
Asynchronous Particle Swarm Optimization Based Search
with a Multi-Robot System

Salih Burak Akat, Veysel Gazi, and Lino Marques

Abstract— In this article we consider a version of Particle
Swarm Optimization (PSO) algorithm that is appropriate for
the search tasks of multi-agent systems, which consist of small
robots with limited sensing capability. The proposed method
adopts asynchronous mechanism for information exchange
and position (way point) updates of the agents. Moreover, at
each (information exchange) step the agents communicate with
only a possibly different subset of the other agents leading
to a dynamic neighborhood topology. Simulations using the
Player/Stage robotic simulator are performed on an experi-
mentally collected realistic data of ethanol gas concentration to
verify the effectiveness of the algorithm.

I. I NTRODUCTION

Searching for one or more targets in an unknown and
possibly dangerous (for humans) environment is a task that
can be performed by deploying multiple autonomous robots.
Equipping the robots (referred to as agents in this article)
with the necessary sensors and developing efficient naviga-
tion and cooperative search algorithms can lead to improving
the performance of the system in terms of more effective
exploration/coverage and decreasing the time of search.

There have been works on investigating search methods
inspired from Particle Swarm Optimization for multi-agent
systems. Doctor and his colleagues studied a multi-robot
search application involving one or more than one targets
[1]. Their study is focused on finding optimal parameters
for the PSO algorithm, inertia weight parameter (w) and
upper bounds of learning coefficients (ϕ̄1 and ϕ̄2), in order
to perform a target search task efficiently. They use a 2-
level hierarchy in which the PSO in the inner level solves
the problem of finding the locations of target/targets, while
the PSO in the outer level determines the optimal set of
parameters for the inner level PSO. Hereford [2], [3] con-
sidered a distributed PSO for robot search application which
is somehow similar to the algorithm we consider here. His
emphasis was on simplicity and decreasing the communica-
tion burden in the system and to achieve scalability of the
algorithm to large number of robots. Pugh and Martinoli [4]
worked on adapting Particle Swarm Optimization algorithm
to multi-agent search applications. They considered the cases

Salih Burak Akat and Veysel Gazi are with TOBB Univer-
sity of Economics and Technology, Dept. Electrical and Electron-
ics Engineering, Söğütözü Caddesi, No: 43, 06560 Ankara, Turkey
(sbakat@etu.edu.tr,vgazi@etu.edu.tr). Their work was
supported in part by T̈UBİTAK (The Scientific and Technological Research
Council of Turkey) under grant No. 106E122 and by the European Com-
mission under the GUARDIANS project (FP6 contract No. 045269).

Lino Marques is with University of Coimbra, Dept. Electrical and Com-
puter Engineering, Institute of Systems and Robotics, 3030-290 Coimbra,
Portugal (lino@isr.uc.pt). His work was supported by the European
Commission under the GUARDIANS project (FP6 contract No. 045269).

in which: (i) agents know their global positions and; (ii)
agents rely on their local knowledge. Since the agents arrive
to their respective way-points at different times, those agents
which have arrived earlier than the others wait and updates
are performed after all the agents arrive to their respective
positions. Marques and his colleagues [5] presented a PSO
inspired search method in order to detect odor sources across
large search spaces. They compared the PSO inspired search
method with other strategies and observed that the PSO
inspired search method is more successful in their setting
with unstable environment with high turbulence, than the
other search methods.

In [6], [7] a framework for PSO with dynamic neigh-
borhood topology and distributed asynchronous operation
with possible time delays was developed. Inspired by the
works in [6], [7], in this article we consider a system
consisting of multiple robots deployed in a search task
using Particle Swarm Optimization based decision making
process and position updates. The robots are allowed to
operate asynchronously and to exchange information using
dynamic neighborhood topology. We test the effectiveness of
the method via simulations using the Player/Stage realistic
robotic simulator on a realistic environment of experimen-
tally collected ethanol gas concentration data. To the bestof
our knowledge PSO inspired robotic search in the manner
we consider here (dynamic neighborhood and asynchronous
operation) has not been considered so far in the literature.

II. PROBLEM FORMULATION

In this article we consider a system consisting ofN

mobile robots (agents) moving inR2 with continuous-time
unicycle. The robots are required to perform a search in
an unknown environment. Each point in the environment
is assumed to have a particular potential value which,
in this article represents experimentally collected ethanol
gas concentration. However, in general, depending on the
problem under consideration, it can represent other entities
such as different type of odor, chemical plume or smoke
concentration, temperature or light intensity etc. We callthis
potential the resource profile and use PSO based optimization
strategy to plan the motions of the robots with the objective
to locate the extremum (minimum or maximum) points of
the resource profile. Again, depending on the application,
these points can represent the source of odor, smoke/fire,
heat or light. We assume that the robot is equipped with the
necessary sensors in order to be able to measure the value
of the environmental resource profile.

Workshop/Summer School on Evolutionary Computing
Lecture Series by Pioneers, August 18-22, 2008, Londonderry

Copyright IEEE 2008 64



Let us denote withpi(t) = [xi(t), yi(t)] the position
of robot i at time t in cartesian coordinates. From the
perspective of PSO inspired search roboti constitutes par-
ticle i. Given the robot is at itskth way point pi(tk) =
[xi(tk), yi(tk)] ∈ R

2 at time tk (iteration k for the
robot/particle), its (desired) next way pointpi(tk+1) is calcu-
lated using the PSO algorithm. In other words, PSO is used
for higher level path planning for determining the way points
that the robot should visit. In order to move the robot from
thekth way pointpi(tk) to the(k+1)th way pointpi(tk+1)
in the interval t ∈ [tk, tk+1), we use artificial potential
functions for low level control. In particular we require the
robot to move along the vector̄p(tk) = pi(tk)− pi(tk+1) to
reachpi(tk+1) (with collision avoidance). This path could be
different from a straight path. With this objective, we use a
quadratic attractive potential function and require the robot to
move along its negative gradient. Similarly, in order to avoid
collisions between robots we use a repulsive potential which
is activated when the distance between two robots becomes
less than a predefined constant valued.

III. A SYNCHRONOUSPSO

There are various possible implementations of the Particle
Swarm Optimization method. Some of them suffer from the
so-called explosion problem and need to employ a bound
on the particles velocities. In this article we use the PSO
version that uses a “constriction coefficient” proposed by
Clerk and Kennedy in [8] in which at thekth iteration, which
corresponds to timetk for the robot, the update for the way
points for particle (robot)i, i = 1, . . . , N, is given by

vi(tk+1) = χ

[

vi(tk) + ϕi
1(tk)

(

bi(tk) − pi(tk)
)

+ϕi
2(tk)

(

gi(tk) − pi(tk)
)

]

pi(tk+1) = pi(tk) + vi(tk+1)

(1)

Here pi(tk) ∈ R
2 represents the position (way point) of

the i’th particle at timetk (the estimation of this particle
about the minimum/maximum point of the function being
optimized at timetk), bi(tk) ∈ R

2 represents the best
position of the i’th particle until time tk, gi(tk) ∈ R

2

represents the best position of the neighborhood of thei’th
particle until time tk. The valuepi(tk+1) ∈ R

2 which is
calculated at the end of the iteration is the next (desired)
way point to which the robot should move. The learning
coefficientsϕi

1(tk) ∈ [0, ϕ̄1]
2 and ϕi

2(tk) ∈ [0, ϕ̄2]
2 are

two dimensional uniform random vectors. At each iteration
these random vectors respectively determine the relative
significance/weight of the cognitive and social components
in the iteration. The constant parameterχ > 0 is the
constriction parameter that prevents the explosion behavior,
i.e., particles having high velocity values leading to their
scattering in the search space. For efficient performance and
prevention of the explosion behavior in (1) we choose the
components of theϕi

1(tk) and ϕi
2(tk) learning coefficient

vectors as

ϕi
1j(tk), ϕi

2j(tk) ∈ [0, 2.05], j = 1, 2; i = 1, . . . , N, (2)

The constriction parameterχ > 0 can be calculated using
the relation (refer to [8])

χ =

{

2κ

ϕ−2+
√

ϕ2
−4ϕ

, if ϕ > 4,

κ, else.
(3)

Hereϕ = ϕ̄1 + ϕ̄2 andκ ∈ [0, 1]. Consideringϕ̄1 = ϕ̄2 =
2.05 and κ = 1, the constriction parameter is calculated as
0.7298 for this study.

In its basic form, the iteration in (1) is performed syn-
chronously after all the particles have performed their func-
tion evaluations and exchanged information. Although even
in its basic form the method seems to be appropriate enough
to robot search applications, we propose some modifications
on it to improve its performance and to overcome some
shortcomings that might arise. These modifications are in the
line of the works in [6], [7] and include totally asynchronous
implementation (much different from the ones considered in
the literature) and dynamic information exchange topology
between the robots (i.e., particles) in the system.

First of all note that multi-robot systems are naturally
distributed and decentralized decision making and operation
are desired properties of them for higher levels of robustness
and flexibility. Moreover, due to the decentralized/distributed
nature, multi-robot systems operate in an asynchronous man-
ner. Furthermore, usually the sensing and communication
capabilities of the robots are limited, which results in time
dependent interactions (since only the robots which are
within each others sensing or communication range can inter-
act). Therefore, direct implementation (without modification)
of the PSO algorithm for search in multi-robot systems may
result in unsatisfactory performance. This is because firstof
all the robots cannot instantaneously jump to their next way
points and it may take different amounts of time for the
robots to reach their respective way points. For this reason,
the robots which arrive earlier than the others have to wait
for all the robots to arrive to their respective way points
before exchanging information with the objective to update
the global best of the neighborhood (gbest) and to move
to the next iteration of the PSO algorithm. Moreover, for
large search areas the respective way points of the robots
may be far away from each other and the distance between
robots may become larger than the communication range.
This may lead to the fact that some of the robots may not be
able to communicate with each other and therefore a system
operating with standard PSO may stall since in order to move
to the next iteration the robots need to obtain information
from all its neighbors. The situation may become even worse
in presence of temporary or permanent communication or
agent failures. To overcome these shortcomings, motivated
by the works on asynchronous PSO and PSO with dynamic
neighborhood in [6], [7], we modify the PSO algorithm as
described in the pseudocode given in Table I.

As one can see from the algorithm in Table I, while
a robot is moving towards its respective way-point in the

Workshop/Summer School on Evolutionary Computing
Lecture Series by Pioneers, August 18-22, 2008, Londonderry

Copyright IEEE 2008 65



TABLE I

PSEUDOCODE OF THEALGORITHM

Initialize of pbest andgbest (and all other variables)
Calculate the first way point using Equation (1)
while (Target not found and iterations have not expired)do

while (Agent has not arrived to its way point)do
Move towards the desired way point
Updatepbest

if (Information received from other agents)then
Updatepbestother

end if
end while
Broadcast ownpbest
if (pbestother > gbest or pbest > gbest) then

Updategbest

else
Use previousgbest

end if
Calculate a new way point using Equation (1)

end while

search area, it continuously listens for information from other
robots (since if other robots arrive to their respective way-
points earlier they broadcast their best fitness values achieved
until that time) and later uses this information for updating
the global bestgbest. After arriving at the desired way-
point, the robot broadcasts its best fitness value achieved
until arriving to the desired way-pointpbest. Then using the
information gathered by itself and received from others, it
performs an update of its next desired position (way-point)
based on its current velocity, its best position, the globalbest
position (which is extracted from the information obtained
from the other robots) - see equation (1). If there are no
other robots which have arrived at their respective way-points
earlier than the robot under consideration (meaning that it
has not received any information from the other robots yet),
the robot continues its update based on its old information
(that it had obtained from the other robots in the past). In
other words, it does update the global best based only the
information that it has sensed during its motion and continues
its operation. Since the robots may arrive at their respective
way-points at different time instants, the set of robots that the
robot receives information from at each iteration of the PSO
algorithm may change leading to a time-varying (dynamic)
neighborhood topology and the robots perform asynchronous
way-point updates. In the basic form of the PSO algorithm
the neighborhoods of the particles are static, i.e., particle
neighborhoods remain stationary throughout all iterations of
the algorithm.

IV. SIMULATION RESULTS

The Asynchronous Particle Swarm Optimization based
search method discussed in the preceding sections is tested
using the Player/Stage realistic robot simulator. Player pro-
vides an interface to the robot’s sensors and actuators overan
IP network. Client program send commands to Player over
TCP sockets and reads data from sensors. Stage provides
a simulation environment in order to test the developed
algorithm. The simulation environment provides movement
of mobile robots in a two dimensional environment and

various sensor models.
Simulations are performed in an obstacle free environment

using experimentally collected gas concentration data. The
data was gathered inside an enclosed environment with 3-
by-4 meters area and 0.5 meters height. This environment
was weakly ventilated through an opening in one corner
and a system composed by four 12 centimetres diameter
fans able to generate a flow ranging from 0 to 1500 lpm
each in the other corner. There were three gas sources in
the set-up placed on the ceiling of the environment in the
locations(2.25, 0.625), (0.5, 2), and(2.25, 3.45). These gas
sources were obtained passing a controlled airflow through
ethanol bubblers. The flow was controlled by individual SMC
proportional valves. The ethanol concentration inside the
environment was acquired with a sensor network composed
by twelve Figaro TGS2600 gas sensors distributed uniformly
into the enclosed environment. These sensors can detect
ethanol vapour starting from few parts per million. Each
gas sensor was mounted on a small PCB board with the
necessary signal conditioning circuit. The output from these
sensors was acquired by two Microchip PIC18F4431 micro-
controllers interfacing to a PC through an RS485 shared bus.
The continuous distribution of concentrations was estimated
with a kriging estimator.

Given the experimentally collected data, the objective is to
determine the areas of high gas concentration. The first plot
on Figure 1 shows the plot of the experimentally collected
concentration (the environmental gas profile) used in this
study. This profile is the instantaneous odour concentration at
a given time instant in the 3-by-4 bounded area mentioned
above. For the simulations6 Pioneer2dx robots are used.1

0
0.5

1
1.5

2
2.5

3
3.5

4

0

0.5

1

1.5

2

2.5

3
0.24

0.245

0.25

0.255

0.26

0.265

0.27

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3
Average distance to target (meters) versus Iterations

A
ve

ra
ge

 D
is

ta
nc

e 
to

 ta
rg

et
 (

m
et

er
s)

Iterations

Fig. 1. The profile and average distance to the maximum.

We specify the maximum speed that robots can reach as
0.8m/s and the maximum acceleration as1m/s2. Robots are
equipped with 16 ultrasonic range detectors located at their
front, left and right sides and and their back. However, they
are not equipped with the devices that provide global position
information to them and rely on their position odometry
information only throughout the search. It is also assumed
that robots are equipped with necessary sensors to get the
potential (i.e., ethanol concentration) value information of
each grid in the search area.

Initially the robots are located near the area entrance, point
(0,0) in the cartesian plane. The first way-points in the search
area are generated randomly for the robots and each robot

1In the Player/Stage realistic simulator Pioneer2dx robotsare already
modelled (i.e., have drivers for).

Workshop/Summer School on Evolutionary Computing
Lecture Series by Pioneers, August 18-22, 2008, Londonderry

Copyright IEEE 2008 66



starts to move towards to its initial way-point. This helps the
robots to localize themselves (with some errors due to the
fact that all of the robots cannot start their search at exactly
the same entrance point but they start rather close to each
other and this will cause positioning errors at the beginning
in terms of global positions) without a need for global
positioning information. Moreover, it represents a realistic
situation in which the area to be searched has only single
entrance (such as a building to be searched for example).
The ultrasonic sensors, which the robots are equipped with,
are used to measure/determine inter-robot distances and
to prevent robot to robot collisions. The ultrasonic sensor
readings are used in calculating repulsive potential whichis
activated only at a smaller distance than predefinedd which
is chosen asd = 0.5m.

The plots in Figure 2 show the way-points that the robots
visited and the trajectories of the robots at the search space
respectively. The “X” symbol represents the random first
way-points of the robots (which are effectively the initial
positions of the particles of the PSO algorithm), the “O” sym-
bol represents the final position of each robot, and the curves
represent the trajectories of the robots. Stopping criteria for
each robot is determined as the velocity vector, from (1),
getting smaller values than a predetermined threshold which
implies that robot will visit way-points which is close to
its current way-point and eventually stops, as the velocity
vector is close to zero and there is no improvement in
position vector according to (1). The way-points of the robots
are shown as “dots” on the contour maps of the profile.
Due to robots physical dimensions, position odometry errors,
initial robot location errors in the search area, and repulsion
forces between them (which are used to prevent robot to
robot collisions), it is a fact that all the robots congregate
around the target and take position values close to the target
(instead of all the robots reaching exactly the same point).
Since each robot updates its position and velocity vectors
asynchronously and there is no global iteration counter that
synchronizes these updates, each robot finds the target in
different number of iterations. The second plot on Figure 1
shows the average distance of robots to the target, global
maximum point of resource profile, for each iteration. The
vertical lines represent the standard deviation of the distance
of robots to the target. The average distance to target and
standard deviation decreases as the robots perform their PSO
updates for the next iterations. Since each robot finishes
its search task at different iterations, it is considered that
each robot remains in the same position after it satisfied
the stopping criteria mentioned above. The largest iteration
number that a robot finished its task is 30 iterations, so the
iteration axis is considered up to 30 iterations. From the
graph, it is observed that the average number of iterations
that robots could find target is about 20 iterations.

V. CONCLUDING REMARKS

In this study Asynchronous Particle Swarm Optimization
based robotic search method is tested in a simulation envi-
ronment. The method is based on distributed asynchronous

Trajectory and Way Points of Robot 1

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3
Trajectory and Way Points of Robot 2

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

Trajectory and Way Points of Robot 3

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3
Trajectory and Way Points of Robot 4

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

Trajectory and Way Points of Robot 5

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3
Trajectory and Way Points of Robot 6

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

Fig. 2. Trajectories and way points of the robots.

operation with dynamic information exchange topology. Fu-
ture work can focus on implementing the search method in
a dynamically changing environment and implementation of
the method on real robot platforms.

REFERENCES

[1] S. Doctor, G. Venayagamoorthy, and A. Gudise, “Optimal pso for col-
lective robotic search applications,” inProceedings of IEEE Congress
on Evolutionary Computation (CEC-2004), vol. 2, 2004, pp. 1390–
1395.

[2] J. Hereford, “A distributed particle swarm algorithm for swarm robotic
applications,” inProceedings of IEEE Congress on Evolutionary Com-
putation (CEC-2006), vol. 2, 2006, pp. 1678–1685.

[3] J. Hereford, M. Siebold, and S. Nichols, “Using the particle swarm
optimization algorithm for robotic search applications,”in Proceedings
of IEEE Symposium on Swarm Intelligence (SIS-2007), 2007, pp. 53–
59.

[4] J. Pugh and A. Martinoli, “Inspiring and modelling multi-robot search
with particle swarm optimization,” inProceedings of IEEE Congress on
Evolutionary Computation (CEC-2002), vol. 2, 2002, pp. 1666–1670.

[5] L. Marques, U. Nunes, and A. de Almedia, “Particle swarm-based
olfactory guided search,”Autonomous Robots, vol. 20, no. 3, pp. 277–
287, May 2006.

[6] S. B. Akat and V. Gazi, “Particle swarm optimization withdynamic
neighborhood topology: Three neighborhood strategies andprelimi-
nary,” in IEEE Swarm Intelligence Symposium (SIS-2008), St. Louis,
Missouri, September 2008.

[7] ——, “Decentralized asynchronous particle swarm optimization,” in
IEEE Swarm Intelligence Symposium (SIS-2008), St. Louis, Missouri,
September 2008.

[8] M. Clerc and J. Kennedy, “The particle swarm—explosion,stability, and
convergence in a multidimensional complex space,”IEEE Transactions
on Evolutionary Computation, vol. 6, no. 1, pp. 58–73, February 2002.

Workshop/Summer School on Evolutionary Computing
Lecture Series by Pioneers, August 18-22, 2008, Londonderry

Copyright IEEE 2008 67




