

Sheffield Hallam University

Grid-based Map Building and

Navigation Algorithms

for Mobile Robots

Chui Ching Yee

M.Sc. in Electronic and Information Technology

Full-Time

2007-08

 First supervisor: Dr. Bala Amavasai

Second supervisor: Dr. Lyuba Alboul

Grid-based Map Building and Autonomous Navigation Algorithms for Mobile Robots

Created by CHUI CHING YEE ii

This thesis is submitted in partial fulfilment

of the requirements for the degree of

Masters of Science

in Electronic and Information Technology

Acknowledgements

Created by CHUI CHING YEE iii

Acknowledgements

This dissertation would not be accomplished as predicted without the

cooperation of various parties. Words of thankfulness are thus forwarded to those

whom I owed utmost respect and appreciation.

First of all and foremost, I would like to convey my deepest gratitude to Dr. Bala

Amavasai, my project supervisor. His kind encouragements, constructive comments

and patience have proven to be the pillar to achieve the goals of my project. The

sacrifice and effort he put in to enable the project successfully work is truly sincere.

 In spite of that, I was also deeply touched by the willingness of Mr. Joan

Saez-Pons, MMVL researcher, to give invaluable insight related to the Player/Stage

simulator. No forgetting my friends who had helped me from time to time. A special

compliment goes to them for their generous contribution on ideas and inspirations to

make this project a success.

 Finally yet importantly, I wish to express heartiest appreciation to my parents for

providing encouragement in fabricating my project. Thanks to those who had

contributed to the success of this project.

Contents

Created by CHUI CHING YEE iv

Contents

Chapter 1 Introduction 1

1.1 Background 1

1.2 Motivation 2

1.3 Block Diagram and Description 3

1.4 Deliverables/Objectives 3

1.5 Dissertation Foundation 4

1.5.1 Schedule 4

1.5.2 Equipments and cost required 5

1.5.3 Technical limitations 5

1.5.4 Potential hazards 5

1.6 Dissertation Guidelines / Structure 6

1.7 Summary 6

Chapter 2 Player/Stage Robot Simulator 7

2.1 Robot Simulator 7

2.1.1 Introduction 7

2.1.2 Existing robot simulators 8

2.2 Player/Stage Robot Simulator 8

2.3 Methodology of using Player/Stage 10

2.3.1 Configuration and executable files 10

2.3.2 Client programming steps 11

2.3.3 Client program compilation linkages 12

Chapter 3 Literature Review and Relevant Theory 13

3.1 Map Building 13

3.1.1 Introduction 13

3.1.2 Historical overview 13

3.1.3 Categories of map representation 14

3.1.4 Metric Map building approaches 16

3.1.5 Inherent problems of map building 17

3.1.6 Graphics library for Metric Map – PNGwriter 18

Contents

Created by CHUI CHING YEE v

3.1.7 Sensing model used for map building 19

3.2 Autonomous Navigation System 22

3.2.1 Introduction 22

3.2.2 Obstacle avoidance system 22

3.2.3 Path exploration algorithm 24

3.2.4 Path finding algorithm 26

3.3 Control Algorithm for Map Building with Autonomous Navigation 27

Chapter 4 Methodology/ Algorithm 30

4.1 Specifications and Assumptions 30

4.2 Usage of Player/Stage Proxy Class 31

4.3 Map Building Algorithm 32

4.3.1 Map building architecture 32

4.3.1.1 Computation of position of laser reading 33

4.3.1.2 Interpretation of laser reading into knowledge 35

4.3.1.3 Determination of occupancy value 36

4.3.1.4 Map building using PNGwriter Graphic Library 36

4.3.2 Map building algorithm 37

4.4 Autonomous Navigation Algorithm for Map Exploration 38

4.4.1 Autonomous navigation architecture 38

4.4.1.1 Obstacle avoidance algorithm 38

4.4.1.2 Path exploration algorithm using modified DFS paradigm 41

4.4.1.3 A* path finding algorithm 46

4.4.2 Autonomous navigation algorithm 49

4.5 Control Architecture – Sense-Plan-Act (SPA) Approach 50

Chapter 5 Map Benchmarking Suite 52

5.1 Cross Correlation 52

5.2 Map Score 54

5.3 Map Score of Occupied Cells 54

Chapter 6 Empirical Evaluation 56

6.1 Obstacle Avoidance Algorithm 56

6.1.1 Ideal case 56

Contents

Created by CHUI CHING YEE vi

6.1.2 Case of asynchronous lower layer functions 57

6.1.3 Case of asynchronous higher layer functions 59

6.1.4 Discussion 60

6.2 A* Search Algorithm for Path Finding 60

6.2.1 Evaluation of A* search algorithm 61

6.2.2 Discussion 67

6.3 Modified DFS Algorithm for Path Exploration 68

6.3.1 Evaluation of Modified DFS algorithm 68

6.3.2 Discussion 71

6.4 Quality of Map Model Using Laser Scanner 71

 6.4.1 Evaluation of map model quality 71

6.4.2 Discussion 73

Chapter 7 Conclusion and Further Work 74

7.1 Conclusion 74

7.2 Further Work 75

7.2.1 Sensor deployment 75

7.2.2 Self-localisation technique 76

7.2.3 Map building algorithm 76

7.2.4 Simultaneous Localization and Mapping (SLAM) 76

7.2.5 Path finding algorithm 77

7.2.6 Distributed map building using multirobot system 77

References 78

Appendices 93

 Appendix A: .world configuration file 94

 Appendix B: .cfg configuration file 95

 Appendix C: .cc configuration file 96

List of Figures

Created by CHUI CHING YEE vii

List of Figures

Figure 1.1 Block diagram of robot system 3

Figure 2.1 Block diagram of control system without Player 9

Figure 2.2 Block diagram of control system using Player 9

Figure 2.3 Interaction Relationship between robot and client via Player/Stage 10

Figure 3.1 Breadth-first Search (BFS) 25

Figure 3.2 Depth-first Search (DFS) 25

Figure 3.3 Sense Plan Act (SPA) Architecture 28

Figure 3.4 Subsumption Architecture 28

Figure 4.1 Map building architecture 32

Figure 4.2 Computation of position of laser reading 33

Figure 4.3 Computation of θj with (a) zero θrobot , (b) non-zero θrobot 34

Figure 4.4 Information extraction from laser reading 35

Figure 4.5 Autonomous navigation architecture 38

Figure 4.6 Obstacle detection area 39

Figure 4.7 Determination of navigable points for path planning 41

Figure 4.8 Path generated using (a) DFS algorithm, (b) modified DFS algorithm 42

Figure 4.9 Modified DFS algorithm for complex and cross-link paths exploration 43

Figure 4.10 State machine of path planning algorithm using modified DFS 44

Figure 4.11 G scoring and arrow interpretation 47

Figure 4.12 Structure of robot control system using SPA paradigm 50

Figure 5.1 A typical corridor (a) ideal map, (b) generated map with curved

obstacle (source from [44]) 54

Figure 5.2 A typical corridor with ‘shadow’ (source from [44]) 55

Figure 6.1 Ideal obstacle detection and avoidance 56

Figure 6.2 Series of obstacle avoidance algorithm empirical results for

(a) ≈0, (b) ≈500, (c) ≈1000, (d) ≈1500, (e) ≈2000, (f) ≈2500,

(g) ≈3000, (h) ≈3500, lines of lower layer functions 57

Figure 6.3 Series of obstacle avoidance algorithm empirical results for

(a) 1, (b) 2, (c) 3, (d) 4, higher layer functions 59

List of Figures

Created by CHUI CHING YEE viii

Figure 6.4 A* search algorithm evaluation from node (10,10) to (10,150)

using (a)Manhattan Method, (b)Diagonal Shortcut Method,

(c)Euclidean Distance Method 61

Figure 6.5 A* search algorithm evaluation from node (10,10) to (150,150)

using (a)Manhattan Method, (b)Diagonal Shortcut Method,

(c)Euclidean Distance Method 62

Figure 6.6 A* search algorithm evaluation from node (10,10) to (80,150)

using (a)Manhattan Method, (b)Diagonal Shortcut Method,

(c)Euclidean Distance Method 62

Figure 6.7 A* search algorithm evaluation from node (80,10) to (80,150)

using (a)Manhattan Method, (b)Diagonal Shortcut Method,

(c)Euclidean Distance Method 62

Figure 6.8 A* search algorithm evaluation from node (10,10) to (10,153)

using (a)Manhattan Method, (b)Diagonal Shortcut Method,

(c)Euclidean Distance Method 63

Figure 6.9 A* search algorithm evaluation from node (10,10) to (10,90)

using (a)Manhattan Method, (b)Diagonal Shortcut Method,

(c)Euclidean Distance Method 63

Figure 6.10 A* search algorithm evaluation from node (80,70) to (10,90)

using (a)Manhattan Method, (b)Diagonal Shortcut Method,

(c)Euclidean Distance Method 63

Figure 6.11 A* search algorithm evaluation from node (10,10) to (70,90)

using (a)Manhattan Method, (b)Diagonal Shortcut Method,

(c)Euclidean Distance Method 64

Figure 6.12 A* algorithm evaluation from (10,10) to unreachable node (40,35)

using (a)Manhattan Method, (b)Diagonal Shortcut Method,

(c)Euclidean Distance Method 67

Figure 6.13 Modified DFS algorithm evaluation (a) original map (b) map model 68

Figure 6.14 Steps of path exploration and navigation using modified DFS

Algorithm 69

Figure 6.15 Problem of Modified DFS 71

Figure 6.16 Grid-based map building algorithm (a) original map, (b) map model

built (1st test), (c) map model built(2nd test) 71

List of Figures

Created by CHUI CHING YEE ix

Figure 6.17 Grid-based map building algorithm (a) original map, (b) map model

built (1st test), (c) map model built(2nd test) 72

Figure 6.18 Grid-based map building algorithm (a) original map, (b) map model

built (1
st
 test), (c) map model built(2

nd
 test) 72

List of Tables

Created by CHUI CHING YEE x

List of Tables

Table 1.1 Work Plan 4

Table 3.1 Comparison of 3 types of map categories 15

Table 3.2 Advantages and drawbacks for a variety of sensors 20

Table 3.3 Comparison of three obstacle avoidance systems 24

Table 6.1 A* search algorithm evaluation for various terrain using

(a)Manhattan Method, (b)Diagonal Shortcut Method,

(c)Euclidean Distance Method 64

Table 6.2 A* search algorithm evaluation for unreachable goal using

(a)Manhattan Method, (b)Diagonal Shortcut Method,

(c)Euclidean Distance Method 67

Table 6.3 Steps of path exploration and navigation using modified DFS algorithm 70

Table 6.4 Quality of map model evaluated using Cross Correlation, Map Score

and Map Score with Occupied Cells Methods 72

Chapter 1. Introduction

Created by CHUI CHING YEE 1

Chapter 1

Introduction

1.1 Background

In an industrial fire, there are many hazardous circumstances that fire-fighters

and rescuers will face, such as explosions, airborne chemical contamination, building

collapse, senses impairment due to thick smoke and other uncertain situations. These

not only endanger the fire-fighters and rescuers, but also impede the rescue of

casualties due to time delay.

Time is critical, especially at search and rescue incidents. Generally, fire-fighters

initially need to lay out guidelines and mark out a route to the fire or casualties, along

with a safe route back to outside. Yet, this can lead to tragedies. In one case two

fire-fighters died at Gillender Street, London in 1992 when they lost track of their

exit route due to thick smoke when their air apply ran out. [1]

With the purpose of improving safety assessment whilst saving time , two

miniature explorer robot systems named “ViewFinder” and “Guardians” are being

developed by Sheffield Hallam University and several European partners including

South Yorkshire Fire and Rescue Services to assist in search and rescue [2].

“ViewFinder” explorer robots will firstly enter the dangerous building before

Chapter 1. Introduction

Created by CHUI CHING YEE 2

fire-fighters and rescuers to map safe paths for the fire crew to access to fire and

casualties respectively. Whereas, “Guardians” which will be sent in after, will help

assess human safety by detecting fires and planning escape routes, which are then

reported back to fire-fighters. Hence, path planning and risk assessment precedes

fire-fighting and rescuing operation, and are then continually reviewed while the

operations are on-going.

Both of these explorer robots will address key issues related to map building,

autonomous robot navigation, multi-robot system, communication system,

human-robot interfaces, and safety assessment.

1.2 Motivation

The existence of the “ViewFinder” explorer robot demonstrates a real life

application of map building and shows how important map building is. In the event

of fire, the ability to build maps under unknown environment is paramount for

reliable localisation and real time navigation. Relying on original building

ichnography may lead to unreliably measure due to dynamic environment.

Autonomous navigation systems without the “revisiting” problem, path planning

algorithms and obstacle avoidance are all essential elements to glean all information

within short enough time, so to fasten search and rescue job under safety mode.

Without a map of environment, a robot can neither plan a path, nor search casualties

effectively as it may retrace its step repeatedly.

As a result, an idea was proposed according to this “ViewFinder” concept –

develop an autonomous navigation mobile robotic system with map building

capability.

Chapter 1. Introduction

Created by CHUI CHING YEE 3

1.3 Block Diagram and Description

Figure 1.1 Block diagram of robot system

With reference to Figure 1.1, this dissertation will focus on map building and

autonomous navigation for laser-guided robot in an unknown 2D and static

environment for sake of simplicity. Obstacle avoidance, path exploration without

revisiting and path planning will be considered as well in navigation.

However, this dissertation addresses the issue of a warehouse search in a limited

space with no real smoke, hence safety assessment will be excluded. To fasten the

progress of programming and ease troubleshooting, the Player/Stage robot simulator

is used instead of creating real robot hardware.

1.4 Deliverables/Objectives

The deliverables from or objectives of this dissertation are:

1. the simulated robot possesses map building capability with obstacle detection and

avoidance using laser sensor,

2. the robot is able to navigate or explore path without retracing the same place,

3. the design of path planning algorithm to find shortest path to destination desired,

4. use of Player/Stage to simulate robot client program, and

5. characterise the critical limitations of algorithms programmed.

Robot Laser Scanner

Map Building Navigation

Obstacle

Avoidance

Path Exploration

without Revisiting

Path

Planning

Chapter 1. Introduction

Created by CHUI CHING YEE 4

1.5 Dissertation Foundation

During the implementation of this project, several inevitable constraints are

firstly needed to be taken into consideration before the project commenced in order

to make this project a success. These constraints are time taken, equipments and cost

required, technical limitations, and potential hazards.

1.5.1 Schedule

Due to time constraint of 6 months and having 2nd semester study from October

until January, a systematic work planning (as shown on Table 1.1) with well time

management is a must.

Task June July Aug Sept Oct Nov Dec Jan

Research on Player/stage

Familiar in using Linux

Research on map building

Research on sensor

Programming and testing of map building

Research on navigation algorithm

Research on revisiting problem

Programming and testing of navigation

Research on path planning

Programming and testing of path planning

Research on multi-robot communication

system

Research on distributed map building

Dissertation writing

Table 1.1 Work Plan

Chapter 1. Introduction

Created by CHUI CHING YEE 5

1.5.2 Equipments and cost required

 The work in this dissertation is carried out on a laptop running at 1.86GHz with

512 MB of RAM. The software simulator is Player/Stage which is performed via

Kubuntu Linux OS. Thus, there is no expenditure for implementing this project.

1.5.3 Technical limitations

Due to the robot simulator and operating system being used is relatively new to

author, long period of time was needed in doing research and familiarise with both

Player/Stage and Kubuntu Linux. Since Player/Stage simulator is open source and

still under development, some technical limitations are encountered as well:

� Less information related about Player/Stage

� Some essential and useful functions of Player/Stage are still in developing

stage

� Difficulty in fine tuning the algorithm due to time restriction

1.5.4 Potential hazards

Awareness of safety issues will prevent unnecessary physical or mental harm.

Working with laptop for long period will cause vision harm, waist strain, finger

cramp and suffer a dull mentality as well. Some precautionary measures are

recommended as following:

� Positioning monitor and chair to a comfortable pose

� An erect sitting posture is paramount

� Taking short break at regular intervals to prevent strain and cramp, whilst

refresh mind

Chapter 1. Introduction

Created by CHUI CHING YEE 6

1.6 Dissertation Guidelines / Structure

Chapter 2 discusses Player/Stage simulator in details. Chapter 3 discusses the

literature review or relevant theory of current work and picks novelty algorithm

solution. Based on these well proven theories, algorithms development and

methodology are attempted to be defined at Chapter 4. Chapter 5 carries out

extensible suite of benchmarks which allow for the empirical evaluation of map

building paradigm. For proof-of-concept, some simulation-based analyses has been

performed, Chapter 6 investigates the results as well as critical analysis of the results

obtained. Chapter 7 concludes the dissertation and recommends further work to

improve the functionalities of the system.

1.7 Summary

This chapter highlights the source and importance of the dissertation relevant to

one of European Funded Research Project – “ViewFinder”. It also identifies work

plan, equipment setup and safety issues, followed by layout of the following

chapters.

Chapter 2. Player/Stage

Created by CHUI CHING YEE 7

Chapter 2

Player/Stage Robot Simulator

2.1 Robot Simulator

2.1.1 Introduction

Robot simulation is an important element in robotics research for testing control

schemes to be ported onto real robots. The robot simulator provides model of a real

robot and its environment, which in particular provides the benefit of:

1. evaluating, predicting and monitoring the behavior of robot

2. reducing testing and development time

3. avoiding robot damage and operator injure due to control algorithm failure,

which indirectly reducing robot repair cost and medical cost

4. fastening error finding in control algorithm implemented

5. offering data access that are hard to be measured on real mobile robot

6. allowing testing on various kind of mobile robot without need of significant

adaptation of the implemented algorithm

7. easily switching between simulated robot and real one

8. providing high probability of getting success when implemented on real

robot if the algorithm tested in simulation is proved to be successful

Chapter 2. Player/Stage

Created by CHUI CHING YEE 8

Yet, robot simulators are unable to calculate the real measurement due to system

error and non-system error such as angle drift, sensor noise.

2.1.2 Existing robot simulators

In the past, several robot simulators have been developed, such as Player/Stage,

Khepera and SIMROBOT. All of these robot simulators can simulate one or more

robot in 2D environment.

The Stage Simulator provides various sensor models such as sonar, laser range

finder, pan-tilt-zoom camera and odometry. It supports several programming

languages including C, C++, Java, Tcl and Python. For Khepera Simulator, infrared

sensor is the only type of implemented sensor. The control algorithm can be written

in C/C++. MATLAB interface is also available. SIMROBOT is a robot simulator for

MATLAB. It provides 2 types of implemented sensor, which are sonar and laser

range finder.

Player/Stage is probably the most widely used. Most of the major intelligent

robotics journals and conferences regularly publish papers featuring real and

simulated robot experiments using Player, Stage and Gazebo [6].

2.2 Player/Stage Robot Simulator

The Player Project [6] (formerly called “Player/Stage Project”, or

“Player/Stage/Gazebo Project”) was founded in 2000 by Brian Gerkey, Richard

Vaughan and Andrew Howard. It creates Free Software that enables research in robot

and sensor systems. The Player software runs on POSIX-compatible operating

system, including Linux, Solaris, BSD and Mac OSX (Darwin). A port to Microsoft

Windows is still under planning stages.

Chapter 2. Player/Stage

Created by CHUI CHING YEE 9

Figure 2.1 Block diagram of control system without Player

Figure 2.2 Block diagram of control system using Player

The comparison between Figure 2.1 and Figure 2.2 shows the use of Player ease

the implementation of client program. Refer to Figure 2.3, Player [7,9], which is

Hardware Abstraction Layer (HAL) for robot device, provides flexible interface to

various sensors and actuators hardware. Player supports multiple devices on the same

interface, enabling distributed and collaborative sensing and control. It provides code

repository and transport mechanism, allowing data exchange among drivers.

Common used transport mechanism is client/server TCP socket-based transport.

Robot sensor

(camera, laser,

sonar, odometry)

Robot motor

Sensor data

acquisition

Motor

command

generation

Planner

Client

program

Player

Robot sensor

(camera, laser,

sonar, odometry)

Robot motor

Sensor data

acquisition

Motor

command

generation

Planner

Client program

Chapter 2. Player/Stage

Created by CHUI CHING YEE 10

Figure 2.3 Interaction Relationship between robot and client via Player/Stage

There are three concepts of Player defines interface specification supported by

more drivers:

1. interface – a specification of how to interact with certain class of sensor,

actuator and algorithm, for example, laser

2. driver – is a software which making it appear to be same as any other entity

in its class, for an instance, sicklms200, urglaser

3. device – is a driver bound to interface, for example, laser interface

supported by both sicklms200 and urglaser

 Stage [8], which is 2D robot platform simulator, simulates a population of robots

moving in and sensing a 2D bitmapped environment.

2.3 Methodology of using Player/Stage

2.3.1 Configuration and executable files

 A common way to use Player is to run the Player server on robot, then to access

robot’s device with client program [10]. Using Player with Stage requires 2

Stage

Simulator

Robot

Player

Client

C/C++

C

Java

Tcl

Python

Ruby

Lisp

Octave

Client

Program
TCP TCP

TCP

TCP

Player

Player

Server

Driver Interface

sicklms200

urglaser

laser

laser

Chapter 2. Player/Stage

Created by CHUI CHING YEE 11

configuration file, which are .world file (stage configuration file) and .cfg file (player

configuration file). .world file defines simulated world with virtual device inside it,

whereas .cfg file map the virtual device to Player device and instantiate device to

access and control robot. (refer to Appendix A and Appendix B)

 Another two important files used are .png file and .cc file. The .png is a

graphical of the environment or world. .cc file (refer to Appendix C) is C++ based

executable file to execute client program into simulated robot.

2.3.2 Client programming steps

Pseudo Code 2.1 Client programming steps

In writing a client program [17], firstly, the user needs to establish a connection

to Player server to instantiate simulated robot using PlayerClient proxy. Then,

appropriate device proxies (such as LaserProxy [15], PositionProxy [16]) are created

int main (int argc, char **argv)

{

 // establish connection

 PlayerClient robot(gHostname, gPort);

 // instantiate device

 LaserProxy lp(&robot,0);

 PositionProxy pp(&robot,0);

 While(1)

 {

 // data acquisition

 robot.Read();

 // process data

 speed = …..; // calculate new speed and turnrate based on laser data

 turnrate = …;

// send motor command

 pp.SetSpeed(speed, turnrate);

 }

}

Chapter 2. Player/Stage

Created by CHUI CHING YEE 12

to instantiate devices of the instantiated robot. By utilizing the member functions of

these proxies, user can acquire data, process the data, and lastly send appropriate

command. (refer to Pseudo code 2.1)

2.3.3 Client program compilation linkages

 For Kubuntu Linux operating system, the compilation linkage for client program

is $ g++ `pkg-config --cflags playerc++` -o filename filename.cc `pkg-config --libs

playerc++`. Firstly, run the .cfg file, then simply type command $./filename to

execute the corresponding client program.

Chapter 3. Literature Review and Relevant Theory

Created by CHUI CHING YEE 13

Chapter 3

Literature Review and Relevant Theory

3.1 Map Building

3.1.1 Introduction

Map building is the process of generating a model of the surrounding area for

autonomous robot motion in unknown environment. An accurate model of the

robot’s surrounding environment facilitates fast-timing and reliable completion of a

variety of complex tasks, such as path planning, path exploration.

3.1.2 Historical overview

In the 1980s and early 1990s, the field of robot mapping [21, 72] was widely

divided into metric and topological approaches. An early representative of metric

mapping algorithm, known as “occupancy grid mapping algorithm” developed by

Elfes and Moravec [47, 95], which represents metric maps by fine-grained grids that

model the occupied and free space of the environment. This approach has enjoyed

enormous popularity, such as [55, 57, 96, 97, 99, 100, 119]. Examples of topological

approaches include [51, 102, 103, 106, 107, 119].

Chapter 3. Literature Review and Relevant Theory

Created by CHUI CHING YEE 14

Since the 1990s, the field of robot mapping has been dominated by probabilistic

techniques, which basically use Bayes theorem to model a maximum likelihood map

based on data. There are series families of probabilistic approaches, such as Kalman

Filter (use Gaussians to estimate the robots pose) [55, 104, 108], Expectation

Maximization [111, 118], Object Maps [81, 110].

Incremental techniques are designed to work in real time easier than

probabilistic methods. Incremental methods include occupancy grids [47, 48, 49],

and DOGMA. The basic principle of occupancy grids is to calculate the binary

occupancy of a location (x,y) and incrementally update each grid cell. DOGMA

(Dynamic Occupancy Grid Mapping Algorithm) is an extension of occupancy grid

approach that operates in dynamic environment.

Simultaneous localization and mapping (SLAM) [84 ,114] is a breakthrough in

modern robot mapping. The robots start in an unknown pose and incrementally

mapping an unknown environment while simultaneously using this map model to

update its location. Significant progress has been made towards the solution of the

SLAM problem [86, 104, 108], such as SLAM extension from 2D to 3D [114, 116],

online SLAM for dynamic environment [85], FastSLAM [50], topological SLAM

[51], multiple-hypothesis approach for underwater robot [87], multirobot SLAM

[53].

3.1.3 Categories of map representation

Map model representation can be categories into Metric (grid based) map,

Topological map and Metric Topological map. Metric map, which is cell-based

structure, records the properties of each cell. The cell is generally represented as a

square of grid. Topological map is graph-based structure that only records the

existence of recognisable places and the paths between them without distance

information. Metric Topological maps are similar to topological maps, but provide

Chapter 3. Literature Review and Relevant Theory

Created by CHUI CHING YEE 15

additional distance information about the path between locations. Comparison of

these 3 types of maps is shown as Table 3.1.

 Metric (grid based)

Map

Topological

Map

Metric

Topological Map

Characteristics - cell-based structure

- store information of

obstacle and spatial

relationship

- graph-based structure

- no geometry relation

between path

- graph-based structure

- possesses geometry

relation between path

Examples

map divided into evenly

size square with obstacle

shaded black (occupied)

and free space blank

nodes represent places,

edge is navigable path

between places

the distance between

place A and place B is

10 metre

Pros - easy to construct

- useful in map matching

- can dissimilar identical

places or objects

- enable estimation of

robot’s and obstacle’s

pose

- require less storage

- less computation

time

- faster path planning

using Dijkstra

Algorithm [34], but

path chose may not

the shortest

- require less storage

- less computation

time

- path planning

algorithms more

optimal compare to

Topological Map

Cons - require huge storage

- large computation time

- path planning may not

efficient, but the path

chose may shorter than

that of Topological Map

- harder to construct

- not valid for map

matching

- perceptual aliasing in

recognizing identical

place

- harder to construct

- not valid for map

matching

- perceptual aliasing in

recognizing identical

place

Chapter 3. Literature Review and Relevant Theory

Created by CHUI CHING YEE 16

- sensitive to noise

- cannot estimate the

pose of robot and

obstacle

- cannot estimate the

position of robot and

obstacle

Table 3.1 Comparison of 3 types of map categories

This dissertation is primarily concerned with the acquisition of the Metric Map,

due to its usefulness, popularity and ease of construction. However, the size of grid

for Metric Maps depends on the clock pulse and accuracy of sensor used. Higher

resolution comes at a higher computational time, but it helps to solve various hard

problems.

3.1.4 Metric Map building approaches

Many metric mapping techniques use occupany grid approach coupled with

probabilistic approach, in order to handle uncertainty during estimating map and

robot pose. Several paradigms currently used are Probabilistic Occupancy Grid

theory put forward by Moravec and Elfes [47, 95], Bayesian based Occupancy Grid

methods by Matthies and Elfes [48], and MURIEL method (Multiple Representation,

Independent Evidence Log) by Kurt Konolige [49].

Probabilistic representation is a method for measuring a probability value using

numbers in the range [0, 1] to record the occupancy status (unknown, empty, or

occupied), with 0 representing an absolutely empty area, 1 indicating an absolutely

occupied cell, and 0.5 representing unknown area. The advantage of this is that when

the number 0.5 is put into Bayes equation [48], meaning that nothing new about the

environment, no change is made to the cell value.

Since this dissertation only focuses on initial stage of map building, thus the

probabilistic mapping techniques will not be discussed. However, in order to ease

improvement of grid value accuracy in future, three values of 0, 0.5 and 1 will be

Chapter 3. Literature Review and Relevant Theory

Created by CHUI CHING YEE 17

used to indicate grid occupancy status: emptied, unknown and occupied respectively.

3.1.5 Inherent problems of map building

 In mapping an environment, some difficulties are encountered:

1. Inaccurate estimation of robot’s and object’s poses

The goal of robot mapping is for an autonomous robot to be able to render

map and localize itself in it. However, robot may suffer errors in odometry such

as angular drift and wheel slippage, eventually render a large error-prone map.

This need compensated with self-localization techniques, such as dead reckoning

[19, 43], Monte-Carlo Localization [46], landmark based matching algorithm.

2. Difficulty in translating sensor reading into knowledge about the environment

Without vision system, it is difficult to interpret sensors reading as objects in

real world, such as stair, wall, human, table.

3. Dimensionality of environment

For purpose of map updating, all information about the environment needed

to be stored. Thus, more memory capacity and computation time is required for

larger surface area of two-dimensional (2D) map. Since three-dimensional (3D)

map is much more tangled, it goes without saying that huge amounts of data and

complex algorithm are needed.

4. Dynamic environment

Under dynamic environment, such as opening door, movable human and

objects, the map that a robot built may no longer be valid after a period of time.

For example, a robot facing a closed door that previously was open. This can be

explained by two hypotheses, either the door status changed, or that the robot is

not where it believes to be.

Chapter 3. Literature Review and Relevant Theory

Created by CHUI CHING YEE 18

5. Path exploration during mapping

The task of generating robot motion in the pursuit of building a map is

commonly referred to as robotic exploration. Exploring robots in the unknown

environment have to cope with partial and incomplete models, and “revisiting”

problem. Hence, any viable exploration strategy has to be able to accommodate

contingencies that might arise during map acquisition.

3.1.6 Graphics library for Metric Map – PNGwriter

During Metric Map acquisition, a graphic library is used for sake of image

creation. It generally deals with a rectangular table (M*N pixels) with each pixel has

its own colour. Once the information or value for the cells (small evenly size square

in grid) are stored or updated, graphics library will translate these values into

specific colour to indicate the property of the cells (occupied or emptied). Normally,

black colour is used to represent obstacle (cell occupied), and white colour is used to

represent free space (cell emptied).

Existing graphics libraries are GD Graphics Library [22], JavaScript Vector

Graphics Library [23], PNGwriter Graphic Library [24], PGPLOT Graphics Subroutine

Library [25] and others.

In this dissertation, PNGwriter Graphic Library [24] is used for Metric Map

creation in map building due to its simplicity and portability. PNGwriter Graphic

Library is an easy-to-use graphics library that plots a high quality PNG image pixel

by pixel from C++ program. It runs under Linux, Unix, Mac OS X and Windows.

Due to its characteristic, during map building using Player/Stage robot simulator,

PNGwriter provides the benefits of:

1. enabling fast image creation, as it can directly create the Metric Map model

from C++ source code used by Player,

Chapter 3. Literature Review and Relevant Theory

Created by CHUI CHING YEE 19

2. creating reusable image file, as PNGwriter can create, read and update the

output image, and

3. ease in map matching between map model created by PNGwriter and original

map used by Stage simulator, as both of these maps are in PNG format

3.1.7 Sensing model used for map building

In modeling map in an unknown environment, sensor plays an essential role in

retrieving data on properties of the environment, enabling robot to perceive the world.

Sensors commonly brought to bear this task include sonar [44, 48, 95, 98], laser [58,

116], infrared [98], stereo vision [48, 58, 76, 98, 110], wheel encoder and touch

sensors, each has its pros and cons as shown in Table 3.2.

For sonar sensors, the distance relationship between robot and surrounding

object is measured via acoustic pulse emitted. Using total time elapsed (t) for

emitting acoustic pulse and receiving echo, the range (D) can be calculated using

formula D = (v*t)/2, where v is the speed of sound. Speed of sound (v) is

proportional to temperature (T), that is v = 20*√T.

The operating principle of lasers is same as sonar, it emits a short pulse of light

(laser). The time elapsed (t) between emission and detection is used to determine

distance (D) using the speed of light (c), D = (c*t)/2. It is able to emit laser beams

with around 0.5 o spread, which are much narrower than sonar beams of 25 o – 30 o.

Stereo vision is an optimal sensing method that uses two cameras placed in

different positions to capture images, detect object, analyse profile of object and

determine the distance to the object.

Unlike the three sensors described formerly, wheel encoder (also called

odometry) does not provide information about environment, it only determines

Chapter 3. Literature Review and Relevant Theory

Created by CHUI CHING YEE 20

distance and angle raveled by the robot itself, thus able to estimate the position and

orientation of robot. The distance (D) is measured by multiplying the number of

revolutions of the wheels (n) by perimeter per revolution (p), i.e. D = n*p.

A touch sensor is a simple on-off switch, it is activated when the robot hits an

obstacle. It is usually used in object avoidance system as last line of defense.

Robot sensor type Advantages Drawbacks

Sonar sensor - relatively low cost

- fast computational time

due to less or no process

of determine obstacle

position

- able volumetric sensing

- inaccurate and noisy, as

roughness surface causes

scattering reflections or

angle of reflection is too

large that acoustic pulse

reflected is away from

receiver

- specular reflections give

rise to erroneous readings

- arrays of sonar sensors

can experience crosstalk,

which one sensor detects

the reflected beam of

another sensor

- unable to determine the

exact position of objects

Laser sensor - less chance of specular

reflections due to its

shorter wavelength

- high accuracy

- able to determine exact

- more expensive

- only able to detect

objects in plane

- require higher processing

power and memory

Chapter 3. Literature Review and Relevant Theory

Created by CHUI CHING YEE 21

position of object relative

to robot

- gives detailed description

of the field of view

Stereo vision - able to detect objects that

sonar and laser may miss

- able to identify and

dissimilar objects

- suit for 3D environment

- higher processing as

more information needed

for each object

Wheel encoders - useful in navigating

robot

- able to estimate the

position and orientation of

robot

- measurement of distance

and angle travelled is

inaccurate due to wheel

slippage or angular drift,

which leads to error in

estimating robot position

and orientation

Touch sensor - no algorithm needed

- high reliability

- not suitable for map

building, as it only gives

signal when hit object

Table 3.2 Advantages and drawbacks for a variety of sensors

 Sonar, laser and stereo vision are non-contact sensing model, thus they are less

reliable compare to touch sensor due to environment effects. Environmental factors

such as humidity and temperature affect the output of the sonar systems. Natural

light interference is a problem in laser scanners because it can interfere with the

readings. Stereo vision is influenced by brightness and degree of visibility.

The Stage Simulator provides various sensor models such as sonar, laser range

finder, pan-tilt-zoom camera and odometry. Regardless of environment effects, laser

Chapter 3. Literature Review and Relevant Theory

Created by CHUI CHING YEE 22

sensor is an optimal sensing for 2D map building due to its accuracy in providing

information about surrounding environment and its ability of determining exact

position of objects relative to robot. Odometry device is used for navigation and

localisation, it helps in estimating object pose in map model when combining with

laser reading data.

3.2 Autonomous Navigation System

3.2.1 Introduction

Motion is ubiquitous in both the real world and synthetic environments. In the

field of unmanned robotic systems, autonomous navigation system is obligatory for

industrial robot. Current industrial robot lack flexibility and autonomy, as these

robots perform pre-programmed sequences of operation in highly constraint

environment, and are not able to operate in new environment or to face unexpected

situation. This is inevitable problem, as the autonomous navigation system is

typically designed according to demands and environment limitations.

In this dissertation, the navigation system is designed for sake of map acquisition

in 2D indoor unknown environment, thus effective path exploration, shortest path

finding and obstacle avoidance must be well-designed. Path exploration and path

finding are challenging navigating problem, which is often solved sub-optimally via

simple heuristics.

3.2.2 Obstacle avoidance system

One of the challenges in designing intelligent autonomous mobile robots is

reliable obstacle avoidance. Obstacle avoidance [56, 58, 76, 96] plays an important

role in prevent both robot and object hit from damage. Obstacle avoidance can be

Chapter 3. Literature Review and Relevant Theory

Created by CHUI CHING YEE 23

divided into two parts, obstacle detection and avoidance control.

There are 2 sensors that widely used in detecting and avoiding obstacle, which

are sonar [44] and laser [58, 116] sensors. Numerous methods for obstacle

avoidance have been suggested, for example, stationary sonar sensors, a rotating

sonar sensor and laser scanner system. As only 2D environment is focused,

vision-based system [76] using camera is not necessary.

For stationary sonar sensors system with decentralized locating of several sonar

sensors, only the region in which the obstacle lies can be determined. Conversely,

neither the exact obstacle pose nor obstacle size can be determined.

The rotating sonar system compensates the weakness of stationary sonar sensors

system. It gives more accurate position for the obstacle. However, it is relatively

costly due to additional drive mechanism and requires complex programming to

control the drive mechanism. The motor has to rotate slowly so that the transducer

has enough time for the acoustic pulses transmission. Also, the vibration of the drive

motor causes data noise. Another disadvantage is the error in width detection because

of low angular accuracy. Both stationary and rotating sonar systems suffer to

problem of reflection and scattering of sound waves.

Laser scanners are found to be more reliable, it provides high position and

angular accuracy due to its high resolution of 0.25 degrees and tightly focused beam.

It is also able to detect multiple obstacles.

Table 3.3 shows the comparison of these three systems. Obviously, laser scanner

system is the best choice as obstacle avoidance system in this dissertation, due to its

benefits over sonar system.

Chapter 3. Literature Review and Relevant Theory

Created by CHUI CHING YEE 24

Criterion Stationary sonar Rotating sonar Laser scanner

Position of obstacle

Region in which it lies

can be determined

Approximately

estimation

Exact position can

be determined

Orientation of

obstacle

No
Approximately

estimation
Yes

Distance accuracy Low Low High

Angular accuracy - Low High

Obstacle size Cannot be determined Cannot be determined Can be determined

Multiple obstacle

detection

No No Yes

Data noise High High Low

Environment effect High High Low

Table 3.3 Comparison of three obstacle avoidance systems

3.2.3 Path exploration algorithm

Two major difficulties in path exploration is the need to cope with the large

amount of uncertainty environments and revisiting problem. Robots, which perform

pre-programmed sequences of operation, are lack of flexibility and are not able to

operate in new environment or to face unexpected situation. This may leads to

inefficient operation and time delay, especially in uncertainty or dynamic

environment.

In addition, during path exploration, the mobile robot will never know itself that

it was retracing its steps and revisit the same terrain. As a consequence, it will not be

able know if it have build the whole indoor map completely. Revisiting will exhaust

more time and result to ineffective map building.

Many algorithms done [92, 93] are on-line exploration and navigation.

Chapter 3. Literature Review and Relevant Theory

Created by CHUI CHING YEE 25

Hoffmann, Icking, Klein and Kriegel [94] have described a competitive on-line

strategy for polygon exploration. Important work done by Fox, Ko, Konolige and

Stewart [69] developed a hierarchical Bayesian approach to address with revisiting

problem.

A systematic search strategy is a significant solution to encounter the exploration

problems. Due to unknown state spaces, uninformed search algorithm [27, 28, 29, 30,

42] is suit for solving revisiting problem. There are two uninformed search strategies

that widely used in 2D search scheme:

1. Breadth-first Search

Breadth-first Search (BFS) is a graph search

algorithm that begins at a given vertex, which is at

level 0 and explores all vertices at level 1, then

explores all vertices at level 2, and so on. Refer to

Figure 3.1, the path generated is A – B – C – B –

D – E – F.

2. Depth-first Search

Depth-first Search (DFS) is another way of

traversing, which starts at a root and explores as

far as possible along each branch before

backtracking. It goes deeper and deeper until hits a

node that has no children, then backtracking to the

most recent node it has not explored. It is easy to program as a recursive routine.

Refer to Figure 2.4., the path generated is A – B – D – B – E – B – A – C – F.

 Both BFS and DFS use marks to keep track of the vertices that have already

been visited, and not visit them again. And both BFS and DFS are used to search

until goal is found. However, target or object finding is not concerned in path or map

Figure 3.1

Breadth-first Search

Figure 3.2 Depth-first

Search (DFS)

Chapter 3. Literature Review and Relevant Theory

Created by CHUI CHING YEE 26

exploration. Yet, these search approaches still can be applied theoretically in

exploration and navigation system to cope with revisiting problem.

For simplicity, DFS is a more suitable, optimal and effective algorithm to be used

as path exploration algorithm for map building. In consideration of effectiveness,

DFS will be modified, the detail will be discussed in Chapter 4.

3.2.4 Path finding algorithm

Once the navigable paths are found through path exploration algorithm, the

robot can move to the navigable paths. To make the robot to be useful and intelligent,

path finding algorithm is required to plan a safety and shortest route from source

(initial state) to destination (goal state) without possible obstacle collision.

 Informed/Heuristic Search Algorithms [27, 31, 60] is widely used in path

finding. It uses heuristic function [62] that estimates “distance” (cost) from the

current node/state to goal to guide search.

The A* Search [67, 82, 83] is common and widely used Informed Search

Algorithm for path planning. A* Search uses the known cost combined with an

estimate heuristic to choose a node to expand. It incrementally searches a sequence

of state transitions that leads a robot from its initial point to desired goal. A* is well

for static and deterministic environment.

Hierarchical Pathfinding A* (HPA*) [40] is a better version of A* using “divide

and conquer” technique. HPA* possesses Pre-processing Phase prior to Pathfinding

Phase, that divides the large grid into smaller clusters and builds a subgrid

connectivity graph.

To find exact the shortest path, Dijkstra's algorithm [34] is the best choice. It

Chapter 3. Literature Review and Relevant Theory

Created by CHUI CHING YEE 27

searches by expanding out equally in every direction, determines the distances

between one point to all other points, and eventually chooses the exact shortest path.

Dijkstra's algorithm usually ends up exploring a much larger area before the goal is

found. This generally makes it slower than A*.

The D* algorithm (Dynamic A*) [63, 64] is most widely used for path

re-planning at dynamic environment, due to its efficient use of heuristic and

incremental updates. It repairs or re-plans the path once new information is

discovered.

Stentz has developed Focussed D* [65] that repeatedly determines a shortest

path from the current robot coordinates to the goal coordinates while the robot moves

along the path. It is able to replan faster than planning from scratch.

Lifelong Planning A* (LPA*) [67] generalizes both A* and a version of

DynamicSWSF-FP. It is an incremental heuristic search method that repeatedly

determines shortest paths between two given vertices as the edge costs of a graph

change. This algorithm reconstructs only the areas affected by the changes to the

environment’s state.

A* algorithm is selected to be implemented in this project, since environment

concerned is static and deterministic, and A* provides faster computation and uses

smaller data storage than that of Dijkstra's algorithm.

3.3 Control Algorithm for Map Building with Autonomous

Navigation

 In autonomous robotics system, control algorithm is a vital architecture that

enables distributed and collaborative sensing and control. Three different approaches

Chapter 3. Literature Review and Relevant Theory

Created by CHUI CHING YEE 28

have been proposed:

1. Traditional approach – Sense Plan Act (SPA) Architecture

In the traditional approach [32], perception, planning and execution follow

each other in exact order (Figure 3.3). This theoretically enables robots to deal

with complex problems, yet its top-down behaviour makes it slow deliberative

and inflexible, and not suited for fast changing environments.

Figure 3.3 Sense Plan Act (SPA) Architecture

2. Subsumption / Reactive architecture

Rodney Brooks [74] criticised the weakness of traditional approach, to

provide deliberative architecture, Brooks created Subsumption Architecture

(refer to Figure 3.4), which advocates layering of behaviors architecture [35, 52].

All layers running in parallel with little interaction between them.

Figure 3.4 Subsumption Architecture

However, this approach is inflexibility at run time with relatively slow

Sensors Actuators

P
er

ce
p

ti
o

n

M
o

d
el

li
n

g

P
la

n
n

in
g

T
as

k
 E

x
ec

u
ti

o
n

M
o
to

r
C

o
n

tr
o

l

Sensors Actuators

Perception

Modelling

Planning

Task Execution

Motor Control

Chapter 3. Literature Review and Relevant Theory

Created by CHUI CHING YEE 29

response, significant processing power is required to maintain accurate up-to-date

all the time. Thus, it is well with low-level behaviours, such as obstacle

avoidance and wall following, but not suit for higher-level functions such as

learning or planning. This approach has been worked by some researchers [75,

77,117].

3. Hybrid architecture

To compensate the lack of higher functions, Hybrid architecture was

proposed. It applies behaviour-based, reactive system for low-level control, and a

central planning device for higher-level behaviours such as planning and

mapping. For an instance, SSS [36] is a hybrid 3-layer architecture applied by

Jonathan H. Connell. An interesting development of Hybrid architecture is the

use of a deliberative layer to perform higher-level functions like mapping and

navigation. This layer can be implemented through neural networks or genetic

algorithms, among others.

To ease construction, Sense Plan Act Architecture is concerned in this project. It

enables easy implementation of mapping, path planning and obstacle avoidance

algorithms in static environment.

Chapter 4. Methodology/ Algorithm

Created by CHUI CHING YEE 30

Chapter 4

Methodology/ Algorithm

4.1 Specifications and Assumptions

 The specifications of the robot simulation presented in this dissertation is given

below:

1. Player/Stage server environment will be configured to simulate the Pioneer robot

inside a series of 2D industrial warehouse terrains, each with square area of

16x16m2.

2. Only odometry device and laser scanner device are required.

3. The laser scanner device is able to scan a planar field of 180o with 0.5o resolution,

which consists of 361 samples of reading data (up to 4 meters).

4. The origin location of robot in environment is known.

5. The map model built is a grid of 160x160 cells (represents 16x16 m2), with

internal of 0.1m for each x-axis and y-axis.

Due to the nature of real world imperfections, some assumptions has been made

in this simulation, as given below:

1. The operation of the robot is ideal, i.e. there is neither systematic nor

non-systematic error which leads to measurement error, hence, localisation

techniques are not addressed

Chapter 4. Methodology/ Algorithm

Created by CHUI CHING YEE 31

2. The environment is under normal temperature with good visibility and good

condition that do not impair the accuracy of the laser reading

3. High precision laser and odometry devices do not deal with inaccuracies and

errors in reading

Assumptions made about the environment:

1. Static (unchanging)

2. Observable (can sense its initial and current state)

3. Discrete (world carved up into towns)

4. Deterministic (no unexpected events)

Other assumptions made during execution:

1. The rate of environmental change is zero and only a static environment is

addressed

2. The sequences are not overly complete so they do not perform computations that

take a long time which cause further time delay

3. Whole processes complete within one clock cycle of the robot execution.

4.2 Usage of Player/Stage Proxy Class

 In this project, the simulated Pioneer robot is implemented with a p2os [12]

controller to provides position2d [14] and laser [13] interfaces. Player/Stage

provides a C++ client library for a variety of devices of Player server, each

associated with appropriate and ready-to-use proxy classes.

In this robot simulation, for the laser scanner device, sicklms200 driver [11]

with laser interface [13] is used, which is associated with LaserProxy [15] class for

data acquisition. The Position2dProxy [16] class is associated with position2d

interface [14] to return odometry data, and accepts velocity commands.

Chapter 4. Methodology/ Algorithm

Created by CHUI CHING YEE 32

4.3 Map Building Algorithm

4.3.1 Map building architecture

Figure 4.1 Map building architecture

The map building architecture is described herewith. Figure 4.1 decribes map

building architecture possesses 4 major algorithms:

1. Computation of the position of laser reading in map model

First and foremost, the laser scanner reading data, with total of 361 samples,

must be translated into Cartesian [x,y] form. This will provide an outline of the

perimeter of the laser scanning area.

2. Interpretion of laser scanner reading into knowledge

All the 361 positions (cells in map model) must then be evaluated and

interpreted into useful knowledge. The knowledge is information that define the

property of the corresponding cell, whether the cell is occupied (indicates

obstacle in real world) or emptied (indicates free space in real world).

Interpretion of laser scanner reading

into knowledge

Determination of

occupancy value

Map building using

PNGwriter Graphic Library

Computation of position of

Laser reading in map model

Chapter 4. Methodology/ Algorithm

Created by CHUI CHING YEE 33

3. Determination of occupancy value using Probability Occupancy Grid Theory

Based on Probability Occupancy Grid Theory, cells are given certain

occupancy value of 0, 0.5 and 1, representing the property of the cell.

4. Map building using PNGwriter Graphic Library

Finally, with the occupancy values computed, the simulated environment

model can be created using the PNGwriter Graphic Library.

4.3.1.1 Computation of position of laser reading

As the origin location of the robot is known, intuitively, with odometry data, the

location of robot can be computed and defined in [x,y,θ] form, representing the

position and orientation of robot in map model. Then, by combining the laser reading,

the position of the laser reading at corresponding time can be computed.

Figure 4.2 Computation of position of laser reading

Chapter 4. Methodology/ Algorithm

Created by CHUI CHING YEE 34

 Refer to Figure 4.2,

 Given that origin location of robot in map model = (Xoffset, Yoffset, θoffset)

 After a duration of time, the new location of robot = (Xrobot, Yrobot, θrobot)

based on odometry data (Xodometry, Yodometry, θodometry),

 Xrobot = Xoffset + Xodometry*cos(θoffset) + Yodometry*cos(п/2 +θoffset) ---Equ 4.1

 Yrobot = Yoffset + Xodometry*sin(θoffset) + Yodometry*sin(п/2 +θoffset) ----Equ 4.2

 θrobot = θoffset + θodometry --- Equ 4.3

To calculate the position of laser reading Rj, first, the sample number of

0-360 must be convert to [-90o, 90o],

 notice from Figure 4.3(a), θ0 (sample no. 1) = - 90o

 θ180 (sample no. 181) = 0o

θ360 (sample no. 361) = 90o

 thus, it can be deduced that θj (sample no. j+1) = j/2 - 90o

 then, from Figure 4.3(b),

θj (sample no. j+1) = (j/2 - 90o)*п/180 o + θrobot (in radian) ----Equ 4.4

Figure 4.3 Computation of θj with (a) zero θrobot , (b) non-zero θrobot

Chapter 4. Methodology/ Algorithm

Created by CHUI CHING YEE 35

 Using Equ 4.4, the position of laser reading (Xj, Yj) in Figure 4.2 can be

found,

 Xj (sample no. j+1) = Xrobot + Rj * cos θj

 = Xrobot+ Rj * cos((j/2 - 90o)*п/180 o+θrobot) --Equ 4.5

 Yj (sample no. j+1) = Yrobot + Rj * sin θj

 = Yrobot+ Rj * sin((j/2 - 90o)*п/180 o+θrobot) --Equ 4.6

 With Equ 4.5 and Equ 4.6, the location for every sample of laser reading (Xj, Yj)

can be computed, and thus the closed curve bounding the sensoring area can be drew

into environment model later.

4.3.1.2 Interpretation of laser reading into knowledge

Refer to Figure 4.4, the laser

reading data acquired with a value of

4 meters indicates the cell is

absolutely emptied. On the other

hand, if the data range, Rj is shorter

than 4m, then this implies the cell

may be either occupied or emptied.

As a result, to distinguish if the

cell is occupied or emptied, apart

from laser reading data (Rj), the Euclidean distance between two successive points

need to be taken into account as well. If the Euclidean distance (DEud) between the

current point (sample no. j) and next successive point (sample no. j+1) is smaller

than 0.2m and the range of current reading (Rj) is less than 4m, then the cell

evaluated from the current reading is occupied. Otherwise, the cell is defined as

freespace.

Figure 4.4 Information extraction from

laser reading

Chapter 4. Methodology/ Algorithm

Created by CHUI CHING YEE 36

Pseudo Code 4.1 Interpretation of laser reading into knowledge

Pseudo Code 4.1 describes a methodology of interpreting laser reading into

knowledge about property of a cell. The profile of the size, shape, distance and

orientation of the obstacle in the scanned area thus can be estimated.

4.3.1.3 Determination of occupancy value

The objects are small areas tessellating the space and the basic property is the

fact that a cell is occupied or not. For simplicity, cells are given certain occupancy

values, where 0 represents an empty cell, 1 represents a cell that is occupied, and 0.5

is an unknown or unexplored cell.

 In this map building algorithm, to produce an up-to-date map, all occupancy

values will be updated, in such a way simply overwrote or replaced by new

information.

4.3.1.4 Map building using PNGwriter Graphic Library

Lastly, the image of map model can be created using the PNGwriter Graphic

Library. The image presents an occupancy grid map (Metric Map) with 160x160

pixels/cells. With occupancy value of 0.5, the cell will be grey in colour. Whereas,

for occupancy value of 0 and 1, the cell is white and black respectively.

If (Rj = 4)

 then (Xj,Yj) is emptied

else if (Euclidean distance between (Xj,Yj) and (Xj+1,Yj+1) <0.2)

 then (Xj,Yj) is occupied

else

 then (Xj,Yj) is emptied

Chapter 4. Methodology/ Algorithm

Created by CHUI CHING YEE 37

4.3.2 Map building algorithm

Flow Chart 4.1. Map building algorithm

 The complete map building algorithm is illustrated in Flow Chart 4.1. For every

sample of laser reading, the position of the laser reading is firstly computed, then

interpreted into property of cell as either occupied or emptied using occupancy value

[0,1], finally specific colours are given for map model rendering using PNGwriter

Graphic Library.

For (j = 0, j <361, j++)

Compute position (Xj,Yj)

If Euclidean distance

between (Xj,Yj) and

(Xj+1,Yj+1) <2 ?

(Xj,Yj) = 1

(occupied)

(Xj,Yj) = 0

(emptied)

Yes No

Map creation

(Xj,Yj) = 1 ?

(Xj,Yj) = 0 ?

cell is black

cell is white

cell is grey

Yes

Yes

No

No

Yes No Rj= 4?

Chapter 4. Methodology/ Algorithm

Created by CHUI CHING YEE 38

4.4 Autonomous Navigation Algorithm for Map Exploration

4.4.1 Autonomous navigation architecture

 In the robot control system, an

autonomous navigation system is used for

map exploration in an unknown environment.

Hence, obstacle avoidance and path finding

are essential parts in avoiding uncertainty

obstacle and navigating robots effectively.

The navigation architecture is shown in

Figure 4.5.

4.4.1.1 Obstacle avoidance algorithm

Flow Chart 4.2 Obstacle avoidance algorithm

In this obstacle avoidance system, the simulated robot simply avoid the obstacle

in front. It can be divided into 2 parts, obstacle detection and avoidance control

(Flow Chart 4.2).

If any obstacle detected

within obstacle

detection area?

Robot control system

Take suitable action

to evade the obstacle

Yes

No Obstacle

detection
Obstacle

avoidance

system

Avoidance

control

Figure 4.5 Autonomous

 navigation architecture

Obstacle avoidance algorithm

Path exploration algorithm

Path finding algorithm

Chapter 4. Methodology/ Algorithm

Created by CHUI CHING YEE 39

For obstacle detection part, initially the maximum detection range needed to be

considered, in such a way that the robot is able to move very close toward the front

obstacle without hitting it. Next, the detection angle also needed to be determined, so

that the robot only will avoid the front obstacle that located within certain angle.

Figure 4.6 Obstacle detection area

 Figure 4.6 shows the obstacle detection area of simulated robot. The simulated

robot is a polygon with approximately 0.4m in width. Intuitively, the width of

obstacle detected (W) must be larger than width of simulated robot to avoid obstacle

collision. Hence, the value of W will be set to 0.5 meters. In considerating of time

delays, the maximum detection range (R) will then set to 0.6 meters. so that enabling

the simulated robot to move towards until 0.6m far from front obstacle.

 To obtain obstacle detection area desired, some mathematical calculations must

be applied as following:

Chapter 4. Methodology/ Algorithm

Created by CHUI CHING YEE 40

 Assume θ is small enough, that r ≈ R,

 Given that W=0.5 and R=0.6,

 sin θ = W / (2*R)

 θ ≈ 25 o

θ1 = 90o – θ = 65o

θ2 = 90o + θ = 115o

Since the resolution of laser sensor is 0.5o,

thus, the sample no. corresponding to θi = 2*θi + 1

 sample no. of θ1= 2*θ1 + 1 = 131

 sample no. of θ2= 2*θ2 + 1 = 231

The obstacle detection area is thus a cone shape, with a radius of 0.6m and angle

of 50 o, start from 65o (sample no. 131) until 115o (sample no. 231). Once an obstacle

is detected within this area (Pseudo Code 4.2) irrespective of the type of obstacle,

reasonable avoidance action (Pseudo Code 4.3) will be taken by turning the robot at

its current position until there is no obstacle detected, it then move forward for

another 2 seconds before it can perform other tasks.

The direction of turning depends on the position of the obstacle. If the minimum

laser reading of sample number 131-181 is smaller than that of sample number

181-231, indicating the right upper corner of robot closer to the obstacle, then the

robot should turn to the left, and vice versa.

Pseudo Code 4.2 Obstacle detection

For (laser sample no. 143 until 219)

{

 if laser reading[sample no.] < 0.6

 then obstacle is detected

}

Chapter 4. Methodology/ Algorithm

Created by CHUI CHING YEE 41

Pseudo Code 4.3 Avoidance control

4.4.1.2 Path exploration algorithm using modified DFS paradigm

 The path exploration algorithm is vital for searching navigable paths/points and

determining which path/point should robot move to for map acquisition without

revisiting. To compute the navigable points, first, the interpretion of sensory data into

knowledge must be done (as explained in section 4.3.1.1 and section 4.3.1.2) to

determine free space and obstacle. The middle point (Xmid,Ymid) between 2 obstacles

(X1,Y1) and (X2,Y2) then is computed and evaluated as navigable point (Equ 4.7).

Figure 4.7 Determination of navigable points for path planning

If obstacle detected

{

 for (laser sample no. 131 until 181)

 find minimum laser reading, MinRight

 for (laser sample no. 181 until 231)

 find minimum laser reading, MinLeft

 if (MinLeft <= MinRight)

 turn to right until no obstacle detected

 else

 turn to left until no obstacle detected

 move forward for 2 seconds

}

Chapter 4. Methodology/ Algorithm

Created by CHUI CHING YEE 42

From Figure 4.7,

(Xmid,Ymid) = ((X1+X2)/2 , (Y1+Y2)/2) --------------------------------- Equ 4.7

Next, by using the Depth-First Search (DFS) concept, one of navigable points is

chosen and followed until an dead end is reached, the robot then backs up until the

point (“parent”) has unvisited “child” and continue the unvisited “child”. Hence, the

path generation by robot in Figure 4.7 is P – Q – P – R.

To reduce map exploration time, the DFS algorithm is modified to eliminate

redundancy. In Figure 4.7, both R and Q are childs of P, the robot reverse directly

from Q to R without passing through their parent P. The path will then be P – Q – R.

Figure 4.8 Path generated using

 (a) DFS algorithm

 (b) modified DFS algorithm

To explain this further, Figure 4.8(a) and Figure 4.8(b) show the comparison of

the paths generated using DFS and the Modified DFS algorithm respectively.

Obviously, the path generated using Modified DFS is shorter than that of DFS due to

shortcut between D-E and B-C.

Furthermore, the Modified DFS algorithm is created in such that it can deal with

complex and cross-link paths, as shown in Figure 4.9(a). Once an unvisited “child”

is being scanned twice, the “child” will be erased to avoid revisiting.

Chapter 4. Methodology/ Algorithm

Created by CHUI CHING YEE 43

Figure 4.9 Modified DFS algorithm for complex and cross-link paths exploration

Below are the steps of path exploration for Figure 4.9:

(a) Initial node A is marked as “Visited”, and the robot scans 360o and finds the

unvisited child node B and C, B is chose to navigate to.

(b) Reaches B, marks B “Visited”, scans and finds out unvisited child D and E, chose

to forward to D.

(c) Reaches D, marks D “Visited”, scans and finds out unvisited child F, navigate to

child F.

(d) Reaches F and marks F “Visited”, scans, seeks out child G and discovers C being

re-scanned twice, C is erased and replaced by G, move to G.

(e) Reaches G and marks G “Visited”, scans, discovers unvisited child H, move to H.

(f) Reaches H and marks H “Visited”, scans, discovers it is a dead-end without

further unvisited child, decides to reverse to unvisited E via G (H’s parent), F

(G’s parent) and D (F’s parent).

Chapter 4. Methodology/ Algorithm

Created by CHUI CHING YEE 44

(g) Reaches E and marks E “Visited”, scans and dead-end is found, since there is no

other unvisited nodes, implies that all possible paths have been explored and

visited, robot terminates.

In complex and cross-link paths, the robot may have a few of transition paths

from one node to another. For an instance, at step (f) above, when the robot reverse

from node H to node E, there are more than one navigation paths, i.e. H – G – F – D

– E path, H – G – A – B – E path. To fasten the navigation time, a shortest path

should be evaluated. A path planning algorithm herewith play an essential role,

which will be discussed later.

To put into practice, the modified DFS path exploration algorithm can be

implemented using a state machine as shown in Figure 4.10.

Figure 4.10 State machine of path planning algorithm using modified DFS

Break from loop

0

1

2

3

4

Scan,

erase unvisited point in L that being re-scanned,

find navigable points,

add to list L

Set point at end of L as

goal (LIFO)

Navigate to goal using

path planning algorithm

Goal has been

visited before

Goal not yet

visited before

Reverse

by remove

end point

of L

L not empty

Dead-end
New unvisited points

are added to List L

L is empty

Chapter 4. Methodology/ Algorithm

Created by CHUI CHING YEE 45

Pseudo Code 4.4 Path exploration algorithm using modified DFS paradigm

Below is the step by step implementation along with its pseudo code shown in

Pseudo Code 4.4:

1. Initially, the state = 0.

2. The robot scans 360o and checks if any unvisited point in list L is located in

current scanning field. If yes (means that point is linked to current point),

remove that point from list L. Otherwise, do nothing.

state = 0;

list L = empty

while (state !=4)

{

 if state = 0

 scan 360o

 if an unvisited point in L is re-scanned

remove that point from L

 determine new navigable points and add into L

if point at end of L is unvisited

state = 1

 else

state =3

else if state = 1

 if L not empty

set point at end of L as goal , state = 2

 else

state = 4

 else if state = 2

 navigate robot towards goal

 if the goal has been visited, state = 3

 else mark goal as visited, state = 0

 else if state = 3

 remove point from end of L, state = 1

}

Chapter 4. Methodology/ Algorithm

Created by CHUI CHING YEE 46

3. Determines all navigable points using Equ 4.7, then push only new and

unvisited points into list L. If the last point in list L is unvisited (indicates

new unvisited points are added), then state = 1 (go to step 4). Otherwise,

robot is assumed experiences a dead-end, state = 3 (go to step 7).

4. If the list L is not empty, using LIFO (Last -In First-Out), set the point in the

end of list L as goal, state = 2 (go to step 5). Otherwise, map building is

assumed complete, state = 4 (go to step 8).

5. Navigate robot towards goal with assist of a path planning algoritm

6. Repeat step 5 until the robot reaches the goal, if the goal originally mark

unvisited, then mark it as visited and state = 0 (go to step 2). If the goal

already marked as visited, then state = 3 (go to step 7)

7. Pop out the point in the end of list L, state = 1 (go to step 4)

8. Break from while loop

4.4.1.3 A* path finding algorithm

Once a goal is determined, the A* path finding algorithm is implemented to plan

a shortest and safest route from the initial state to goal. This improves efficiency,

provides time saving and removes the obstacle collision problem which the robot

may face without A* algorithm.

Instead of searching every point, A* expands the node/state that appears to be

closest to the goal and avoids expanding paths that are already expensive. A* uses

evaluation function (Equ 4.8) to select which nodes/state to expand.

f(n)=g(n) + h(n) -- Equ 4.8

 where g(n) - the cost (so far) to reach the node n

 h(n) - estimated cost to get from the node n to the goal

f(n) - estimated total cost of path through n to goal

Chapter 4. Methodology/ Algorithm

Created by CHUI CHING YEE 47

 Two fundamental issues need to be known before getting start to A* algorithm:

1. Method for estimating heuristic, H [62]

Manhattan Method (Equ 4.9), Diagonal Shortcut Method (Equ 4.10) and

Euclidean Distance Method (Equ 4.11) are widely used methods for calculating

heuristic, H. The closer estimated H is to the actual remaining distance along the

path to the goal, the faster A* will find the goal.

Manhattan Method:

H = 10 * (∆x +∆y) -- Equ 4.9

Diagonal Shortcut Method:

 -------------------------- Equ 4.10

 Euclidean Distance Method:

 H = 10 *√(∆x2 + ∆y2) -- Equ 4.11

where ∆x = abs(currentX-targetX), ∆y = abs(currentY-targetY)

2. G scoring and arrow interpretation

In Figure 4.11(a), a cost of 1 should be assigned to G for each horizontal or

vertical move, and a cost of 1.414 (√2) for a diagonal move. For simplicity sake,

10 and 14 are used as shown in Figure 4.11(b).

Figure 4.11 G scoring and arrow interpretation

Chapter 4. Methodology/ Algorithm

Created by CHUI CHING YEE 48

The arrows shown in Figure 4.11(a) indicate all of the neighbouring squares

are “child” squares of the middle grey square (“parent” square). This parent

square pointing is important for tracing path. To interpret the arrow pointing into

word for programming, chain coding with 8-connectivity representation [37, 38]

is used to define the position of one square relative to its “parent” square, as

shown in Figure 4.11(b).

Pseudo Code 4.5 A* path planning algorithm

 Below is the implementation of the A* algorithm (refer to Pseudo Code 4.5):

1. The initial square is added to open list.

2. If the open list is empty, go to step 5. Otherwise, select a square with lowest F

cost in open list, set it as “parent” square and swap it to closed list.

3. For each of the 8 adjacent/“child” squares to this “parent” square,

i. if it is the goal, adds it to closed list, with chain code as well, go to step 4.

ii. if it is not walkable or it is in the closed list, skip step iii and iv.

open list O = empty, closed list C = empty, bool success = true, int state = 1

add starting square into list O

while (current point !=goal)

{

if (state =1)

 if O is empty, success = false, break

else, selects lowest F square in O as “parent”, moves it form O to C

state = 2

 else

for (each “child” square)

 if (“child” square is walkabe and not in C)

 if (“child” square not in O)

 calculate F, G, H, add to O with chain code

 else

 if(new G < existing G)

 replace with new chain code, F, G, H

 if “child” square is 8
th
, state = 1

}

if (success), find path form C by working backwards from goal to starting square

Chapter 4. Methodology/ Algorithm

Created by CHUI CHING YEE 49

iii. if it is not in open list, adds it to the open list. Simultanously, the F, G and

H scores of the square are computed, and appropriate chain code (points to

current “parent” square) is recorded.

iv. if it is in the open list already, check if new calculated G lower than existing

G. If so, means the new G gives better path, replace an appropriate chain

code to the existing square (indicates current “square point” it should point

to), and recalculate the G and F scores.

v. if it is the 8th “child” square, go to step 2. Otherwise, go to step 3.

4. From closed list, find out the goal square, go reverse to its parent (which chain

code point to), then go from that square to its parent again, and so on, until

starting square. This is the path. Path finding task terminates.

5. Fail to find goal, path finding task terminates with failure.

4.4.2 Autonomous navigation algorithm

Flow Chart 4.3 Autonomous navigation algorithm

If any obstacle

detected in obstacle

detection area?

Avoidance control

(Set appropriate

speed and turn rate)
Set appropriate

command

Path exploration

with path finding

algorithm

Obstacle detection

Command

execution

Odometry and laser

data acquisition

Chapter 4. Methodology/ Algorithm

Created by CHUI CHING YEE 50

Flow Chart 4.3 shows the autonomous navigation algorithm. First and foremost,

the simulated robot checks if any obstacle is detected within the obstacle detection

area. If there is an obstacle, then it executes avoidance algorithm. Otherwise, it will

proceed to path exploration or path finding processes. The appropraite commands

will then be executed.

4.5 Control Architecture – Sense-Plan-Act (SPA) Approach

By using the Sense-Plan-Act approach, the autonomous robotics first attempts to

interpret its sensory data to build a model of the world, and next the robot uses the

model to plan its actions, and finally it would act on those plans.

Figure 4.12 Structure of robot control system using SPA paradigm

Laser scanner

data acquisition

Interpretation of sensory data

into knowledge

Map modelling

Path exploration

Path finding

Command execution

Stop Turn

direction

Maintain

forward

Sensing layer

(Player)

Acting layer

(Player)

Planning layer

(Client program)

Obstacle avoidance

Chapter 4. Methodology/ Algorithm

Created by CHUI CHING YEE 51

Figure 4.12 illustrates the structure of robot control system using

Sense-Plan-Act concept for autonomous navigation with map building. Obviously,

Player provides the benefit of acquiring the laser scanner reading (Sensing Layer)

and generating the motion command (Acting Layer).

For the Planning Layer, client program interprets the sensory data into

knowledge, implements obstacle detection and executes avoidance action if required.

Otherwise, it produces the model map of world. The model map then served as input

along with goal (determined by path exploration algorithm) to the path finding

process, develops a path for robot. Appropriate speed and direction of robot are

evaluated and determined.

Finally, the decided motion command is issued to the Player for execution,

which means down to the actuator level (robot motor).

Chapter 5. Map Benchmarking Suite

Created by CHUI CHING YEE 52

Chapter 5

Map Benchmarking Suite

The accuracy of map model is crucial in estimating the effectiveness and

reliability of the map building algorithm. A fitness function must be used to evaluate

the quality of the map created in order to guide the map building algorithm. In order

to gauge the accuracy and effectiveness of the map building system, a variety of

benchmarking methods [44, 71] for comprehensive analysis of maps generated have

been carried out. The comprehensive suite of map benchmarking techniques

includes:

1. Cross Correlation [28]

2. Map Score

3. Map Score of Occupied Space

5.1 Cross Correlation

Baron’s Cross Correlation Coefficient [80, 81] is a basis image comparison

algorithm for evaluating map. It is based on template matching, which was initially

used for face reorganization [79]. Baron’s cross correlation coefficient, CN (Equ 5.1),

rescales the energy distributions of the template and the image, in order to match

their averages and variances.

Chapter 5. Map Benchmarking Suite

Created by CHUI CHING YEE 53

 -- Equ

5.1

where CN(y) = cross correlation coefficient over the area being

matched

<IT> = , average or mean of generated map, IT

<T> = , average or mean of ideal map, T

<IT T > = , average of 2 combined maps

σ(IT) = , standard deviation of a map IT

 σ(T) = , standard deviation of a map T

where ix,y= value of cell at (x,y) in map IT

tx,y= value of cell at (x,y) in map T

 n = number of cells in map IT

This benchmark is quite robust to noise, and can be normalised to allow pattern

matching independently of scale and offset in the images. A higher coefficient value

indicates the map being tested has a high degree of similarity to ideal map.

However, Cross Correlation also has drawback of having possibility to get high

correlation value even when the map generated is inaccurate. This is due to the fact

that it factors the average and standard deviation of the map, instead of cell by cell

comparison.

For an instance, Figure 5.1(a) shows an ideal map and Figure 5.1(b) shows a

generated map with curved obstacle distorted by robot odometry error, even they are

Chapter 5. Map Benchmarking Suite

Created by CHUI CHING YEE 54

quite difference, these two maps’ average values are similar through coincidence as

they have equal number of occupied and emptied cells, as a consequence, they might

be given a high correlation value.

Figure 5.1 A typical corridor (a) ideal map, (b) generated map with curved obstacle

(source from [44])

5.2 Map Score

Martin and Moravec [78] proposed Map Score, a map comparison measure

specifically for probabilistic maps. Unlike correlation, map scoring calculates the

difference of two maps based on a cell-by-cell comparison. The lower the difference,

the greater the similarity is. Given two maps, M and N, the score between them is

calculated using equation:

--- Equ

5.2

where mX,Y = value of the cell at position (x,y) in map M

nX,Y = value of the cell at position (x,y) in map N

The weakness of this map matching technique is that it overestimates the empty

regions of space. This is because in many environments, there are large amounts of

unoccupied spaces, with a few small obstacles distributed within that space. Even if

the sensor model misses an obstacle, it is only slightly increase score value, since it

Chapter 5. Map Benchmarking Suite

Created by CHUI CHING YEE 55

computes the wrong value for small number of cells.

5.3 Map Score of Occupied Cells

To remedy the weakness of the Map Score explained above, the Map Score is

modified in such a way only testing the correctness of the obstacles in the map,

ignoring the free space areas. For any two maps M and N, if either the value mX,Y

>0.5 or nX,Y >0.5, then the squared difference between those two cells is added to the

final score. Otherwise, they are ignored.

This technique is able to indicate the strengths and weaknesses of the laser

model used. If the sensor model misses an obstacle that it should detect, it will give a

worse (higher) score. Besides, if the reading is too long which results in shadows

behind the obstacle, then the worse score will be given as well.

Figure 5.2 A typical corridor with ‘shadow’ (source from [44])

In Figure 5.2, when scoring using Map Score method, it would seem to be a

very good map, again due to well-defined and large amount of the free space.

However when comparing just the occupied cells, the score will be much more

higher since there are many more occupied cells than there should be.

Unfortunately, both Map Score and Map Score of Occupied Cells methods rely

on the two maps being in the exact same orientation and translation, with no

odometry error or with very effective localisation algorithms.

Chapter 6. Empirical Evaluation

Created by CHUI CHING YEE 56

Chapter 6

Empirical Evaluation

6.1 Obstacle Avoidance Algorithm

The obstacle avoidance system is a key part of the control system and it is

sensitive to time delays. A lack of synchronisation will effectively end-up in a

collision.

6.1.1 Ideal case

Figure 6.1 Ideal obstacle detection and avoidance

Chapter 6. Empirical Evaluation

Created by CHUI CHING YEE 57

 Figure 6.1 demonstrates the response of the mobile robot once the obstacle is

detected within a preset range (0.6m in front of obstacle) in an ideal case without any

delay. However, mobile robots nowadays are designed to be autonomous, intelligent

and robust, so that it has capability of executing series of tasks. Thus, the processes

comprise a series of computational functions, which may cause time delay and affect

the performance of obstacle avoidance system.

6.1.2 Case of asynchronous lower layer functions

Figure 6.2 Series of obstacle avoidance algorithm empirical results for

(a) ≈0, (b) ≈500, (c) ≈1000, (d) ≈1500, (e) ≈2000, (f) ≈2500, (g) ≈3000, (h) ≈3500,

lines of lower layer functions

Figure 6.2 shows the case of asynchronous processes which execute simple

computational functions for lower layer functions, such as wall following. Obviously,

Figure 6.2(a), Figure 6.2(b) and Figure 6.2(c), which execute approximately 0, 500

and 1000 lines of computational instructions respectively, are able to perform real

time obstacle detection and avoidance. This is due to the processes can be executed

within one clock pulse.

Chapter 6. Empirical Evaluation

Created by CHUI CHING YEE 58

Figure 6.2(d) describes the robot addresses to time delay problem due to

execution of approximately 1500 lines of computational instructions, thus it only

executes obstacle detection and avoidance at 0.5m away from obstacle. This become

worse for Figure 6.2(e) and Figure 6.2(f), obstacle avoidance only executed when the

robot is 0.4m and 0.3m respectively far from obstacle.

When the robot executes more than 3000 computational instruction lines, due to

long computational time, the robot is not able to detect obstacle within reasonable

time. As a consequence, the robot crashes with the obstacle and become jammed.

Graph 6.1 Obstacle avoidance empirical results for lower layer functions

 Graph 6.1 outlines the performance of obstacle avoidance system in term of

number of simple computational instruction lines executed using formula below:

 --------------------------------Equ 6.1

where D = the distance between robot and obstacle where avoidance

action took place

Chapter 6. Empirical Evaluation

Created by CHUI CHING YEE 59

 For the sake of executing fast obstacle avoidance, high accuracy of at least 90%

must be obtained such that the robot able to detect the obstacle once it reaches 5.54m

– 6m far from the obstacle, and appropriate action can be took instantly to avoid

collision.

6.1.3 Case of asynchronous higher layer functions

In the case of executing higher layer functions, such as path planning and map

building which embeds file reading and writing processes, the time consumed is

much higher than that of lower layer functions.

Figure 6.3 Series of obstacle avoidance algorithm empirical results for

(a) 1, (b) 2, (c) 3, (d) 4, higher layer functions

Figure 6.3(a) shows robot detects the obstacle at 0.5m from it when

implementing one higher layer function, gives accuracy of 83.33% using Equ 6.1.

When implementing two higher layer functions (Figure 6.3(b)), obstacle detection

occurs at 0.4m with accuracy of 66.67%. Besides, the robot collides with obstacle

when implementing more than two higher layer functions as shown in Figure 6.3(c)

and Figure 6.3(d).

Chapter 6. Empirical Evaluation

Created by CHUI CHING YEE 60

Graph 6.2 Obstacle avoidance empirical results for higher layer functions

Graph 6.2 illustrates that the execution of one higher layer function is acceptable

for fast obstacle avoidance, which provides accuracy of 83.33%. In other words,

execution of more than two asynchronous higher layer functions will significantly

affect the performance of the obstacle avoidance system.

6.1.4 Discussion

A fast or real time obstacle avoidance system is able to detect and avoid the

obstacle instantly. Conversely, a slow response obstacle avoidance system may not

able to detect and avoid the obstacle which it should be. In the worst case, a high

time delay due to asynchronous, complex and time-consuming process will cause the

obstacle avoidance system lost its function, lead to collision and robot damage. To

combat this problem, synchronous processes should be used.

6.2 A* Search Algorithm for Path Finding

 There are four important criteria [31, 45, 50] for the search algorithm:

1. Completeness – ability of finding solution if one exists

2. Optimality – ability of finding the best solution from a set of possible solutions

Chapter 6. Empirical Evaluation

Created by CHUI CHING YEE 61

3. Time complexity – defines how fast the algorithm perform a search

4. Space complexity – defines how much memory the algorithm requires to perform

a search

6.2.1 Evaluation of A* search algorithm

 The A* search algorithm is evaluated based on the four criteria for various

terrain. Three heuristic estimation methods are evaluated as well for comparison,

they are Manhattan Method, Diagonal Shortcut Method and Euclidean Distance

Method.

 For Figure 6.4 until Figure 6.11 (all maps are 160x160 cells in size), the

following representation is used:

 source cell/node, destination cell/node

 unexplored free space cell, obstacle

 explored cell (saved in open list)

 explored cell (saved in closed list)

 path evaluated by A* search algorithm

Figure 6.4 A* search algorithm evaluation from node (10,10) to (10,150) using

(a)Manhattan Method, (b)Diagonal Shortcut Method, (c)Euclidean Distance Method

Chapter 6. Empirical Evaluation

Created by CHUI CHING YEE 62

Figure 6.5 A* search algorithm evaluation from node (10,10) to (150,150) using

(a)Manhattan Method, (b)Diagonal Shortcut Method, (c)Euclidean Distance Method

Figure 6.6 A* search algorithm evaluation from node (10,10) to (80,150) using

(a)Manhattan Method, (b)Diagonal Shortcut Method, (c)Euclidean Distance Method

Figure 6.7 A* search algorithm evaluation from node (80,10) to (80,150) using

(a)Manhattan Method, (b)Diagonal Shortcut Method, (c)Euclidean Distance Method

Chapter 6. Empirical Evaluation

Created by CHUI CHING YEE 63

Figure 6.8 A* search algorithm evaluation from node (10,10) to (10,153) using

(a)Manhattan Method, (b)Diagonal Shortcut Method, (c)Euclidean Distance Method

Figure 6.9 A* search algorithm evaluation from node (10,10) to (10,90) using

(a)Manhattan Method, (b)Diagonal Shortcut Method, (c)Euclidean Distance Method

Figure 6.10 A* search algorithm evaluation from node (80,70) to (10,90) using

(a)Manhattan Method, (b)Diagonal Shortcut Method, (c)Euclidean Distance Method

Chapter 6. Empirical Evaluation

Created by CHUI CHING YEE 64

Figure 6.11 A* search algorithm evaluation from node (10,10) to (70,90) using

(a)Manhattan Method, (b)Diagonal Shortcut Method, (c)Euclidean Distance Method

All the figures above show that the A* algorithm is able to find a solution/path if

one exists. All measurements are records in Table 6.1 for comparison.

Optimal Space (memory)

Figure

Complete

if one

exists?

No.

of

cells

Length

No. of

turning

points

Time

taken

Space

in

close

list

Space

in

open

list

Total

space

(a) Yes 471 626.2 14 33 10876 307 11183

(b) Yes 471 626.2 24 38 12439 264 12703 6.4

(c) Yes 471 626.2 32 40 12709 261 12970

(a) Yes 236 312.8 8 2 237 404 641

(b) Yes 222 287.6 20 11 5785 246 6031 6.5

(c) Yes 222 287.6 24 16 7948 254 8202

(a) Yes 185 249 6 6 3771 488 4259

(b) Yes 185 249 8 8 4613 254 4867 6.6

(c) Yes 185 249 19 9 5339 260 5599

(a) Yes 210 278 10 16 5874 269 6143

(b) Yes 210 278 11 26 9135 488 9623 6.7

(c) Yes 210 278 23 25 10224 419 10643

(a) Yes 1146 1586.4 30 14 6761 299 7060

(b) Yes 1146 1586.4 37 15 7083 171 7254 6.8

(c) Yes 1146 1586.4 38 16 7134 172 7306

(a) Yes 411 554.2 12 23 8696 269 8965

(b) Yes 411 554.2 22 28 10567 226 10793 6.9

(c) Yes 411 554.2 30 27 10863 147 11010

Chapter 6. Empirical Evaluation

Created by CHUI CHING YEE 65

(a) Yes 376 507.2 13 23 8697 269 8966

(b) Yes 376 507.2 23 28 10568 226 10794 6.10

(c) Yes 376 507.2 31 28 10864 147 11011

(a) Yes 1134 1578.8 30 33 10698 67 10765

(b) Yes 1134 1578.8 31 33 10787 61 10848 6.11

(c) Yes 1134 1578.8 38 36 10794 63 10857

Table 6.1 A* search algorithm evaluation for various terrain using

(a)Manhattan Method, (b)Diagonal Shortcut Method, (c)Euclidean Distance Method

From Table 6.1, all of the three heuristic methods generally assess same number

of cells/nodes for path generated with same length, this mean the paths searched are

the best and optimal.

 In considering of time complexity, searching using A* can be very time

consuming if lots of obstacles exist between source and destination (such as Figure

6.7 and Figure 6.10) or estimated H is inadmissible (such as Figure 6.4, Figure 6.8,

Figure 6.9, Figure 6.10, Figure 6.11). Otherwise, A* algorithm can operate well with

reasonable time consumed.

When considering space complexity, since all cells/nodes expanded must be

saved in memory, a large amount of memory is required for existence of either many

obstacles or inadmissible H estimated, these are proved in Figure 6.4, Figure 6.9,

Figure 6.10, and Figure 6.11.

Again refer to Table 6.1, among the three heuristic methods, Manhattan Method

has predominance which always provides the least number of turning points.

Furthermore, compared to others, Manhattan Method always consumes the least time

and space complexity (refer Graph 6.3 and Graph 6.4), and provides faster path

finding.

However, Manhattan Method may not give shortest or optimal path, for an

Chapter 6. Empirical Evaluation

Created by CHUI CHING YEE 66

instance in Figure 6.5, A* using Manhattan Method evaluate path with 312.8 in

length, which is longer than that of both Diagonal Shortcut and Euclidean Distance

Methods (287.6 in length).

Time complexity for three heuristic methods

0

5

10

15

20

25

30

35

40

45

Fig 6.4 Fig 6.5 Fig 6.6 Fig 6.7 Fig 6.8 Fig 6.9 Fig 6.10 Fig 6.11

Figure

T
im

e
co

m
p

le
x
it

y

Manhattan Method

Diagonal Shortcut Method

Euclidean Distance Method

Graph 6.3 Time complexity for Manhattan, Diagonal Shortcut

and Euclidean Distance Methods

Space complexity for three heuristic methods

0

2000

4000

6000

8000

10000

12000

14000

Fig 6.4 Fig 6.5 Fig 6.6 Fig 6.7 Fig 6.8 Fig 6.9 Fig 6.10 Fig 6.11

Figure

S
p

a
ce

 c
o

m
p

le
x

it
y

Manhattan Method

Diagonal Shortcut Method

Euclidean Distance Method

Graph 6.4 Space complexity for Manhattan, Diagonal Shortcut

and Euclidean Distance Methods

Chapter 6. Empirical Evaluation

Created by CHUI CHING YEE 67

Figure 6.12 A* algorithm evaluation from (10,10) to unreachable node (40,35) using

(a)Manhattan Method, (b)Diagonal Shortcut Method, (c)Euclidean Distance Method

Optimal Space (memory)

Figure

Complete

if one

exists?

No.

of

cells

Length

No. of

turning

points

Time

taken

Space

in

close

list

Space

in

open

list

Total

space

(a) - - - - 75 14764 0 14764

(b) - - - - 69 14764 0 14764 6.12

(c) - - - - 83 14764 0 14764

Table 6.2 A* search algorithm evaluation for unreachable goal using

(a)Manhattan Method, (b)Diagonal Shortcut Method, (c)Euclidean Distance Method

The A* algorithm faces problem of exponentially time and space complexity

increasing. Seaching for an unreachable goal (Figure 6.12) exacerbates the problem,

this is due to the searching only stop when the open list is empty (Table 6.2). In other

words, all possible nodes are expanded. If a huge map is used, then time complexity

will increase dramatically or even to infinity due to unlimited space complexity.

6.2.2 Discussion

In general, the A* search algorithm provides complete and optimal solution. It is

well for existance of less obstacles between source to destination. The closer

estimated H is to the actual remaining distance along the path to the goal, the faster

Chapter 6. Empirical Evaluation

Created by CHUI CHING YEE 68

A* will find the goal. If there is lots of obstables between two points that make H

inadmissible, then A* will face dificulty or even failure in finding the path to goal.

Besides, the time and space complexity are vary within range [0,∞] depending on

terrain and size of terrain.

Manhattan Method has predominance over both Diagonal Shortcut and

Euclidean Distance Methods due to its advantages of lower time and space

complexity, even the path found may not be optimal.

6.3 Modified DFS Algorithm for Path Exploration

6.3.1 Evaluation of Modified DFS algorithm

Figure 6.13 Modified DFS algorithm evaluation (a) original map (b) map model

 Figure 6.13 illustrates how the Modified DFS algorithm operates for path

exploration and navigation. Figure 6.13(a) shows an ideal map environment, and

Figure 6.13(b) shows the exploration process and how the exploration is carried out

by the robot from point A to point V.

Note that, by implementing the Modified DFS algorithm, the revisiting problem

that is inherent in the original DFS has effectively been solved. In the example

illustrated, during path exploration, points I and O are dynamically deleted and thus

Chapter 6. Empirical Evaluation

Created by CHUI CHING YEE 69

will not be visited.

Figure 6.14 Steps of path exploration and navigation using modified DFS algorithm

Existing unvisited points

Step

Robot

located

at

Unvisited

points

detected

Points

detected
Corresponding

action

Any

unvisited

points in

list?

Action/

Navigation

1 A(10,10)
B(46,14)

C(21,43)
- - Yes Moves to B

2 B D(82,14) - - Yes Moves to D

3 D E(118,14) - - Yes Moves to E

4 E F(137,14) - - Yes Moves to F

5 F - - - Yes Moves to C

6 C G(31,58) - - Yes Moves to G

7 G
H(65,59)

I(21,89)
- - Yes Moves to H

8 H J(99,58) - - Yes Moves to J

9 J K(123,56) - - Yes Moves to K

10 K L(139,77) - - Yes Moves to L

11 L M(139,99) - - Yes Moves to M

Chapter 6. Empirical Evaluation

Created by CHUI CHING YEE 70

12 M
N(139,132)

O(102,105)
- - Yes Moves to N

13 N P(105,145) - - Yes Moves to P

14 P Q(68,144) - - Yes Moves to Q

15 Q R(36,144) - - Yes Moves to R

16 R S(20,124) - - Yes Moves to S

17 S T(20,104) I Erase I Yes Moves to T

18 T U(57,104) - - Yes Moves to U

19 U V(93,103) - - Yes Moves to V

20 V - O Erase O No Stop (complete)

Table 6.3 Steps of path exploration and navigation using modified DFS algorithm

 Figure 6.14 and Table 6.3 illustrate the step of path exploration and navigation in

detail using the modified DFS algorithm. A list structure is used to store points.

Starting at point A(10,10), the robot scans and finds out unvisited points B and C.

Points C and B are then pushed into the list, and using LIFO (Last-In First-Out) the

robot chooses to navigate to point B.

Once point B has been reached (at step 2), the algorithm marks B as “visited”, it

then scans, identifies unvisited point D, pushes D into the list and chooses to

navigate to D, and so on and so forth.

 At step 5, since the does not scan or “see” any unvisited point, it assumes there is

a dead-end. Hence, the robot will reverse to unvisited point C. Once point C has been

reached (at step 6), the processes of scanning, identifying unvisited points,

navigating to goal determined are repeated until step 20. At step 20, since the list

possesses no unvisited point, the map model of environment is inferred completely

built, the client program is terminated and the robot is stop.

Note that, at step 17, the existing unvisited point I in the list is detected within

the current range of the laser scanner, thus point I is assumed visited and is erased

from the list to avoid the revisiting problem. Point O is re-scanned and erased at step

20 as well, again to avoid revisiting.

Chapter 6. Empirical Evaluation

Created by CHUI CHING YEE 71

6.3.2 Discussion

Overall, the Modified DFS algorithm works well. The simulated robot is able to

explore an unknown environment without retracing its steps, and thus avoiding the

problem of ending up in a permanent loop.

However, for certain terrain, the robot may not be

able to detect the navigable points. For an instance, refer

to Figure 6.15. Figure 6.15(a) shows the simulated robot,

which is located at A. It scans unvisited point B. In

Figure 6.15(b), point B is reached, the robot scans and finds out a navigable point C.

But point C has been visited at a previous step, the robot thus infers C should be

ignored. As a result, no new unvisited points will be added to the list, indicating a

dead-end is met. The robot will not proceed forward, but instead reverses.

6.4 Quality of Map Model Using Laser Scanner

6.4.1 Evaluation of map model quality

Figure 6.16 Grid-based map building algorithm

(a) original map, (b) map model built (1
st
 test), (c) map model built(2

nd
 test)

Figure 6.15 Problem

of Modified DFS

Chapter 6. Empirical Evaluation

Created by CHUI CHING YEE 72

Figure 6.17 Grid-based map building algorithm

(a) original map, (b) map model built (1
st
 test), (c) map model built(2

nd
 test)

Figure 6.18 Grid-based map building algorithm

(a) original map, (b) map model built (1
st
 test), (c) map model built(2

nd
 test)

Map Model
Cross

Correlation
Map Score

Map Score

with

Occupied

Cells

(b) 1st testing 68.58% 4.35% 26.47%
Figure 6.16

(c) 2nd testing 68.48% 4.36% 26.53%

(b) 1st testing 66.75% 3.74% 31.57%
Figure 6.17

(c) 2nd testing 69.57% 3.42% 28.81%

(b) 1st testing 63.09% 4.50% 40.64%
Figure 6.18

(c) 2nd testing 65.09% 4.29% 38.71%

Table 6.4 Quality of map model evaluated using

Cross Correlation, Map Score and Map Score with Occupied Cells Methods

Chapter 6. Empirical Evaluation

Created by CHUI CHING YEE 73

 From Figure 6.16 to Figure 6.18, and as shown in Table 6.4, the Cross

Correlation benchmark (template matching) shows a reasonable high degree of

similarity of ideal map. Besides, the Map Score (cell by cell comparison)

demonstrates a considerably low error indicating that the maps have been constructed

fairly accurately.

However, Map Score benchmark overestimates the empty regions of space,

missing an obstacle only increases the score value slightly. An alternative criterion –

Map Score with Occupied Cells Method is used to compare just the occupied cells.

Thus, missing an obstacle will increase the score value significantly. Table 6.4 shows

all maps model produce over 25% of score value, indicating relatively high error

percentages.

6.4.2 Discussion

Since laser scanner is assumed ideal during simulation, all of the score values are

dependent on how good is a map building algorithm. The map building algorithm

used is simply an occupancy grid mapping, results relatively high error percentages

of Map Score with Occupied Cells.

In reality, severe noise and inherent imperfections in the sensor may cause

further deterioration in the simulated map quality, and will lead to a lower percentage

of Cross Correlation score and higher percentages in the Map Score benchmark and

Map Score with Occupied Cells.

 In order to alleviate this problem, the occupancy grid mapping algorithm should

be coupled with a probabilistic approach, such as Bayesian Theorem.

Chapter 7. Conclusion and Further Work

Created by CHUI CHING YEE 74

Chapter 7

Conclusion and Further Work

7.1 Conclusion

 The SPA control approach that has been implemented is a reactive model. It

eases the construction of online and incremental algorithms for map building. All

tests made have investigated the related algorithms implemented, regardless of time

delay, noise measurement, dynamic environment.

 In an ideal case, starting from a known location, laser-guided exploration enable

robot to explore unknown environment without revisiting same place using Modified

DFS algorithm.

Priot to robot naviagtion, the optimal and effective path is always found using

the A* algorithm with Manhattan Method (Diagonal Shortcut Method and Euclidean

Distance Method are discussed and compared as well).

Using laser data acquired, the map environment of various warehouse terrains

can be built successfully using occupancy grid mapping technique. The map models

are created through PNGwriter Library.

Chapter 7. Conclusion and Further Work

Created by CHUI CHING YEE 75

For the sake of safety, obstacle avoidance algorithm is put into operation. Again

ignoring time delay, obstacle can be detected instantly once the obstacle is located

within specific range of laser scanner, and appropriate action is executed to avoid

collision.

However, in reality, time delay and noise measurement must be taken into

account during designing and programming. The planning layer of SPA architecture

is where map building and path planning take place. These processes are usually

computationally complex and time consuming. Apart from that, these processes

operate asynchronously exacerbate the problem of time delay.

As a consequence, the plan built from map model may turn out to be

inadequate to the environment actually encountered. Besides, the existence of sensor

reading noise and pose error influences the inferring of map structure. Thus,

alternative algorithms or improvements must be implemented.

7.2 Further Work

7.2.1 Sensor deployment

The accuracy of the occupancy grid mapping and related algorithm is dependent

on the noisy or incomplete sensor data acquired. Even if the robot poses are known,

it is difficult to infer that the environment is exactly occupied or emptied, due to

ambiguities in the sensor data reading.

Hence, a better simulated map quality requires combination of various range

sensors [48, 90, 98], such as sonar sensors, laser range finders, and camera. This

comes up with integration of sonar, laser and stereo range data by combining their

strengths and nullifying their drawbacks, eventually increases the reliability of map

Chapter 7. Conclusion and Further Work

Created by CHUI CHING YEE 76

acquisition.

In addition, sensor fusion is required for data integration. Various methods have

been subjected, such as Kalman filtering [115], Bayesian reasoning [112], artificial

networks [109] and fuzzy logic [113].

7.2.2 Self-localisation technique

The robot’s accumulated pose error might be unboundedly large, ultimately

render a large error-prone map. This is compensated with self-localization techniques,

such as dead reckoning [19, 43], Monte-Carlo Localization [46], or landmark based

matching algorithm.

7.2.3 Map building algorithm

In this paper, occupancy grid map paradigm applied only consists of three values

0, 0.5, and 1 indicating cell emptied, unknown, and occupied respectively for ease of

construction. However, again environment inferring may not be reliable due to

ambiguous data acquired. To alleviate this problem, occupancy grid mapping

coupled with a probabilistic approach (Bayesian Theorem [21, 47, 101]) is

suggested.

7.2.4 Simultaneous Localization and Mapping (SLAM)

During mapping, vehicle and map estimates are highly correlated. By using the

SLAM algorithm [20, 53, 54, 84, 104, 108], the vehicle can start in an unknown

location in an unknown environment and proceed to incrementally build a navigation

map of the environment while simultaneously use this map to update its location.

Extended Kalman Filter (EKF) SLAM and FastSLAM [50] are two examples of

SLAM algorithms.

Chapter 7. Conclusion and Further Work

Created by CHUI CHING YEE 77

7.2.5 Path finding algorithm

 The A* search algorithm for path finding must reconstruct a new path when the

state of the environment changes, gives rise to time consuming and inefficiency. D*

search algorithm [63, 64, 65] is an alternative technique to cope with dynamic

environment.

7.2.6 Distributed map building using multirobot system

Future exploration missions will use cooperative robots [88, 89, 90, 91, 101, 120]

to explore and sample terrain, especially for the mission subjected to time critical,

such as search and rescue job.

To proceed to distributed map building using multi-robot system, some problems

needed to be considered, such as robot’s capability of distinguishing obstacle and

different robot, the way the robots exchange data, requirement of contingency and

reactive model.

In the Player/Stage simulator, the use of fiducial interface provides access to

devices that detect coded fiducials (markers) placed in the environment, enables

robot to differentiate obstacle, unique robot and even natural landmarks. Besides, the

use of opaque interface allows relay driver to repeat all commands it receives as data

packets to all subscribed clients, thus enabling data exchange between robots.

When a robot detects another robot (via fiducial interface) during execution, it

will then react to the new information by developing a new plan for data exchange

(via relay driver) instead of navigation. Map model will be updated according to the

data received, eventually generates fast map building. The new information is also

used for avoiding revisiting problem, in other words, the corresponding robot will

not re-visit the place another robot has visited.

References

Created by CHUI CHING YEE 78

References

[1] “Firefighter's guardian angel is a palm size robot”,

http://www.digitalyorkshire.org.uk/newsdetails.aspx?id=416,

last accessed 20th September 2007

[2] “Fire and rescue robots "could save lives"”,

http://blogs.guardian.co.uk/technology/archives/2007/01/18/fire_and_rescue_rob

ots_could_save_lives.html,

last accessed 20th September 2007

[3] “Research: Active Project – Viewfinder”,

http://www.shu.ac.uk/mmvl/research/viewfinder/,

last accessed 20th September 2007

[4] “Research: Active Project – Guardians”,

http://www.shu.ac.uk/mmvl/research/guardians/,

last accessed 20th September 2007

[5] “Brooks Subsumption Architecture”,

http://www.cs.ucf.edu/~lboloni/Teaching/EEL6938_2005/slides/Presentation_Ry

anFitzGibbon_SubsumptionArchitecture.ppt#1,

last accessed 3rd November 2007

[6] “Player Project”,

http://playerstage.sourceforge.net/index.php?src=index,

last accessed 20th January 2008

References

Created by CHUI CHING YEE 79

[7] “Player”,

http://playerstage.sourceforge.net/index.php?src=player,

last accessed 20th January 2008

[8] “Stage”,

http://playerstage.sourceforge.net/index.php?src=stage

last accessed 20th January 2008

[9] “The Player Robot Device Interface”,

http://playerstage.sourceforge.net/doc/Player-2.0.0/player/

last accessed 20th January 2008

[10] “Quick start”,

http://playerstage.sourceforge.net/doc/Player-2.0.0/player/start.html,

last accessed 20th January 2008

[11] “sicklms200”,

http://playerstage.sourceforge.net/doc/Player-2.0.0/player/group__driver__sickl

ms200.html,

last accessed 20th January 2008

[12] “p2os”,

http://playerstage.sourceforge.net/doc/Player-2.0.0/player/group__driver__p2os.

html,

last accessed 20th January 2008

[13] “laser (interface specification)”,

http://playerstage.sourceforge.net/doc/Player-2.0.0/player/group__interface__las

er.html,

References

Created by CHUI CHING YEE 80

last accessed 20th January 2008

[14] “position2d (interface specification)”

http://playerstage.sourceforge.net/doc/Player-2.0.0/player/group__interface__po

sition2d.html,

last accessed 20th January 2008

[15] “PlayerCc::LaserProxy Class Reference”

http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc_1_1Las

erProxy.html,

last accessed 20th January 2008

[16] “PlayerCc::Position2dProxy Class Reference”

http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc_1_1Pos

ition2dProxy.html,

last accessed 20th January 2008

[17] “libplayerc++ example”

http://playerstage.sourceforge.net/doc/Player-2.0.0/player/group__cplusplus__ex

ample.html,

last accessed 20th January 2008

[18] “Beginner: Learn Linux”,

http://linuxreviews.org/beginner/,

last accessed 22nd August 2007

[19] “Dead Reckoning: A Skill All Navigators Should Master”

http://64.233.183.104/search?q=cache:cuodQU509MoJ:www.pilothouseonline.c

om/IS2V1_00/Lessons/main0001.htm+Dead+Reckoning:+A+Skill+All+Navigat

ors+Should+Master&hl=en&ct=clnk&cd=1,

last accessed 9th July 2007

References

Created by CHUI CHING YEE 81

[20] “Simultaneous Localization and Mapping”,

http://www.cs.unc.edu/~lin/COMP790/LEC/13.ppt,

last accessed 29th July 2007

[21] “Robotic Mapping”,

http://en.wikipedia.org/wiki/Robotic_mapping,

last accesed 29th July 2007

[22] “GD Graphics Library”,

http://www.boutell.com/gd/,

last accessed 5th July 2007

[23] “High Performance JavaScript Vector Graphics Library”,

http://www.walterzorn.com/jsgraphics/jsgraphics_e.htm,

last accessed 5th July 2007

[24] “PNGwriter is a C++ Library for creating PNG images”,

http://pngwriter.sourceforge.net/,

last accessed 18th November 2007

[25] “PGPLOT Graphics Subroutine Library”,

http://www.astro.caltech.edu/~tjp/pgplot/,

last accessed 5th July 2007

[26] “Combining Metric and Topological Navigation of Simulated Robots”,

http://www.freeweb.hu/jataka/rics/cscs2004/cscs2004slides.pdf,

last accessed 29th July 2007

References

Created by CHUI CHING YEE 82

[27] “Informed Search Algorithm”,

 www.cs.brandeis.edu/~cs101a/lectures/Lecture3.ppt,

 last accessed 15th December 2007

[28] “Design and Analysis of Algorithms”,

http://www.ics.uci.edu/~eppstein/161/960215.html,

last accessed 15th December 2007

[29] “Blind Search”,

http://www.cs.ualberta.ca/~lindek/366/slides/BlindSearch.ppt#1,

last accessed 15th December 2007

[30] “Solving Problems by Searching”,

http://www.cs.pitt.edu/~litman/courses/cs2710/lectures/ch03RN.ppt#1,

last accessed 15th December 2007

[31] “Artificial Intelligence – From Search to Knowledge”,

http://www.ace.tuiasi.ro/~fleon/Curs_AI_Kn/C2_Search.ppt,

last accessed 15th December 2007

[32] “SPA Architectures (Planning, deliberative),

http://web.cecs.pdx.edu/~mperkows/CLASS_479/May6/030.Deliberative-SPA.p

pt,

last accessed 28th June 2007

[33] “Beginners Guide to Pathfinding Algorithms”,

http://ai-depot.com/Tutorial/PathFinding.html,

last accessed 15th December 2007

References

Created by CHUI CHING YEE 83

[34] “Dijkstra's Algorithm”,

http://www.cs.usask.ca/resources/tutorials/csconcepts/1999_8/tutorial/advanced/

dijkstra/dijkstra.html,

last accessed 15th December 2007

[35] “Introduction to Robotics – Subsumption Architecture”,

 http://math.haifa.ac.il/robotics/Presentations/pdf/Ch11_Subsumption.PDF,

 last accessed 28th June 2007

[36] “SSS: A Hybrid Architecture Applied to Robot Navigation”,

http://www.lecs.cs.ucla.edu/~girod/official/talks/584-sss.ppt#1,

last accessed 28th June 2007

[37] “Shape Representation and Description: Contour-based Shape Representation

and Description”,

http://www.icaen.uiowa.edu/~dip/LECTURE/Shape2.html#chaincodes,

last accessed 17th October 2007

[38] “Representation and Description”,

http://www.cvmt.dk/~hn/2005/BA1/Slides/8.mm/engelsk.ppt#4,

last accessed 17th October 2007

[39] “Cross Correlation”,

http://local.wasp.uwa.edu.au/~pbourke/other/correlate/,

last accessed 29th December 2007

[40] “Near Optimal Hierarchical Pathfinding (HPA*)”,

http://www.cs.ualberta.ca/~bulitko/F06/presentations/2006-09-29-ML.pdf,

last accessed 17th December 2007

References

Created by CHUI CHING YEE 84

[41] “Introduction to Planning as Search”,

 http://iew3.technion.ac.il/~dcarmel/planning05/lectures/basic_search.pdf

 last accessed 17th December 2007

[42] Artificial Intelligence: Uninformed search methods,

http://www.cs.mcgill.ca/~jpineau/comp424/Lectures/02Search1.pdf

last accessed 15th December 2007

[43] “Dead Reckoning”,

http://www.irbs.com/bowditch/pdf/chapt07.pdf,

last accessed 19th July 2007

[44] Shane O’Sullivan (2003) “An Empirical Evaluation Of Map Building

Methodologies in Mobile Robotics Using The Feature Prediction Sonar Noise

Filter And Metric Grid Map Benchmarking Suite”, Master of Science,

University of Limerick

[45] Mir Immad ud din (2005-06) “Incremental Perception in Swarm Robotics”,

Master of Science, Sheffied Hallam University

[46] F. Dellaert, D. Fox, W. Burgard, and S. Thrun (1999) “Monte Carlo Localization

for Mobile Robots”, IEEE International Conference on Robotics and Automation

(ICRA99)

[47] Moravec and Elfes (1985) “High Resolution Maps From Wide Angle Sonar”

[48] Matthies and Elfes (1988) “Integration of Sonar and Stereo Range Data Using a

Grid Based Representation”

[49] Konolige (1997) “Improved Occupancy Grids for Map Building”

References

Created by CHUI CHING YEE 85

[50] D. Hanel, W. Burgard, D. Fox, and S. Thrun (2003) “An efficient FastSLAM

algorithm for generating maps of large scale cyclic environments from raw laser

range measurements”

[51] H. Choset and K. Nagatani (2001) “Topological simultaneous localization and

mapping (SLAM): toward exact localization without explicit localization”, IEEE

Transactions on Robotics and Automation, 17(2)

[52] Erann Gat (1998) “On Three-Layer Architectures”, Jet Propulsion Laboratory,

California Institute of Technology

[53] Andrew Howard, “Multi-robot Simultaneous Localization and Mapping using

Particle Filters”, Jet Propulsion Laboratory, California Institute of Technology

[54] Chieh-Chih Wang, and Charles Thorpe, “A Hierarchical Object Based

Representation for Simultaneous Localization and Mapping”

[55] Schiele, B. and Crowley, J. (1994) “A comparison of position estimation

techniques using occupancy grids”, Robotics and Autonomous Systems

[56] J. Borenstein, Y. Koren (1989) “Real-time Obstacle Avoidance for Fast Mobile

Robots”, IEEE Transactions on Systems, Man, and Cybernetics

[57] R. Gartshore, A. Aguado, C. Galambos (2002) “Incremental Map Building Using

an Occupancy Grid for an Autonomous Monocular Robot”

[58] Seydou SOUMARE, Akihisa OHYA and Shin’ichi YUTA, “Real-Time Obstacle

Avoidance by an Autonomous Mobile Robot using an Active Vision Sensor and

a Vertically Emitted Laser Slit”, Intelligent Robot Laboratory, University of

Tsukuba

References

Created by CHUI CHING YEE 86

[59] S. Albers and M. Henzinger, “Exploring unknown environments”

[60] Carlos Hernández1 and Pedro Meseguer, “Improving Real-Time Heuristic

Search on Initially Unknown Maps”

[61] Patrick Lester (2005) “A* Pathfinding for Beginners”

[62] Patrick Lester (2004) “Heuristics and A* Pathfinding”

[63] Anthony Stentz, “Optimal and Efficient Path Planning for Partially-Known

Environments”

[64] Dave Ferguson and Anthony Stentz, “The Delayed D* Algorithm for efficient

Path Replanning”, Carnegie Mellon University

[65] Anthony Stentz, “The Focussed D* Algorithm for Real-Time Replanning”,

Robotics Institute, Carnegie Mellon University

[66] Anand Veeraswamy (2004) “Implementation of Path Finding Techniques in

Homeland Security Robots”

[67] Kelly Manley, “Pathfinding: From A* to LPA”, University of Minnesota

[68] Csaba Szepesv´ari, “Shortest Path Discovery Problems: A Framework,

Algorithms and Experimental Results”, Computer and Automation Research

Institute of the Hungarian Academy of Sciences

[69] Dieter Fox, Jonathan Ko, Kurt Konolige, and Benjamin Stewart, “A Hierarchical

Bayesian Approach to the Revisiting Problem in Mobile Robot Map Building”

References

Created by CHUI CHING YEE 87

[70] Sven Koenig, “Fast Replanning for Navigation in Unknown Terrain”

[71] J.J. Collins, Malachy Eaton, Mark Mansfield, and David Haskett., “Developing a

Benchmarking Framework for Map Building Paradigms”, University of

Limerick

[72] Thrun, Sebastian (2002) “Robotic Mapping: A Survey”, Carnegie Mellon

University

[73] Shane O’Sullivan, J.J. Collins, Mark Mansfield, David Haskett, and Malachy

Eaton, “Linear Feature Prediction for Confidence Estimation of Sonar Readings

in Map Building”

[74] Rodney A. Brooks (1986) “A Robust Layered Control System for a Mobile

Robot.”, IEEE Transactions on Robotics and Automation, 2(1), pages 14-23

[75] Jonathan Simpson, Christian L. Jacobsen and Matthew C. Jadud (2006) “Mobile

Robot Control The Subsumption Architecture and occam-pi”

[76] Martin C. Martin, “Visual Obstacle Avoidance Using Genetic Programming:

First Results”, Carnegie Mellon University

[77] Jonathan H. Connell, “Creature Design with the Subsumption Architecture”,

MIT Artificial Intelligence Lab, Cambridge

[78] Martin C. Martin, Hans P. Moravec (1996) “Robot Evidence Grids”,

CMU-RI-TR-96-06, The Robotics Institute, Carnegie Mellon University

[79]Brunelli, R. and Poggio, T. (1993) “Face recognition: Features versus templates”,

IEEE Transactions on Pattern Analysis and Machine Intelligence,

References

Created by CHUI CHING YEE 88

15(10):1042–1052

[80] Baron, R. (1981) “Mechanisms of human facial recognition”, International

Journal of Man-Machine Studies, 15:137–178

[81] M.J.T. Reinders, “Eye Tracking by Template Matching using an Automatic

Codebook Generation Scheme”, Dept. of Electrical Engineering, Delft

University of Technology

[82] Hemant M. Joshi, Joshua A. McAdams, “Search Algorithms in Intelligent

Agents”

[83] M Kamali, “Artificial Intellegence and Search Algorithms”

[84] Eduardo Nebot (2006) “Simultaneous Localization and Mapping”, Australian

Centre for Field Robotics, University of Sydney NSW, Australia

[85] Denis Wolf and Gaurav S. Sukhatme (2004) “Online Simultaneous Localization

and Mapping in Dynamic Environments”, Robotic Embedded Systems

Laboratory, University of Southern California

[86] Michael Milford, Gordon Wyeth, David Prasser, “Simultaneous Localisation and

Mapping from Natural Landmarks using RatSLAM”, University of Queensland

[87] C. M. Smith and J. J. Leonard (1997) “A multiple-hypothesis approach to

concurrent mapping and localization for autonomous underwater vehicles”, Proc.

Int. Conf. Field and Service Robotics

[88] Raj Madhavan, Kingsley Fregene, Lynne E. Parker (2004) “Distributed

Cooperative Outdoor Multirobot Localization and Mapping”

References

Created by CHUI CHING YEE 89

[89] Vivek A. Sujan, Steven Dubowsky, Terry Huntsberger, Hrand Aghazarian, Yang

Cheng, Paul Schenker “A Multi Agent Distributed Sensing Architecture with

Application to Planetary Cliff Exploration”

[90] D.Rus, A. Kabir, K. Kotay, M. Soutter (1996) “Guiding Distributed

Manipulation with Mobile Sensors”, Department of Computer Science,

Dartmouth College

[91] Scott A. Deloach, Eric T. Matson, Yong Hua Li, “Exploiting Agent Oriented

Software Engineering in Cooperative Robotics Search and Rescue”, Department

of Computing and Information Sciences, Kansas State University

[92] Christian Icking, Thomas Kamphans, Rolf Klein, Elmar Langetepe, “Exploring

an Unknown Cellular Environment”

[93] X. Deng, T. Kameda, C. Papadimitriou (1991) “How to Learn an Unknown

Environment (Extended Abstract)”

[94] F. Hoffmann, C. Icking, R. Klein, K. Kriegel, “The Polygon Exploration

Problem: A New Strategy and a New Analysis Technique”

[95] A. Elfes (1987) “Sonar-based real-world mapping and navigation”, IEEE

Journal of Robotics and Automation, RA-3(3):249–265

[96] J. Borenstein and Y. Koren. (1991) “The vector field histogram – fast obstacle

avoidance for mobile robots”, IEEE Journal of Robotics and Automation,

7(3):278–288

[97] J. Buhmann, W. Burgard, A.B. Cremers, D. Fox, T. Hofmann, F. Schneider, J.

References

Created by CHUI CHING YEE 90

Strikos, and S. Thrun (1995) “The mobile robot Rhino”, AI Magazine, 16(1)

[98] Mark A. Lanthier, Doron Nussbaum and An Sheng, “Improving Vision-Based

Maps By Using Sonar and Infrared Data”, Carleton University

[99] D. Guzzoni, A. Cheyer, L. Julia, and K. Konolige (1997) “Many robots make

short work”, AI Magazine, 18(1):55–64

[100] S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A.B. Cremers, F. Dellaert, D.

Fox, D. H¨ahnel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz (2000)

“Probabilistic algorithms and the interactive museum tour-guide robot Minerva”,

International Journal of Robotics Research, 19(11):972–999

[101] Mark M. Chang and Gordon F. Wyeth, “Achieving Cooperation in a

Distributed Multi-Robot Team”, University of Queensland,

[102] B. Kuipers and Y.-T. Byun. (1991) “A robot exploration and mapping strategy

based on a semantic hierarchy of spatial representations”, Journal of Robotics

and Autonomous Systems, 8:47–63

[103] H. Choset and J.W. Burdick. (1996) “Sensor Based Planning: The Hierarhical

Generalized Voronoi Graph”, Proc. Workshop on Algorithmic Foundations of

Robotics, Toulouse

[104] J. Guivant and E. Nebot, (2001) “Optimization of the simultaneous localization

and map building algorithm for real time implementation”, IEEE Transaction of

Robotic and Automation

[105] F. Lu and E. Milios (1997) “Globally consistent range scan alignment for

environment mapping”, Autonomous Robots, 4:333–349

References

Created by CHUI CHING YEE 91

[106] H Shatkay and L. Kaelbling (1997) “Learning topological maps with weak

local odometric information”, Proceedings of IJCAI-97. IJCAI, Inc

[107] M. C. Torrance. (1994) “Natural communication with robots”, Master’s thesis,

MIT Department of Electrical Engineering and Computer Science, Cambridge

[108] P. Newman. (2000) “On the Structure and Solution of the Simultaneous

Localisation and Map Building Problem”, PhD thesis, Australian Centre for

Field Robotics, University of Sydney

[109] Humberto Mart´ınez Barber´a, Antonio G´omez, Skarmeta, Miguel Zamora

Izquierdo and Juan Bot´ıa Blaya (2000) “Neural Networks for Sonar and

Infrared Sensors Fusion”, 3rd Intl. Fusion Conference, Paris

[110] L. Iocchi, K. Konolige, and M. Bajracharya (2000) “Visually realistic mapping

of a planar environment with stereo”, Proceedings of the 2000 International

Symposium on Experimental Robotics

[111] Y. Liu, R. Emery, D. Chakrabarti, W. Burgard, and S. Thrun. (2001) “Using

EM to learn 3D models with mobile robots”, Proceedings of the International

Conference on Machine Learning (ICML)

[112] P. Sykacek and I. Rezek (2000) “Markov Chain Monte Carlo Methods for

Bayesian Sensor Fusion”, Kluwer Acadamic Publishers

[113] Richard A. Wasniowski (2005) “Multisensor Agent Based Intrusion

Detection”, Proceedings of World Academy of Science

References

Created by CHUI CHING YEE 92

[114] J.J. Leonard and H.F. Durrant-Whyte (1991) “Simultaneous map building and

localization for an autonomous mobile robot”, IEEE/RSJ Int. Workshop on

Intelligent Robots and Systems, vol.3, pp. 1442-47, 1991

[115] G. Welch and G. Bishop (2003) “An Introduction to Kalman Filter”,

University of North Carolina, TR, 95-041

[116] H. Zhao and R. Shibasaki. (2001) “Reconstructing Urban 3D Model using

Vehicle-borne Laser Range Scanners”, Proc. of the Third Int. Conf. on 3-D

Digital Imaging and Modeling, pp. 349-56

[117] D. Toal, C. Flanagan, C. Jones, B. Strunz, “Subsumption Architecture for the

Control of Robots”

[118] Frank Dellaert (2002) “The Expectation Maximization Algorithm”

[119] Jonathan Reynolds (2005) “An Exploration of Mapping Algorithms for

Autonomous Robotic Mapping”, Colorado State University

[120] K. Konolige, D. Fox, B. Limketkai, J. Ko, and B. Stewart (2003) “Map

merging for distributed robot navigation”, Proc. IEEE Intl. Conf. on Intelligent

Robots and Systems, Las Vegas

Appendices

Created by CHUI CHING YEE 93

Appendices

Appendices

Created by CHUI CHING YEE 94

Appendix A: .world configuration file

Description: 1 pioneer robot with laser

include "pioneer.inc"

include "map.inc"

include "sick.inc"

size [16 16]

set the resolution of the underlying ray trace model in meters

resolution 0.02

update the screen every 10ms (we need fast update for the stest demo)

gui_interval 20

configure the GUI window

window

(

 size [640.000 640.000]

 center [0.000 0.000]

 scale 0.028

)

load an environment bitmap

map

(

 bitmap "bitmaps/example1.png"

 size [16 16]

 name "example1"

)

create a robot

pioneer2dx

(

 name "robot1"

 color "red"

 pose [-7 -7 45]

 sick_laser(samples 361 laser_sample_skip 4)

)

Appendices

Created by CHUI CHING YEE 95

Appendix B: .cfg configuration file

Description: Player sample configuration file for controlling Stage devices

load the Stage plugin simulation driver

driver

(

 name "stage"

 provides ["simulation:0"]

 plugin "libstageplugin"

 # load the named file into the simulator

 worldfile "example1.world"

)

driver

(

 name "stage"

 provides ["map:0"]

 model "example1"

)

Create a Stage driver and attach position2d and laser interfaces to the model "robot1"

driver

(

 name "stage"

 provides ["position2d:0" "laser:0"]

 model "robot1"

)

Appendices

Created by CHUI CHING YEE 96

Appendix C: .cc executable file

///

////////

/// Description: A C++ client program for a laser-guided robot,

/// the mobile robot possesses capability of building an unknown warehouse map with autonomous

/// navigation system, the starting location of the robot is known

///

////////

#include <iostream>

#include <math.h>

#include <pngwriter.h>

#include <fstream>

//#include <conio.h>

#include <vector>

#include <list>

#include <algorithm>

#include <iterator>

#include <string>

using namespace std;

#include <libplayerc++/playerc++.h>

using namespace PlayerCc;

#include "args.h"

///

////////

/// functions declaration

///

////////

void scan(LaserProxy* LP , Position2dProxy& P2P , PlayerClient & ROBOT);

void mapbuilding(LaserProxy* LP , Position2dProxy& P2P , PlayerClient & ROBOT, pngwriter* PW);

void eraseOverlap (LaserProxy* LP , Position2dProxy& P2P);

bool finishMapping ();

bool pathPlanning (int DepX , int DepY, int DestX , int DestY);

int findG (int g , int arrow);

int findH (int depX , int depY, int destX , int destY);

int findF (int g , int h);

int lowestFloc(vector < vector <int> > *vec);

bool extendSize(vector< vector <int> > *vec, int size);

int checkLocAvailable(vector< vector <int> > *vec , int size);

void findDepXY (int arrow , int parentX , int parentY , int &DepX , int &DepY);

bool notInCL (vector< vector <int> > *vec , int x , int y);

Appendices

Created by CHUI CHING YEE 97

int inOLloc (vector< vector <int> > *vec , int x , int y);

bool isObstacle (int x , int y , int arrow);

void insertRow(vector< vector <int> > *vec , int loc , int x, int y, int arrow , int g , int h , int f);

void clearRow(vector< vector <int> > *vec , int loc);

void pathDecision (vector< vector <int> > *vec , bool found);

void moveRobot(LaserProxy* LP , Position2dProxy& P2P , PlayerClient & ROBOT);

template<typename T>

inline T approximate(T a);

template<typename T>

inline T sq (T a);

template < typename T >

void printList(const list< T > &listRef);

///

////////

/// global variables declaration

///

////////

#define PI 3.1415927

struct mapData

{

int gridNum;

 int gridX;

 int gridY;

 double value;

};

vector< vector<double> > matrixVal(161, vector<double>(161,0.5));

vector< vector<int> > navigablePath (1, vector<int>(2,0));

list <int> XX;

list <int> YY;

list <int> sampleNo;

list <int> planX;

list <int> planY;

list <int> visited; // 0 = not visited, >0 = visited

list <int>::iterator listIteratorX;

list <int>::iterator listIteratorY;

list <int>::iterator listIteratorV;

double opacity = 1.0; //0.0 to 1.0

double minfrontdistance = 0.5;

double speed = 0.200;

Appendices

Created by CHUI CHING YEE 98

double offsetX =10, offsetY=10 ;

double offsetAngle = 45.0/180.0*PI;

double maxLaser = 4.0;

double turn180;

int mapDestX, mapDestY, mapDepX, mapDepY, oriDepX, oriDepY;

bool forward = true;

int state=0;

int gocount = 0;

double newturnrate=0.0f, newspeed=0.0f;

///

////////

/// main program

///

////////

int main(int argc, char** argv)

{

 parse_args(argc,argv);

 LaserProxy *lp = NULL;

 FiducialProxy *fp = NULL;

 pngwriter *image = NULL;

 try

 {

 PlayerClient robot(gHostname, gPort);

 Position2dProxy pp(&robot, gIndex);

 lp = new LaserProxy (&robot, gIndex);

 fp = new FiducialProxy (&robot, gIndex);

 image = new pngwriter(160,160,0.5,"out.png"); ///grey as background colour

image->close();

 int input;

 int randint;

 int randcount = 0;

 int avoidcount = 0;

 bool obs = false;

 double minleft, minright;

 int unused = 0;

 bool startPathPlanning= true;

 bool incompletePath = false;

 int incompCount = 0;

 planX.push_back((int) offsetX *10);

 planY.push_back((int) offsetY *10);

Appendices

Created by CHUI CHING YEE 99

 visited.push_back(1);

 ///

 /// SPA control algorithm

 ///

do

 {

 pp.SetMotorEnable (true);

 robot.Read();

 ///

 /// obstacle detection

 ///

obs = false;

 for (uint i = 143; i < 219; i++)

 {

 if((*lp)[i] < minfrontdistance)

 obs = true;

 }

 ///

/// an obstacle detected, obstacle avoidance is implemented

//

//////

 if(obs || avoidcount || pp.GetStall ())

 {

 if(obs)

 {

 randcount = 0;

 gocount = 0;

 minright = (*lp)[131];

 minleft = (*lp)[231];

 for (uint j = 132 ; j < 181 ; j++)

 {

 if (minright > (*lp)[j])

 minright = (*lp)[j];

 }

Appendices

Created by CHUI CHING YEE 100

 for (uint k = 230 ; k >179 ; k--)

 {

 if (minleft > (*lp)[k])

 minleft = (*lp)[k];

 }

 if (minleft <= minright)

 newturnrate = -0.5;

 else if (minleft > minright)

 newturnrate = 0.5;

 newspeed = 0.0;

 avoidcount = 50;

 }

 else if (avoidcount)

 {

 newturnrate = 0.0;

 newspeed = 0.2;

 avoidcount--;

 }

 pp.SetSpeed(newspeed, newturnrate);

 }

 ///

/// no obstacle detected, path exploration or navigation is implemented

//

//////

 else

 {

 avoidcount = 0;

 ///

 /// scans unvisited navigable points

 ///

 if (state == 0)

 {

 eraseOverlap (lp,pp);

 scan (lp,pp,robot);

 eraseOverlap (lp,pp);

 mapbuilding(lp,pp,robot,image);

Appendices

Created by CHUI CHING YEE 101

 if (visited.back() == 0)

 {

 state =1;

 forward = true;

 }

 else

 {

 state =3;

 forward = false;

 }

 oriDepX = mapDepX = mapDestX;

 oriDepY = mapDepY = mapDestY;

 pp.SetSpeed(0.0,0.0);

 }

//

///////

/// plan to go which point

//

///////

 else if (state == 1)

 {

 if (!planX.empty() && !planY.empty() && !finishMapping())

 {

 mapDestX = planX.back();

 mapDestY = planY.back();

if (mapDestX < 6 || mapDestX >154 || mapDestY < 6 || mapDestY >154)

 {

 if (mapDestX < 6)

 mapDestX = 6;

 else if (mapDestX > 154)

 mapDestX = 154;

 if (mapDestY < 6)

 mapDestX = 6;

 else if (mapDestX > 154)

 mapDestX = 154;

 }

 if ((matrixVal [mapDestX][mapDestY] <0.5))

 state = 2;

Appendices

Created by CHUI CHING YEE 102

 else

 state = 3;

 pp.SetSpeed(0.0,0.0);

 }

 else

 state = 4; /// map building completed

 }

//

///////

/// path finding, robot navigates to the goal

//

///////

 else if (state ==2)

 {

 /// path finding

 if (startPathPlanning == true)

 {

 if ((mapDepX != mapDestX) || (mapDepY != mapDestY))

 {

 /// shortest and safest path is found

 if (pathPlanning (mapDepX , mapDepY , mapDestX , mapDestY))

 startPathPlanning = false;

 /// fail to find path

 else

 state = 3;

 }

 navigablePath.resize(navigablePath.size()-1);

 mapDestX = navigablePath[navigablePath.size()-1][0];

 mapDestY = navigablePath[navigablePath.size()-1][1];

 }

 /// navigate to the goal

 else

 {

 moveRobot(lp, pp,robot);

 if ((navigablePath.size()==0))

 {

 startPathPlanning = true;

 incompCount = 0;

 if (visited.back() == 0)

 {

Appendices

Created by CHUI CHING YEE 103

 visited.pop_back();

 visited.push_back(1);

 state = 0;

 }

 else

 {

 state = 3;

 mapDepX = mapDestX;

 mapDepY = mapDestY;

 }

 }

}

 }

//

///////

/// reverse, remove the point located at the end of the list

//

///////

 else if (state == 3)

 {

 planX.pop_back();

 planY.pop_back();

 visited.pop_back();

 state = 1;

 pp.SetSpeed(0.0,0.0);

if (visited.back() == 0)

 forward = true;

 else

 forward = false;

 }

 }

 } while (state !=4);

 }

 catch (PlayerCc::PlayerError e)

 {

 std::cerr << e << std::endl;

 return -1;

 }

}

Appendices

Created by CHUI CHING YEE 104

///

////////

/// scans 360o and finds out unvisited navigable points

///

////////

void scan(LaserProxy* LP , Position2dProxy& P2P, PlayerClient & ROBOT)

{

int X1,X2,Y1,Y2,S1,S2,midX,midY;

 int obsX , obsY ;

 int preX, preY;

 int proX, proY;

double x = P2P.GetXPos()*cos(offsetAngle)+ P2P.GetYPos()*cos(PI/2.0 + offsetAngle);

double y = P2P.GetXPos()*sin(offsetAngle) + P2P.GetYPos()*sin(PI/2.0 + offsetAngle);

 double angle = P2P.GetYaw() + offsetAngle;

 double angle2;

 bool occupied = false;

 bool findMid = false;

 bool unoccupiedAngle0 = false;

 bool unoccupiedAngle360 = false;

 XX.clear();

 YY.clear();

 sampleNo.clear();

 for (int b = 0; b < 2 ; b++)

 {

 for (uint a = 0; a < 361; a++) //0.5 degree resolution

 {

 angle2 = angle + ((a/2.0-90.0)*PI/180.0);

 if (a < 360)

 {

 proX = limit ((int) approximate (((*LP)[a+1]*cos(angle2) + x + offsetX)*10.0) , 0 , 160);

 proY = limit ((int) approximate (((*LP)[a+1]*sin(angle2) + y + offsetY)*10.0) , 0 , 160);

 }

 if (a==0)

 {

 obsX = limit ((int) approximate (((*LP)[a]*cos(angle2) + x + offsetX)*10.0) , 0 , 160);

 obsY = limit ((int) approximate (((*LP)[a]*sin(angle2) + y + offsetY)*10.0) , 0 , 160);

 if ((*LP)[a] == maxLaser && b == 0)

 {

Appendices

Created by CHUI CHING YEE 105

 occupied = false;

 unoccupiedAngle0 = true;

 }

 else if ((*LP)[a] == maxLaser && b == 1 && unoccupiedAngle360)

 occupied = false;

 else if ((*LP)[a] == maxLaser && b == 1 && !unoccupiedAngle360)

 {

 occupied = false;

 XX.push_front(obsX);

 YY.push_front(obsY);

 sampleNo.push_front(a);

 }

 else

 occupied = true;

 }

 else if (a== 360)

 {

 if ((*LP)[a] == maxLaser && b == 0 && !occupied)

 unoccupiedAngle360 = true;

 else if ((*LP)[a] == maxLaser && b == 0 && occupied)

 {

 unoccupiedAngle360 = true;

 occupied = false;

 XX.push_front(obsX);

 YY.push_front(obsY);

 sampleNo.push_front(a);

 }

 else if ((*LP)[a] == maxLaser && b == 1 && unoccupiedAngle0

&& !occupied)

 {

 XX.push_back(XX.front());

 YY.push_back(YY.front());

 sampleNo.push_back(sampleNo.front());

 XX.pop_front();

 YY.pop_front();

 sampleNo.pop_front();

 }

Appendices

Created by CHUI CHING YEE 106

 else if ((*LP)[a] == maxLaser && b == 1 && !unoccupiedAngle0

&& !occupied)

 {

 XX.push_front(obsX);

 YY.push_front(obsY);

 sampleNo.push_front(a);

 }

 else if ((*LP)[a] == maxLaser && b == 1 && unoccupiedAngle0 &&

occupied)

 {

 XX.push_back(obsX);

 YY.push_back(obsY);

 sampleNo.push_back(a);

 }

 else

 occupied = true;

 }

 else if (!occupied)

 {

 if (sqrt (sq(obsX-proX) + sq(obsY-proY)) < 2.0 && (*LP)[a]<maxLaser)

 {

 occupied = true;

 XX.push_front(obsX);

 YY.push_front(obsY);

 sampleNo.push_front(a);

 }

 }

 else

 {

 if ((*LP)[a] == maxLaser)

 {

 occupied = false;

 XX.push_front(preX);

 YY.push_front(preY);

 sampleNo.push_front(a);

 }

 }

 preX = obsX;

 preY = obsY;

Appendices

Created by CHUI CHING YEE 107

 obsX = proX;

 obsY = proY;

 }

 if (b == 0)

 {

 /// turn 180 degree

 if (P2P.GetYaw() ==0)

 {

 turn180 = PI;

 while ((abs (P2P.GetYaw()- turn180)>0.005) && (abs (P2P.GetYaw() + turn180)

>0.005))

 {

 P2P.GoTo (x, y, turn180);

 P2P.SetMotorEnable (true);

 ROBOT.Read();

 }

 }

 else

 {

 if (P2P.GetYaw() > 0)

 turn180 = P2P.GetYaw() - PI;

 else

 turn180 = P2P.GetYaw() + PI;

 while (abs(P2P.GetYaw() - turn180) >0.005)

 {

 P2P.GoTo ((x*cos(offsetAngle)) + (y*sin(offsetAngle)) , (y*cos(offsetAngle)) –

(x*sin(offsetAngle)), turn180);

P2P.SetMotorEnable (true);

 ROBOT.Read();

 }

 }

 P2P.SetSpeed(0.0, 0.0);

 P2P.SetMotorEnable (true);

 ROBOT.Read();

 x = P2P.GetXPos()*cos(offsetAngle) + P2P.GetYPos()*cos(PI/2.0 + offsetAngle);

 y = P2P.GetXPos()*sin(offsetAngle) + P2P.GetYPos()*sin(PI/2.0 + offsetAngle);

Appendices

Created by CHUI CHING YEE 108

 angle = P2P.GetYaw() + offsetAngle;

 }

 }

 if (!XX.empty() && !YY.empty())

 {

 if (XX.size() % 2 == 1)

 {

 XX.pop_front();

 YY.pop_front();

 sampleNo.pop_front();

 cout << "size recorrect" <<endl;

 }

 while (!XX.empty() && !YY.empty())

 {

 if (!findMid)

 {

 X1 = XX.front();

 XX.pop_front();

 Y1 = YY.front();

 YY.pop_front();

 S1 = sampleNo.front();

 sampleNo.pop_front();

 findMid = true;

 }

 else

 {

 X2 = XX.front();

 XX.pop_front();

 Y2 = YY.front();

 YY.pop_front();

 S2 = sampleNo.front();

 sampleNo.pop_front();

 findMid = false;

 if (sqrt (sq(X1-X2)+sq(Y1-Y2)) > 10.0 && abs (S2-S1) > 2)

 {

 midX = (int)(X1+X2)/2;

 midY = (int)(Y1+Y2)/2;

 if (matrixVal [midX][midY] == 0.5)

 {

Appendices

Created by CHUI CHING YEE 109

 planX.push_back(midX);

 planY.push_back(midY);

 visited.push_back(0);

 }

 }

 }

 }

 }

}

///

////////

/// map building, map model created in .png file usinf PNGwriter

///

////////

void mapbuilding (LaserProxy* LP , Position2dProxy& P2P , PlayerClient & ROBOT, pngwriter* PW)

{

int obsX , obsY ;

 int preX,preY;

 int proX, proY;

 int obsXX , obsYY;

 double val;

 int count = LP->GetCount(); //count = 361

 double x = P2P.GetXPos()*cos(offsetAngle) + P2P.GetYPos()*cos(PI/2.0 + offsetAngle);

 double y = P2P.GetXPos()*sin(offsetAngle) + P2P.GetYPos()*sin(PI/2.0 + offsetAngle);

 double angle = P2P.GetYaw() + offsetAngle;

 double angle2;

 bool occupied = false;

 obsX = (int) approximate((x+offsetX)*10.0);

 obsY = (int) approximate((y+offsetY)*10.0);

 val = 0.0;

 PW->plot_blend (obsX, obsY,opacity, (1.0-val)*1.0,(1.0-val)*1.0,(1.0-val)*1.0);

 matrixVal [obsX][obsY] = val;

 for (int b = 0 ; b<2 ; b++)

 {

 for (uint a = 0; a < count; a+=1)

 {

 for (double i = 0.1; i<(*LP)[a];i+=0.1)

 {

 obsXX = limit ((int) approximate ((i*cos(angle2) + x + offsetX)*10.0) , 1 , 160);

obsYY = limit ((int) approximate ((i*sin(angle2) + y + offsetY)*10.0) , 1 , 160);

 val = 0.0;

Appendices

Created by CHUI CHING YEE 110

PW->plot_blend (obsXX ,obsYY ,opacity , (1.0-val)*1.0 , (1.0-val)*1.0 , (1.0-val)*1.0);

 matrixVal [obsXX][obsYY] = val;

 }

 angle2 = angle + ((a/2.0-90.0)*PI/180.0);

 if (a <(count-1))

 {

 proX = limit ((int) approximate (((*LP)[a+1]*cos(angle2) + x + offsetX)*10.0) , 1 , 160);

 proY = limit ((int) approximate (((*LP)[a+1]*sin(angle2) + y + offsetY)*10.0) , 1 , 160);

 }

 if (a==0)

 {

 obsX = limit ((int) approximate (((*LP)[a]*cos(angle2) + x + offsetX)*10.0) , 1 , 160);

 obsY = limit ((int) approximate (((*LP)[a]*sin(angle2) + y + offsetY)*10.0) , 1 , 160);

 if ((*LP)[a] == maxLaser)

 {

 val = 0.0;

 occupied = false;

 }

 else

 {

 val = 1.0;

 occupied = true;

 }

 }

 if (a==(count-1))

 {

 if ((*LP)[a] == maxLaser)

 val = 0.0;

 else

 val = 1.0;

 }

 else if (!occupied)

 {

 if (sqrt (sq(obsX-proX) + sq(obsY-proY)) < 2.0 && (*LP)[a]<maxLaser)

 {

 val = 1.0;

 occupied = true;

 }

 else

Appendices

Created by CHUI CHING YEE 111

 val = 0.0;

 }

 else

 {

 if ((*LP)[a] == maxLaser)

 {

 val = 0.0;

 occupied = false;

 }

 else

 val = 1.0;

 }

 PW->plot_blend(obsX , obsY , opacity , (1.0-val)*1.0 , (1.0-val)*1.0 , (1.0-val)*1.0);

 matrixVal [obsX][obsY] = val;

 preX = obsX;

 preY = obsY;

 obsX = proX;

 obsY = proY;

 }

 if (b==0)

 {

 /// turn 180 degree

 if (P2P.GetYaw() ==0)

 {

 turn180 = PI;

 while ((abs (P2P.GetYaw()- turn180)>0.005) && (abs (P2P.GetYaw() + turn180)

>0.005))

 {

 P2P.GoTo (x, y, turn180);

 P2P.SetMotorEnable (true);

 ROBOT.Read();

 }

 }

 else

 {

 if (P2P.GetYaw() > 0)

 turn180 = P2P.GetYaw() - PI;

 else

 turn180 = P2P.GetYaw() + PI;

Appendices

Created by CHUI CHING YEE 112

 while (abs(P2P.GetYaw() - turn180) >0.005) /// 0.0005 = 0.286 degree

 {

P2P.GoTo ((x*cos(offsetAngle)) + (y*sin(offsetAngle)) , (y*cos(offsetAngle)) -

(x*sin(offsetAngle)) , turn180);

 P2P.SetMotorEnable (true);

 ROBOT.Read();

 }

 }

 P2P.SetSpeed(0.0, 0.0);

 P2P.SetMotorEnable (true);

 ROBOT.Read();

 x = P2P.GetXPos()*cos(offsetAngle) + P2P.GetYPos()*cos(PI/2.0 + offsetAngle);

 y = P2P.GetXPos()*sin(offsetAngle) + P2P.GetYPos()*sin(PI/2.0 + offsetAngle);

 angle = P2P.GetYaw() + offsetAngle;

 obsX = (int) approximate((x+offsetX)*10.0);

 obsY = (int) approximate((y+offsetY)*10.0);

 val = 0.0;

 PW->plot_blend (obsX, obsY,opacity, (1.0-val)*1.0 , (1.0-val)*1.0 , (1.0-val)*1.0);

 matrixVal [obsX][obsY] = val;

 }

 }

 PW->close();

}

//

/// detects if any existing unvisited point in list is re-scanned on not, if so, erase it

//

void eraseOverlap (LaserProxy* LP , Position2dProxy& P2P)

{

int obsX , obsY ;

 int obsXX , obsYY;

 double x = P2P.GetXPos()*cos(offsetAngle) + P2P.GetYPos()*cos(PI/2.0 + offsetAngle);

 double y = P2P.GetXPos()*sin(offsetAngle) + P2P.GetYPos()*sin(PI/2.0 + offsetAngle);

 double angle = P2P.GetYaw() + offsetAngle;

 double angle2;

 bool overlap = true;

 bool Erase = true;

 for (int a = 0; a < 361; a++)

 {

 angle2 = angle + ((a/2.0-90.0)*PI/180.0);

Appendices

Created by CHUI CHING YEE 113

 obsX = limit ((int) approximate (((*LP)[a]*cos(angle2) + x + offsetX)*10.0) , 0 , 160);

 obsY = limit ((int) approximate (((*LP)[a]*sin(angle2) + y + offsetY)*10.0) , 0 , 160);

 if(matrixVal [obsX][obsY] == 0.5)

 overlap = false;

 for (double i = 0.1; i<(*LP)[a] ;i+=0.1)

 {

 obsXX = limit ((int) approximate ((i*cos(angle2) + x + offsetX)*10.0) , 0 , 160);

 obsYY = limit ((int) approximate ((i*sin(angle2) + y + offsetY)*10.0) , 0 , 160);

 if(matrixVal [obsXX][obsYY] == 0.5)

 overlap = false;

 if (!planX.empty() && forward)

 {

 listIteratorY = planY.begin();

 listIteratorV = visited.begin();

 Erase = true;

 for(listIteratorX = planX.begin(); listIteratorX != planX.end(); listIteratorX++)

 {

 if (*listIteratorX == oriDepX && *listIteratorY == oriDepY && Erase)

 Erase = false;

 else if (*listIteratorX == mapDestX && *listIteratorY == mapDestX && Erase)

 Erase = false;

 else if (*listIteratorX == obsXX && *listIteratorY == obsYY && Erase)

 {

 if (*listIteratorV == 0)

 {

 cout << "erase" << *listIteratorX <<endl;

 cout << "erase" << *listIteratorY <<endl;

 planX.erase (listIteratorX);

 planY.erase (listIteratorY);

 visited.erase (listIteratorV);

 break;

 }

 else

 break;

 }

 listIteratorY ++;

 listIteratorV ++;

Appendices

Created by CHUI CHING YEE 114

 }

 }

 }

 }

}

///

////////

/// checks if the map environment is completely explored and built

///

////////

bool finishMapping ()

{

 bool finish = true;

 listIteratorV = visited.begin();

 for(listIteratorV = visited.begin(); listIteratorV != visited.end(); listIteratorV++)

 {

 if (*listIteratorV == 0)

 {

 finish = false;

 break;

 }

 }

 return finish;

}

///

////////

/// path finding using A* algorithm

///

////////

bool pathPlanning (int DepX , int DepY, int DestX , int DestY)

{

 int chainCode = 0;

 int parentX =0, parentY=0, parentG=0;

 int OLcount =0, CLcount =0;

 int OLloc, CLloc;

 int G = 0, H = 0;

 vector < vector <int> > openL (2, vector <int> (6, 0));

 vector < vector <int> > closeL (2, vector <int> (6, 0));

 openL.clear();

 closeL.clear();

Appendices

Created by CHUI CHING YEE 115

 if (extendSize(&openL, OLcount))

 {

 insertRow(&openL, openL.size()-1 , DepX, DepY, 0 , 0 , 0 , 0);

 OLcount ++;

 }

 else

 {

 OLloc = checkLocAvailable(&openL , OLcount);

 insertRow(&openL, OLloc , DepX, DepY, 0 , 0 , 0 , 0);

 OLcount ++;

 }

 while ((DepX != DestX) || (DepY != DestY))

 {

 if (chainCode ==0)

 {

 OLloc = lowestFloc (&openL);

 if (OLloc != -1)

 {

 DepX = parentX = openL[OLloc][0];

 DepY = parentY = openL[OLloc][1];

 parentG = openL[OLloc][3];

 if (extendSize(&closeL, CLcount))

 {

 insertRow(&closeL , closeL.size()-1 , openL[OLloc][0] , openL[OLloc][1] ,

openL[OLloc][2] , openL[OLloc][3] , openL[OLloc][4] , openL[OLloc][5]);

 CLcount ++;

 }

 else

 {

 CLloc = checkLocAvailable(&closeL , CLcount);

 insertRow(&closeL , CLloc , openL[OLloc][0] , openL[OLloc][1] ,

openL[OLloc][2] ,

openL[OLloc][3] , openL[OLloc][4] , openL[OLloc][5]);

 CLcount ++;

 }

 if (abs(DestX-DepX) < 4 && abs(DestY - DepY) <4)

 {

Appendices

Created by CHUI CHING YEE 116

 if (extendSize(&closeL, CLcount))

 {

 insertRow(&closeL, closeL.size()-1 , DestX , DestY ,9,0,0,0);

 CLcount ++;

 }

 pathDecision (&closeL, true);

 return true;

 }

 clearRow (&openL , OLloc);

 OLcount--;

 chainCode ++ ;

 }

 else

 {

 pathDecision (&closeL, false);

 return false;

 }

 }

 else

 {

 findDepXY (chainCode , parentX , parentY , DepX , DepY);

 if ((DepX != -1) && (DepY != -1))

 {

 if (notInCL (&closeL , DepX , DepY))

 {

 G = findG(parentG , chainCode);

 H = findH(DepX , DepY, DestX , DestY);

 OLloc = inOLloc (&openL , DepX , DepY);

 if (OLloc != -1)

 {

 if (G < openL[OLloc][3])

 {

 openL[OLloc][2] = chainCode;

 openL[OLloc][3] = G;

 openL[OLloc][5] = G + openL[OLloc][4];

 }

 }

 else

 {

 if (!isObstacle(DepX,DepY, chainCode))

Appendices

Created by CHUI CHING YEE 117

 {

 if (extendSize(&openL, OLcount))

 {

 insertRow(&openL, openL.size()-1 , DepX, DepY, chainCode , G ,

H ,

G+H);

 OLcount ++;

 }

 else

 {

 OLloc = checkLocAvailable(&openL , OLcount);

 insertRow(&openL, OLloc , DepX, DepY, chainCode , G , H ,

G+H);

 OLcount ++;

 }

 }

 }

 }

 }

 if (chainCode < 8)

 chainCode ++;

 else

 chainCode =0;

 }

 }

 if (chainCode > 0)

 chainCode --;

 else

 chainCode = 8 ;

 if (extendSize(&closeL, CLcount))

 {

 insertRow(&closeL , closeL.size()-1 , DepX, DepY, chainCode , G , H , G+H);

 CLcount ++;

 }

 pathDecision (&closeL, true);

 return true;

}

///

////////

/// A* algorithm – find G

///

Appendices

Created by CHUI CHING YEE 118

////////

int findG (int g , int arrow)

{

 if (arrow == 0)

 return g;

 else if (arrow % 2 == 1)

 return g+10;

 else

 return g+14;

}

///

////////

/// A* algorithm – find H

///

////////

int findH (int depX , int depY, int destX , int destY)

{

 /// using Manhattan Method

 int xDist = abs(depX -destX);

 int yDist = abs(depY -destY);

 return 10*(yDist + xDist);

}

///

////////

/// A* algorithm – find F

///

////////

int findF (int g , int h)

{

 return g+h;

}

///

////////

/// A* algorithm – find location of lowest F in openL

///

////////

int lowestFloc(vector < vector <int> > *vec)

{

 int f, loc=0;

 if (!(*vec).size())

Appendices

Created by CHUI CHING YEE 119

 return -1;

 else

 {

 for (int a = 0 ; a < (*vec).size() ;a++)

 {

 if ((*vec)[a][0] != 0)

 {

 f = (*vec)[a][5];

 loc = a;

 for (int b = a+1 ; b < (*vec).size() ; b++)

 {

 if (((*vec)[b][0] >0) && ((*vec)[b][5] < f))

 {

 f = (*vec)[b][5];

 loc = b;

 }

 }

 return loc;

 }

 }

 }

 return -1;

}

///

////////

/// A* algorithm – extend size of openL or closeL, return 1 if succeed

///

////////

bool extendSize(vector< vector <int> > *vec, int size)

{

 if(size == (*vec).size())

 {

 (*vec).resize(size +1);

 (*vec)[size].resize(6);

 }

 else

 return false;

}

Appendices

Created by CHUI CHING YEE 120

///

////////

/// A* algorithm – return the location at which the pointer is available/idle

///

////////

int checkLocAvailable(vector< vector <int> > *vec , int size)

{

 for(int location=0;location<vec->size();location++)

 {

 if((*vec)[location][0]==0)

 return location;

 }

 return -1;

}

///

////////

/// A* algorithm – determine the “child” point of the current “parent” point

///

////////

void findDepXY (int arrow , int parentX , int parentY , int &DepX , int &DepY)

{

 if ((arrow == 1) || (arrow == 2) || (arrow == 8))

 DepX = parentX +1;

 if ((arrow == 2) || (arrow == 3) || (arrow == 4))

 DepY = parentY + 1;

 if ((arrow == 4) || (arrow == 5) || (arrow == 6))

 DepX = parentX - 1;

 if ((arrow == 6) || (arrow == 7) || (arrow == 8))

 DepY = parentY - 1;

 if ((DepX < 6) || (DepX >154))

 DepX = -1;

 if ((DepY < 6) || (DepY >154))

 DepY = -1;

}

///

////////

/// A* algorithm – check if the current point is already exist in closed list or not

///

////////

bool notInCL (vector< vector <int> > *vec , int x , int y)

Appendices

Created by CHUI CHING YEE 121

{

 for(int a = 0; a< (*vec).size() ; a++)

 {

 if (((*vec)[a][0] == x) && ((*vec)[a][1] == y))

 return false;

 }

 return true;

}

///

////////

/// A* algorithm – check if current point is already exist in open list or not, if so,

/// determine its location

///

////////

int inOLloc (vector< vector <int> > *vec , int x , int y)

{

 for(int a = 0; a< (*vec).size() ; a++)

 {

 if (((*vec)[a][0] == x) && ((*vec)[a][1] == y))

 return a;

 }

 return -1;

}

///

////////

/// A* algorithm – check if the current point is obstacle or not

///

////////

bool isObstacle (int x , int y , int arrow)

{

 if ((x<6) || (x>154) || (y<6) || (y>154))

 return true;

 if (arrow == 1 || arrow == 2 || arrow == 8)

 {

 for (int a = (y-5) ; a < (y+6) ; a++)

 {

 if ((matrixVal[x][a] >= 0.5) || (matrixVal[x+1][a] >= 0.5) || (matrixVal[x+2][a] >= 0.5) ||

(matrixVal[x+3][a] >= 0.5) || (matrixVal[x+4][a] >= 0.5) || (matrixVal[x+5][a] >= 0.5))

 return true;

 }

 }

Appendices

Created by CHUI CHING YEE 122

 if (arrow == 2 || arrow == 3 || arrow == 4)

 {

 for (int b = (x-5) ; b < (x+6) ; b++)

 {

 if ((matrixVal[b][y] >= 0.5) || (matrixVal[b][y+1] >= 0.5) || (matrixVal[b][y+2] >= 0.5) ||

(matrixVal[b][y+3] >= 0.5) || (matrixVal[b][y+4] >= 0.5) || (matrixVal[b][y+5] >= 0.5))

 return true;

 }

 }

 if (arrow == 4 || arrow == 5 || arrow == 6)

 {

 for (int c = (y-5) ; c < (y+6) ; c++)

 {

 if ((matrixVal[x][c] >= 0.5) || (matrixVal[x-1][c] >= 0.5) || (matrixVal[x-2][c] >= 0.5) ||

(matrixVal[x-3][c] >= 0.5) || (matrixVal[x-4][c] >= 0.5) || (matrixVal[x-5][c] >= 0.5))

 return true;

 }

 }

 if (arrow == 6 || arrow == 7 || arrow == 8)

 {

 for (int d = (x-5) ; d < (x+6) ; d++)

 {

 if ((matrixVal[d][y] >= 0.5) || (matrixVal[d][y-1] >= 0.5) || (matrixVal[d][y-2] >= 0.5) ||

(matrixVal[d][y-3] >= 0.5) || (matrixVal[d][y-4] >= 0.5) || (matrixVal[d][y-5] >= 0.5))

 return true;

 }

 }

 return false;

}

///

////////

/// A* algorithm – record the related information into open list or closed list

///

////////

void insertRow(vector< vector <int> > *vec , int loc , int x, int y, int arrow , int g , int h , int f)

{

 (*vec)[loc][0] = x;

 (*vec)[loc][1] = y;

 (*vec)[loc][2] = arrow;

 (*vec)[loc][3] = g;

Appendices

Created by CHUI CHING YEE 123

 (*vec)[loc][4] = h;

 (*vec)[loc][5] = f;

}

///

////////

/// A* algorithm – clear specified information

///

////////

void clearRow(vector< vector <int> > *vec , int loc)

{

 (*vec)[loc][0] = 0;

 (*vec)[loc][1] = 0;

 (*vec)[loc][2] = 0;

 (*vec)[loc][3] = 0;

 (*vec)[loc][4] = 0;

 (*vec)[loc][5] = 0;

}

///

////////

/// A* algorithm – path tracing once goal is found

///

////////

void pathDecision (vector< vector <int> > *vec , bool found)

{

 int px=0, py=0, code=0, ploc=0;

 navigablePath.clear();

 navigablePath.resize(1);

 navigablePath[0].resize(2);

 if (found == true)

 {

 if ((*vec)[(*vec).size()-1][2] != 9)

 {

 px = navigablePath[0][0] = (*vec)[(*vec).size()-1][0];

 py = navigablePath[0][1] = (*vec)[(*vec).size()-1][1];

 code = (*vec)[(*vec).size()-1][2];

 }

 else

 {

 navigablePath[0][0] = (*vec)[(*vec).size()-1][0];

 navigablePath[0][1] = (*vec)[(*vec).size()-1][1];

Appendices

Created by CHUI CHING YEE 124

 navigablePath.resize(2);

 navigablePath[1].resize(2);

 px = navigablePath[1][0] = (*vec)[(*vec).size()-2][0];

 py = navigablePath[1][1] = (*vec)[(*vec).size()-2][1];

 code = (*vec)[(*vec).size()-2][2];

 }

 }

 else

 {

 for (int b = 0; b < (*vec).size()-1 ;b++)

 {

 if ((abs((*vec)[b+1][0] - (*vec)[b][0]) > 1) || (abs((*vec)[b+1][1] – (*vec)[b][1]) > 1))

 {

 px = navigablePath[0][0] = (*vec)[b][0];

 py = navigablePath[0][1] = (*vec)[b][1];

 code = (*vec)[b][2];

 break;

 }

 }

 if (navigablePath[0][0] == 0)

 {

 px = navigablePath[0][0] = (*vec)[(*vec).size()-1][0];

 py = navigablePath[0][1] = (*vec)[(*vec).size()-1][1];

 code = (*vec)[(*vec).size()-1][2];

 }

 }

 while (code)

 {

 if ((code==1) || (code==2) || (code==8))

 px = px-1;

 if ((code==2) || (code==3) || (code==4))

 py = py-1;

 if ((code==4) || (code==5) || (code==6))

 px = px+1;

 if ((code==6) || (code==7) || (code==8))

 py = py+1;

 for (int a = 0; a<(*vec).size() ;a++)

 {

Appendices

Created by CHUI CHING YEE 125

 if (((*vec)[a][0] == px) && ((*vec)[a][1] == py))

 {

 px = (*vec)[a][0];

 py = (*vec)[a][1];

 if ((*vec)[a][2] != code)

 {

 navigablePath.resize(navigablePath.size() +1);

 navigablePath[navigablePath.size()-1].resize(2);

 navigablePath[navigablePath.size()-1][0] = (*vec)[a][0];

 navigablePath[navigablePath.size()-1][1] = (*vec)[a][1];

 code = (*vec)[a][2];

 }

 break;

 }

 }

 }

}

///

////////

/// robot navigation

///

////////

void moveRobot(LaserProxy* LP , Position2dProxy& P2P , PlayerClient & ROBOT)

{

 double x ;

 double y ;

 double goX,goY;

 int mapPoseX, mapPoseY;

 x = P2P.GetXPos()*cos(offsetAngle) + P2P.GetYPos()*cos(PI/2.0 + offsetAngle);

 y = P2P.GetXPos()*sin(offsetAngle) + P2P.GetYPos()*sin(PI/2.0 + offsetAngle);

 mapPoseX = limit ((int) approximate ((x + offsetX)*10.0) , 0 , 160);

 mapPoseY = limit ((int) approximate ((y + offsetY)*10.0) , 0 , 160);

 if ((mapPoseX != mapDestX) || (mapPoseY != mapDestY))

 {

 x = (mapDestX/10.0)-offsetX;

 y = (mapDestY/10.0)-offsetY;

 goX = (x*cos(offsetAngle)) + (y*sin(offsetAngle));

 goY = (y*cos(offsetAngle)) - (x*sin(offsetAngle)) ;

Appendices

Created by CHUI CHING YEE 126

 P2P.GoTo (goX , goY , 0.0);

 }

 else if ((mapPoseX == mapDestX) && (mapPoseY == mapDestY))

 {

 if (navigablePath.size() > 1)

 {

 navigablePath.resize(navigablePath.size()-1);

 mapDestX = navigablePath[navigablePath.size()-1][0];

 mapDestY = navigablePath[navigablePath.size()-1][1];

 }

 else

 navigablePath.clear();

 P2P.SetSpeed (0.0,0.0);

 }

}

///

////////

/// convert a float or double value approximately to integer value

///

////////

template<typename T>

inline T approximate(T a)

{

 T b = a - floor (a);

 if ((b>=0.0) && (b <0.5))

 return floor(a);

 else

 return floor(a) + 1.0;

}

///

////////

/// calculate square of a number

///

////////

template<typename T>

inline T sq (T a)

{

 return a*a;

Appendices

Created by CHUI CHING YEE 127

}

///

////////

/// uses ostream_iterator and copy algorithm to output list elements

///

////////

void printList(const list< T > &listRef)

{

 if (listRef.empty())

 cout << "List is empty";

 else

 {

 ostream_iterator< T > output(cout, " ");

 copy(listRef.begin(), listRef.end(), output);

 }

}

