val = 1.0; 

     occupied = true; 

    } 

    else  
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     val = 0.0;      

   }       

   else   

   { 

    if (  (*LP)[a] == maxLaser ) 

    { 

     val = 0.0; 

     occupied = false; 

    } 

 

    else 

     val = 1.0; 

   }  

  

   PW->plot_blend( obsX , obsY , opacity , (1.0-val)*1.0 , (1.0-val)*1.0 , (1.0-val)*1.0 ); 

   matrixVal [obsX][obsY] = val; 

 

   preX = obsX; 

   preY = obsY; 

   obsX = proX; 

   obsY = proY;  

  } 

 

  if (b==0) 

  { 

   /// turn 180 degree 

   if (P2P.GetYaw() ==0) 

   {  

    turn180 = PI; 

    while ( (abs (P2P.GetYaw()- turn180)>0.005) && (abs (P2P.GetYaw() + turn180) 

>0.005) )  

    { 

     P2P.GoTo (x, y, turn180); 

     P2P.SetMotorEnable (true); 

     ROBOT.Read(); 

    } 

   } 

 

   else  

   {  

    if ( P2P.GetYaw() > 0 ) 

     turn180 = P2P.GetYaw() - PI; 

    else  

     turn180 = P2P.GetYaw() + PI; 
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    while ( abs(P2P.GetYaw() - turn180) >0.005) /// 0.0005 = 0.286 degree 

    { 

P2P.GoTo ( (x*cos(offsetAngle)) + (y*sin(offsetAngle)) , (y*cos(offsetAngle)) - 

(x*sin(offsetAngle)) , turn180); 

     P2P.SetMotorEnable (true); 

     ROBOT.Read(); 

    } 

   } 

 

   P2P.SetSpeed(0.0, 0.0); 

   P2P.SetMotorEnable (true); 

   ROBOT.Read(); 

   x = P2P.GetXPos()*cos(offsetAngle) + P2P.GetYPos()*cos(PI/2.0 + offsetAngle);    

   y = P2P.GetXPos()*sin(offsetAngle) + P2P.GetYPos()*sin(PI/2.0 + offsetAngle);    

   angle = P2P.GetYaw() + offsetAngle; 

 

   obsX = (int) approximate((x+offsetX)*10.0); 

   obsY = (int) approximate((y+offsetY)*10.0); 

   val = 0.0; 

   PW->plot_blend ( obsX, obsY,opacity, (1.0-val)*1.0 , (1.0-val)*1.0 , (1.0-val)*1.0 ); 

   matrixVal [obsX][obsY] = val; 

  } 

 } 

 PW->close();    

} 

 

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

/// detects if any existing unvisited point in list is re-scanned on not, if so, erase it   

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

void eraseOverlap (LaserProxy* LP , Position2dProxy& P2P) 

{ 

int obsX , obsY ; 

 int obsXX , obsYY; 

 double x = P2P.GetXPos()*cos(offsetAngle) + P2P.GetYPos()*cos(PI/2.0 + offsetAngle);    

 double y = P2P.GetXPos()*sin(offsetAngle) + P2P.GetYPos()*sin(PI/2.0 + offsetAngle);    

 double angle = P2P.GetYaw() + offsetAngle;     

 double angle2; 

 bool overlap = true; 

 bool Erase = true; 

 

 for (int a = 0; a < 361; a++) 

 { 

  angle2 = angle + ((a/2.0-90.0)*PI/180.0); 
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  obsX = limit ( (int) approximate (((*LP)[a]*cos(angle2) + x + offsetX)*10.0) , 0 , 160); 

  obsY = limit ( (int) approximate (((*LP)[a]*sin(angle2) + y + offsetY)*10.0) , 0 , 160);  

 

  if( matrixVal [obsX][obsY] == 0.5 ) 

   overlap = false; 

  

  for (double i = 0.1; i<(*LP)[a] ;i+=0.1) 

  { 

   obsXX = limit ( (int) approximate ((i*cos(angle2) + x + offsetX)*10.0) , 0 , 160); 

   obsYY = limit ( (int) approximate ((i*sin(angle2) + y + offsetY)*10.0) , 0 , 160); 

 

   if( matrixVal [obsXX][obsYY] == 0.5 ) 

    overlap = false;    

   

   if ( !planX.empty() && forward) 

   { 

    listIteratorY = planY.begin(); 

    listIteratorV = visited.begin(); 

    Erase = true; 

 

     for( listIteratorX = planX.begin(); listIteratorX != planX.end(); listIteratorX++ ) 

    { 

     if ( *listIteratorX == oriDepX && *listIteratorY == oriDepY && Erase) 

      Erase = false; 

 

     else if  ( *listIteratorX == mapDestX && *listIteratorY == mapDestX && Erase) 

      Erase = false; 

 

     else if ( *listIteratorX == obsXX && *listIteratorY == obsYY && Erase) 

        { 

      if ( *listIteratorV == 0) 

      { 

       cout << "erase" << *listIteratorX <<endl; 

       cout << "erase" << *listIteratorY <<endl; 

       planX.erase (listIteratorX); 

       planY.erase (listIteratorY); 

       visited.erase (listIteratorV); 

       break; 

      } 

      else  

       break; 

     } 

     listIteratorY ++; 

     listIteratorV ++; 
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    } 

   } 

  }   

 } 

} 

 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

/// checks if the map environment is completely explored and built      

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

bool finishMapping () 

{ 

 bool finish = true; 

 

 listIteratorV = visited.begin(); 

 for( listIteratorV = visited.begin(); listIteratorV != visited.end(); listIteratorV++ ) 

 { 

  if ( *listIteratorV == 0) 

  { 

   finish = false; 

   break; 

  } 

 }  

 return finish; 

} 

 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

/// path finding using A* algorithm      

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

bool pathPlanning ( int DepX , int DepY, int DestX , int DestY ) 

{ 

 int chainCode = 0; 

 int parentX =0, parentY=0, parentG=0; 

 int OLcount =0, CLcount =0; 

 int OLloc, CLloc; 

 int G = 0, H = 0; 

 vector < vector <int> > openL ( 2, vector <int> (6, 0)); 

 vector < vector <int> > closeL ( 2, vector <int> (6, 0));  

  

 openL.clear(); 

 closeL.clear(); 
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 if (extendSize( &openL, OLcount) ) 

 { 

  insertRow( &openL, openL.size()-1 , DepX, DepY, 0 , 0 , 0 , 0); 

  OLcount ++; 

 } 

 

 else 

 { 

  OLloc = checkLocAvailable( &openL , OLcount); 

  insertRow( &openL, OLloc , DepX, DepY, 0 , 0 , 0 , 0); 

  OLcount ++; 

 } 

   

 while ( (DepX != DestX) || (DepY != DestY)) 

 { 

  if (chainCode ==0) 

  { 

   OLloc = lowestFloc ( &openL ); 

    

   if (OLloc != -1) 

   { 

    DepX = parentX = openL[OLloc][0]; 

    DepY = parentY = openL[OLloc][1]; 

    parentG = openL[OLloc][3]; 

     

    if (extendSize( &closeL, CLcount) ) 

    { 

     insertRow( &closeL , closeL.size()-1 , openL[OLloc][0] , openL[OLloc][1] ,  

openL[OLloc][2] , openL[OLloc][3] , openL[OLloc][4] , openL[OLloc][5] ); 

     CLcount ++; 

    } 

 

    else 

    { 

     CLloc = checkLocAvailable( &closeL , CLcount); 

     insertRow( &closeL , CLloc , openL[OLloc][0] , openL[OLloc][1] , 

openL[OLloc][2] ,  

openL[OLloc][3] , openL[OLloc][4] , openL[OLloc][5] ); 

     CLcount ++; 

    } 

     

    if ( abs(DestX-DepX) < 4 && abs(DestY - DepY) <4) 

    { 
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     if (extendSize( &closeL, CLcount) ) 

     { 

      insertRow(&closeL, closeL.size()-1 , DestX , DestY ,9,0,0,0); 

      CLcount ++; 

     } 

     pathDecision (&closeL, true); 

     return true; 

    }   

    clearRow ( &openL , OLloc ); 

    OLcount--; 

    chainCode ++ ; 

   } 

 

   else 

   { 

    pathDecision (&closeL, false);     

    return false; 

   } 

  } 

 

  else 

  { 

   findDepXY ( chainCode , parentX , parentY , DepX , DepY ); 

 

   if ( (DepX != -1) && (DepY != -1) ) 

   {     

    if ( notInCL ( &closeL , DepX , DepY) ) 

    { 

     G = findG( parentG , chainCode); 

     H = findH( DepX , DepY, DestX , DestY ); 

 

     OLloc = inOLloc ( &openL , DepX , DepY ); 

     if ( OLloc != -1 ) 

     { 

      if ( G < openL[OLloc][3] ) 

      { 

       openL[OLloc][2] = chainCode; 

       openL[OLloc][3] = G; 

       openL[OLloc][5] = G + openL[OLloc][4];     

       } 

     }   

     else 

     { 

      if ( !isObstacle(DepX,DepY, chainCode) ) 
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      { 

       if (extendSize( &openL, OLcount) ) 

       { 

        insertRow( &openL, openL.size()-1 , DepX, DepY, chainCode , G , 

H ,  

G+H ); 

        OLcount ++; 

       } 

       else 

       { 

        OLloc = checkLocAvailable( &openL , OLcount); 

        insertRow( &openL, OLloc , DepX, DepY, chainCode , G , H , 

G+H ); 

        OLcount ++; 

       } 

      } 

     }    

    }  

   }     

   if ( chainCode < 8 ) 

    chainCode ++; 

   else 

    chainCode =0; 

  }   

 } 

 

 if (chainCode > 0) 

  chainCode --; 

 else 

  chainCode = 8 ; 

 

 if (extendSize( &closeL, CLcount) ) 

 { 

  insertRow( &closeL , closeL.size()-1 , DepX, DepY, chainCode , G , H , G+H ); 

  CLcount ++; 

 } 

  

 pathDecision (&closeL, true); 

 return true; 

} 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

/// A* algorithm – find G      

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
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//////// 

int findG ( int g , int arrow) 

{ 

 if ( arrow == 0 ) 

  return g; 

 else if ( arrow % 2 == 1 ) 

  return g+10; 

 else 

  return g+14; 

} 

 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

/// A* algorithm – find H     

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

int findH ( int depX , int depY, int destX , int destY ) 

{ 

 /// using Manhattan Method 

 int xDist = abs(depX -destX); 

 int yDist = abs(depY -destY); 

 return 10*(yDist + xDist); 

} 

 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

/// A* algorithm – find F      

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

int findF ( int g , int h) 

{ 

 return g+h; 

} 

 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

/// A* algorithm – find location of lowest F in openL      

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

int lowestFloc( vector < vector <int> > *vec) 

{ 

 int f, loc=0; 

 

 if ( !(*vec).size() ) 
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  return -1; 

  

 else 

 {  

  for ( int a = 0 ; a < (*vec).size() ;a++) 

  {  

   if ( (*vec)[a][0] != 0) 

   { 

    f = (*vec)[a][5]; 

    loc = a; 

    

    for ( int b = a+1 ; b < (*vec).size() ; b++) 

    { 

     if ( ((*vec)[b][0] >0) && ((*vec)[b][5] < f) ) 

     { 

      f = (*vec)[b][5]; 

      loc = b; 

     } 

    } 

 

    return loc; 

   }  

  }  

 } 

 

 return -1;  

} 

 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

/// A* algorithm – extend size of openL or closeL, return 1 if succeed     

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

bool extendSize( vector< vector <int> > *vec, int size ) 

{ 

 if(size == (*vec).size())       

 { 

  (*vec).resize( size +1); 

  (*vec)[size].resize(6); 

 } 

 

 else 

  return false; 

} 
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///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

/// A* algorithm – return the location at which the pointer is available/idle   

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

int checkLocAvailable(vector< vector <int> > *vec , int size) 

{ 

 for(int location=0;location<vec->size();location++) 

 { 

  if( (*vec)[location][0]==0)         

   return location;        

 }   

 return -1;    

} 

 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

/// A* algorithm – determine the “child” point of the current “parent” point   

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

void findDepXY ( int arrow , int parentX , int parentY , int &DepX , int &DepY ) 

{ 

 if ( (arrow == 1) || (arrow == 2) || (arrow == 8) ) 

  DepX = parentX +1;     

 if ( (arrow == 2) || (arrow == 3) || (arrow == 4) ) 

  DepY = parentY + 1;  

 if ( (arrow == 4) || (arrow == 5) || (arrow == 6) ) 

  DepX = parentX - 1;     

 if ( (arrow == 6) || (arrow == 7) || (arrow == 8) ) 

  DepY = parentY - 1;  

 if ( (DepX < 6) || (DepX >154) ) 

  DepX = -1; 

 if ( (DepY < 6) || (DepY >154) ) 

  DepY = -1; 

} 

 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

/// A* algorithm – check if the current point is already exist in closed list or not   

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

bool notInCL ( vector< vector <int> > *vec , int x , int y)  
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{ 

 for( int a = 0; a< (*vec).size() ; a++) 

 { 

  if (  ((*vec)[a][0] == x) && ((*vec)[a][1] == y) ) 

   return false; 

 }  

 return true; 

} 

 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

/// A* algorithm – check if current point is already exist in open list or not, if so,  

///             determine its location      

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

int inOLloc ( vector< vector <int> > *vec , int x , int y) 

{ 

 for( int a = 0; a< (*vec).size() ; a++) 

 { 

  if (  ((*vec)[a][0] == x) && ((*vec)[a][1] == y) ) 

   return a; 

 }  

 return -1; 

} 

 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

/// A* algorithm – check if the current point is obstacle or not      

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

bool isObstacle ( int x , int y , int arrow ) 

{ 

 if ( (x<6) || (x>154) || (y<6) || (y>154) ) 

  return true; 

 

 if ( arrow == 1 || arrow == 2 || arrow == 8 ) 

 { 

  for ( int a = (y-5) ; a < (y+6) ; a++) 

  { 

   if ( (matrixVal[x][a] >= 0.5) || (matrixVal[x+1][a] >= 0.5) || (matrixVal[x+2][a] >= 0.5) ||  

(matrixVal[x+3][a] >= 0.5) || (matrixVal[x+4][a] >= 0.5) || (matrixVal[x+5][a] >= 0.5)  ) 

    return true; 

  } 

 } 
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 if ( arrow == 2 || arrow == 3 || arrow == 4 ) 

 { 

  for ( int b = (x-5) ; b < (x+6) ; b++) 

  { 

   if ( (matrixVal[b][y] >= 0.5) || (matrixVal[b][y+1] >= 0.5) || (matrixVal[b][y+2] >= 0.5) ||  

(matrixVal[b][y+3] >= 0.5) || (matrixVal[b][y+4] >= 0.5) || (matrixVal[b][y+5] >= 0.5)  ) 

    return true; 

  } 

 } 

 

 if ( arrow == 4 || arrow == 5 || arrow == 6 ) 

 { 

  for ( int c = (y-5) ; c < (y+6) ; c++) 

  { 

   if ( (matrixVal[x][c] >= 0.5) || (matrixVal[x-1][c] >= 0.5) || (matrixVal[x-2][c] >= 0.5) ||  

(matrixVal[x-3][c] >= 0.5) || (matrixVal[x-4][c] >= 0.5) || (matrixVal[x-5][c] >= 0.5)  ) 

    return true; 

  } 

 } 

 

 if ( arrow == 6 || arrow == 7 || arrow == 8 ) 

 { 

  for ( int d = (x-5) ; d < (x+6) ; d++) 

  { 

   if ( (matrixVal[d][y] >= 0.5) || (matrixVal[d][y-1] >= 0.5) || (matrixVal[d][y-2] >= 0.5) ||  

(matrixVal[d][y-3] >= 0.5) || (matrixVal[d][y-4] >= 0.5) || (matrixVal[d][y-5] >= 0.5)  ) 

    return true; 

  } 

 } 

 return false; 

} 

 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

/// A* algorithm – record the related information into open list or closed list    

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

void insertRow( vector< vector <int> > *vec , int loc , int x, int y, int arrow , int g , int h , int f) 

{ 

 (*vec)[loc][0] = x; 

 (*vec)[loc][1] = y; 

 (*vec)[loc][2] = arrow; 

 (*vec)[loc][3] = g; 
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 (*vec)[loc][4] = h; 

 (*vec)[loc][5] = f; 

} 

 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

/// A* algorithm – clear specified information      

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

void clearRow(  vector< vector <int> > *vec , int loc ) 

{ 

 (*vec)[loc][0] = 0; 

 (*vec)[loc][1] = 0; 

 (*vec)[loc][2] = 0; 

 (*vec)[loc][3] = 0; 

 (*vec)[loc][4] = 0; 

 (*vec)[loc][5] = 0; 

} 

 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

/// A* algorithm – path tracing once goal is found     

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

void pathDecision ( vector< vector <int> > *vec , bool found) 

{ 

 int px=0, py=0, code=0, ploc=0; 

 navigablePath.clear(); 

 navigablePath.resize(1); 

 navigablePath[0].resize(2); 

 

 if (found == true) 

 { 

  if ( (*vec)[(*vec).size()-1][2] != 9 ) 

  { 

   px = navigablePath[0][0] = (*vec)[(*vec).size()-1][0]; 

   py = navigablePath[0][1] = (*vec)[(*vec).size()-1][1]; 

   code = (*vec)[(*vec).size()-1][2]; 

  } 

 

  else  

  { 

   navigablePath[0][0] = (*vec)[(*vec).size()-1][0]; 

   navigablePath[0][1] = (*vec)[(*vec).size()-1][1]; 
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   navigablePath.resize(2); 

   navigablePath[1].resize(2); 

 

   px = navigablePath[1][0] = (*vec)[(*vec).size()-2][0]; 

   py = navigablePath[1][1] = (*vec)[(*vec).size()-2][1]; 

   code = (*vec)[(*vec).size()-2][2];    

  } 

 } 

 

 else 

 { 

  for (int b = 0; b < (*vec).size()-1 ;b++) 

  { 

   if ( (abs((*vec)[b+1][0] - (*vec)[b][0]) > 1) || (abs((*vec)[b+1][1] – (*vec)[b][1]) > 1) ) 

   { 

    px = navigablePath[0][0] = (*vec)[b][0]; 

    py = navigablePath[0][1] = (*vec)[b][1]; 

    code = (*vec)[b][2]; 

    break; 

   } 

  } 

   

  if ( navigablePath[0][0] == 0) 

  { 

   px = navigablePath[0][0] = (*vec)[(*vec).size()-1][0]; 

   py = navigablePath[0][1] = (*vec)[(*vec).size()-1][1]; 

   code = (*vec)[(*vec).size()-1][2]; 

  } 

 }  

   

 while (code) 

 { 

  if ( (code==1) || (code==2) || (code==8) ) 

   px = px-1; 

  if ( (code==2) || (code==3) || (code==4) ) 

   py = py-1; 

  if ( (code==4) || (code==5) || (code==6) ) 

   px = px+1; 

  if ( (code==6) || (code==7) || (code==8) ) 

   py = py+1; 

 

  for (int a = 0; a<(*vec).size() ;a++) 

  { 
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   if ( ((*vec)[a][0] == px) && ((*vec)[a][1] == py)  ) 

    { 

    px = (*vec)[a][0]; 

    py = (*vec)[a][1]; 

 

    if ( (*vec)[a][2] != code ) 

    { 

     navigablePath.resize( navigablePath.size() +1); 

     navigablePath[navigablePath.size()-1].resize(2); 

 

     navigablePath[navigablePath.size()-1][0] = (*vec)[a][0]; 

     navigablePath[navigablePath.size()-1][1] = (*vec)[a][1]; 

     code = (*vec)[a][2]; 

    } 

    break; 

   } 

  } 

 } 

} 

 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

/// robot navigation      

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

void moveRobot(LaserProxy* LP , Position2dProxy& P2P , PlayerClient & ROBOT) 

{ 

 double x ;    

 double y ;    

 double goX,goY; 

 int mapPoseX, mapPoseY; 

 

 x = P2P.GetXPos()*cos(offsetAngle) + P2P.GetYPos()*cos(PI/2.0 + offsetAngle); 

 y = P2P.GetXPos()*sin(offsetAngle) + P2P.GetYPos()*sin(PI/2.0 + offsetAngle); 

 

 mapPoseX = limit ( (int) approximate ((x + offsetX)*10.0) , 0 , 160); 

 mapPoseY = limit ( (int) approximate ((y + offsetY)*10.0) , 0 , 160); 

 

 if ( (mapPoseX !=  mapDestX) || (mapPoseY != mapDestY ) ) 

 { 

  x = (mapDestX/10.0)-offsetX; 

  y = (mapDestY/10.0)-offsetY; 

  goX = (x*cos(offsetAngle)) + (y*sin(offsetAngle)); 

  goY = (y*cos(offsetAngle)) - (x*sin(offsetAngle)) ; 
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  P2P.GoTo ( goX , goY , 0.0); 

 } 

 

 else if ( (mapPoseX == mapDestX) && (mapPoseY == mapDestY ) ) 

 { 

  if ( navigablePath.size() > 1) 

  { 

   navigablePath.resize(navigablePath.size()-1); 

   mapDestX = navigablePath[navigablePath.size()-1][0]; 

   mapDestY = navigablePath[navigablePath.size()-1][1]; 

  } 

 

  else  

   navigablePath.clear(); 

 

  P2P.SetSpeed (0.0,0.0);  

 } 

} 

 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

/// convert a float or double value approximately to integer value 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

template<typename T> 

inline T approximate(T a) 

{ 

   T b = a - floor (a); 

   

   if ( (b>=0.0) && (b <0.5) ) 

     return floor(a); 

   else 

     return floor(a) + 1.0; 

} 

 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

/// calculate square of a number 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

template<typename T> 

inline T sq ( T a) 

{ 

 return a*a; 
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} 

 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

/// uses ostream_iterator and copy algorithm to output list elements 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////// 

void printList( const list< T > &listRef ) 

{ 

 if ( listRef.empty() )  

  cout << "List is empty"; 

 

     else 

     { 

  ostream_iterator< T > output( cout, " " ); 

         copy( listRef.begin(), listRef.end(), output ); 

     } 

}  

 


