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COMPARISON OF THREE ORIENTATION AGREEMENT STRATEGIES
IN SELF-PROPELLED PARTICLE SYSTEMS WITH TURN ANGLE
RESTRICTIONS IN SYNCHRONOUS AND ASYNCHRONOUS
SETTINGS

Andag T. Samiloglu, Veysel Gazi, and A. Bugra Koku

ABSTRACT

In this study, we compare three different orientation agreement strate-
gies of multi-agent/particle systems under different conditions. We investigate
the behavior of multi-agent systems utilizing these strategies with different
combinations of the following properties: (i) the multi-agent systems may be
synchronous or asynchronous, (ii) they may travel in bounded or unbounded
regions and (iii) the mobile agents may have turning speed restrictions. The
agents/particles are assumed to move with constant speed and update their
orientation of motion based on three different strategies. Based on these strate-
gies, simulations are performed and the effects on the clustering performance

are investigated.

Key Words: Consensus, distributed agreement, orientation agreement,
asyncronism, turn angle restrictions, multi-agent systems.

I. INTRODUCTION

The collective motion of organisms like schools
of fish, herds of quadrupeds, flocks of flying birds, and
groups of migrating bacteria, molds, ants, or pedestri-
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ans is an interesting area studied by many biologists,
physicists, and even engineers in recent years. The coor-
dinated behavior of such animal groups results in com-
plex and meaningful emergent or self-organizing be-
havior with only local interactions of relatively simple
or “dumb” individuals (or agents as we call them here).
Life sciences like theoretical biology and animal ethol-
ogy can benefit from the ideas or principles derived from
the operation of natural multi-agent systems. The devel-
oped ideas and principles may also be utilized in many
engineering fields including swarm robotics [1, 2], op-
timization [3—7], self-organizing distributed sensor net-
works [8], decentralized/distributed coordination and
control of groups of unmanned air, space, land and un-
derwater vehicles, or even problems of social sciences
including organization theory, economics, and cogni-
tive psychology. Hence, for several decades many sci-
entists from different fields have been trying to under-
stand, model, and mimic/reproduce the behavior seen
in natural swarms.

Among the first relevant works by biolo-
gists are the studies by Breder [9], Warburton and
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Lazarus [10], Okubo and Grunbaum [11-13], and
Parrish [14].

The first study on simulating of flocking behavior
of birds was performed by Reynolds in his well-known
study [15], where he showed that, if followed by the
simulated agents, three simple rules can result in realis-
tic behavior similar to the one observed in bird flocks.
The model of self-propelled particles considered by
Vicsek [16] is similar in nature to the model of
Reynolds, except that the particles in the Vicsek’s
model have constant speed. In that work, they consid-
ered a self-propelled particle system with dynamics
based on the simple rule “at each time step a given par-
ticle driven with a constant absolute velocity assumes
the average direction of motion of the particles in its
neighborhood of radius r with some random perturba-
tion added” [17], and investigated clustering, transport,
and phase transition in non-equilibrium systems. They
showed that their model results in a rich/realistic dy-
namics despite the simplicity of the model. In [18]
and [19] Czirék et al. study biologically inspired,
inherently non-equilibrium models consisting of self-
propelled particles. Similar to [17], the particles move
on a plane with constant speed and interact with their
neighbors by choosing, at each time step, a heading
equal to the average direction of their neighbors. In
[18], they showed that the far-from-equilibrium sys-
tem of self-propelled particles can be described using
the framework of classical critical phenomena and the
analysis shows new features when compared with the
analogous equilibrium systems. In [19] the authors
summarize some of the results of large-scale simula-
tions and theoretical approaches about the effects of
noise and dimensionality on the scaling behavior of
such systems. In [20], the authors introduce a generic
phenomenological model for the collective motion of
bacteria on a solid agar surface taking into account
nutrient diffusion, reproduction, and sporulation of bac-
teria, extracellular slime deposition, chemo-regulation,
and inhomogeneous population. The model is based
on a ferromagnetic-like coupling of the velocities of
self-propelled particles and is capable of describing
the hydrodynamics on the intermediate level. In [21]
the authors demonstrate that a system of self-propelled
particles exhibits spontaneous symmetry breaking and
self-organization in one dimension. They derived a new
continuum theory that can account for the development
of the symmetry broken state. The collective motion of
organisms in the presence of fluctuations is discussed
in [22]. In this study Vicsek utilized the simple rule of
motion of particles as in [17]. The author demonstrated
that there is a transition from disordered to ordered mo-
tion at the finite noise level and particles segregate into

lanes or jam into a crystalline structure in a model of
pedestrians.

A discrete model consisting of self-propelled
particles that obey simple interaction rules is studied
in [23]. The authors showed that the model can self-
organize and exhibit coherent localized solutions in
one-dimensional and in two-dimensional spaces. Fur-
thermore, they develop a continuum version of their
discrete model and show the agreement between these
models.

In [24], Savkin gives a qualitative analysis of
the dynamics of a system of several mobile robots
coordinating their motion using simple local nearest
neighbor rules referring to Vicsek’s model in [17]. The
author states that under some assumptions the head-
ings of all robots will be eventually the same. Similar
analysis was performed by Jadbabaie et al. in [25],
where they consider both discrete and continuous mod-
els as well as leaderless and leader-based situations
and show that under certain connectivity conditions
the heading of all the agents will converge to the same
value, thus providing in a sense a theoretical explana-
tion to the results obtained by Vicsek et al. (i.e. they
considered the model by Vicsek without the additive
noise and the position dynamics). Later these results
were extended by Moreau [26] and independently by
Ren and Beard [27] to more general classes of systems.

Initial studies on flocking from a control theoretic
perspective were performed by Tanner and coworkers
in [28,29] using point mass and in [30] considering
non-holonomic agents with continuous time dynamics.
On the other hand, in a recent study [31] Olfati-Saber
developed a theoretical framework for analysis and de-
sign of flocking systems with agents with point mass
dynamics. He considered two different types of flock-
ing algorithms (which incorporate Reynolds rules): free
flocking, in which the agents try to move to a particu-
lar distance from its nearest neighbors and also to stay
aligned to them, and constrained flocking in which the
agents are following virtual agents while performing
free flocking. The second algorithm is in principle cen-
tralized although it can also be implemented in a de-
centralized fashion if all the virtual agents for all the
individuals have the same dynamics and exchange in-
formation initially.

The flocking behavior of multi-agent systems are
modeled to work synchronously in many of the stud-
ies. On the other hand there have been some studies
[32-36] on the asynchronous modeling of multi-agent
systems. The work in [32] considers the asynchronous
convergence of a linear swarm to a synchronously
achievable configuration in the reconfiguration of pat-
terns problems. In this study, a sufficient condition
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for the asynchronous convergence of a linear swarm
to a synchronously achievable configuration is proven
to exist. In [33-35] the stability of one-dimensional
and M-dimensional asynchronous swarms are studied.
In [36] Beni shows that asynchronous swarms may
converge in cases in which synchronous swarms may
not and that achieving an order from disordered ac-
tions is a basic characteristic of swarms and states
that “swarms may undergo a transition from non-
convergence to convergence as their degree of partial
synchronicity diminishes”. A study on the aggrega-
tion problem is performed in [37] with agents that are
anonymous, homogeneous, memoryless, and lack com-
munication capabilities. In a similar study in [38] the
authors showed that asynchronous autonomous agents
which have limited visibility and no memory, would
gather at the same location in finite time provided that
they have a compass.

Aggregation in biological swarms were ini-
tially modeled and simulated by biologists [9-12].
Inspired by these works, a recent series of stud-
ies [33-35, 39-43] has provided rigorous stability and
convergence analysis of swarm aggregations based on
artificial potential functions both with continuous-time
and discrete-time formulations. Particularly, in [39, 40]
a biologically inspired n-dimensional (where » is arbi-
trary) continuous time synchronous swarm model based
on artificial potentials is considered and some results
on cohesive swarm aggregation have been obtained.
Similar results based on artificial potentials and virtual
leaders have been independently obtained by Leonard
and coworkers in [44, 45] for agents with point mass
dynamics. The papers [33—35] focus on asynchronous
swarm models with time delays for swarm aggrega-
tion in discrete-time settings. In [43], which has more
emphasis on design than analysis a particular control
strategy for aggregation in swarms has been developed
based on artificial potential functions and sliding mode
control, assuming simple integrator agent dynamics
with model uncertainties and disturbances.

Later in [46] the results in [43] were extended to
a significantly more realistic and more difficult setting
with non-holonomic unicycle agent dynamics models,
again using the tools of artificial potential functions and
sliding mode control, but in a slightly different way
than [43]. Furthermore, in [47] the results were further
extended to include the foraging and formation control
problems. (in addition to the aggregation problem con-
sidered in [46]). One very recent survey that considers
multi-agent systems from the perspective of control en-
gineering can be found in [48].

Since in nature and in robotic applications the au-
tonomous agents mostly act asynchronously, a model

based on asynchronous actions of agents would be more
realistic and implementable. Hence, in this study we
will develop an asynchronous version of the model de-
veloped by Vicsek [17] (without the additive noise) and
investigate the effects of asynchronism in the coordina-
tion of agents striving to travel with a common head-
ing. We consider 3 different orientation rules (rules of
dynamics to achieve a common heading) and compare
the behavior of the self-propelled particle systems for
these three different rules. Furthermore, we consider
the effect of restricting the maximum turning angle of
the particles and perform simulations for bounded and
unbounded regions. We perform extensive simulations
with many different initial conditions. Moreover, in the
discussions section we provide some analytical expla-
nations for the obtained simulation results.

Recently, there have been some articles on extend-
ing the works in [25-27] to systems with time delays
or systems operating asynchronously [49-53]. In [49],
Angeli and Bliman provide an extension of the result
by Moreau [26] by relaxing the convexity assumption
and allowing for a known and bounded time-delay. The
article in [51], besides discussing some available re-
sults in the literature, presents some new results for
systems/protocols with delays as well. Asynchronous
motion is not considered in [49, 51]. The article in [50]
summarizes the recent results on synchronous consen-
sus protocols, briefly discusses asynchronous protocols,
poses some open questions, and shows some simula-
tion based preliminary results on asynchronous proto-
cols using a custom Java based simulator. The more
recent article in [52] presents some new results on the
asynchronous agreement problem. No time delays are
considered in [52]. The article in [53] considers the
problem of asynchronous agreement of systems also in-
curring time delays and extends the results in [25-27].

Despite the fact that almost all of the above ar-
ticles claim that they consider the Vicsek’s model, in
reality they consider only part of the dynamics of the
model considered by Vicsek. The model considered is,
in general, a linear averaging (or sometimes nonlinear
convex/contracting) agreement model that does not
include the agent position dynamics which are present
in the Vicsek’s model. Then the articles investigate the
agreement properties in the dynamics of that partial
model under some artificial connectivity assumptions.
However, in the model by Vicsek the connectivity is an
emergent property which depends also on the position
dynamics of the agents. As a difference from the stud-
ies in [24-27,49-53], in this article we include also
the position dynamics of the agents and study the per-
formance of the system for three different agreement
strategies for synchronous and asynchronous cases
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incurring also time delays. In addition, we impose also
turn angle restrictions (a type of non-holonomic con-
straint) on the agents and investigate the performance
for different levels of restrictions. For comparing
the performances of the strategies we define several
performance metrics, which include not only orienta-
tion agreement of the agents but also their clustering
performance. To the best of our knowledge, no study
similar to this one has been performed so far in the
literature.

II. HIGH LEVEL DYNAMICS

We consider a multi-agent system consisting of
n so called self-propelled or self-driven particles each
of which, similar to the model by Vicsek [17], moves
based on the dynamics

xi(t + 1) =x;(t) + vecos(O; (t + 1)) (1)
yi(t +1)=y;(t) + vsin(0;(t + 1))
i=1,...,n (2)

where x;(f), y; (t) € R denote the cartesian position co-
ordinates of agent i and 0; () € R denotes its orientation
angle at time . We assume that v is constant and equal
for all agents. In other words, we assume that all the
agents move with the same constant speed in possibly
different directions (determined by their orientation an-
gles ;). Moreover, we assume that an agent has limited
sensing capabilities and can “see” or “sense” the other
agents that are within a circle of radius ¢ from it and
call these agents its neighbors. Furthermore, it is as-
sumed that the agents update their orientation based on
its current orientation and the orientation of its current
neighbors. In particular, we will utilize three different
orientation rules, with which the agents will adjust their
headings.

Many studies in the literature assume that the
agents move synchronously and have perfect infor-
mation about the orientations of their neighbors.
In other words, it is assumed that the agents move
simultaneously/synchronously and at each step they
know the current positions/orientations of their neigh-
bors. However, in real swarms this is hardly possible.
Implementing such dynamics will require a global
clock to be shared by all the agents. Therefore, an
asynchronous model is more realistic in which each
agent can move and reorient itself independently.
Moreover, usually there might be time delays in the
communication/sensing between the agents. Including
such delays in the multi-agent systems will result in
more realistic approaches. In order to achieve such

SENSE
&
COMPUTE
&
TURN

P=pyet

P:l'pul

Fig. 1. Finite state machine model.

a realistic model we use a higher-level asynchronous
model similar to the one used in [54].

For the asynchronous high level model we will re-
fer to the study in [55] which considers the cyclic pur-
suit problem with asynchronous high level dynamics.
In that study a finite state machine (FSM) is proposed
for high level model. The architecture consists of three
behaviors: wait, sense and compute, and move. In our
model here the agents always move in the last updated
direction with constant speed and a finite state machine
works for the orientation dynamics. Therefore, the be-
havior considered here can be described with the sense-
compute-turn and move straight states (Fig. 1).

During the sense-compute-turn behavior the i”
agent gets (measures or receives by other means) the
orientations of neighbor agents and computes its own
next desired orientation and turns to the computed ori-
entation. During the move straight behavior, the agent
doesn’t turn, that is, basically moves along its last up-
dated orientation. These behaviors are arbitrated by us-
ing a finite state machine, in an infinite loop as shown
in Fig. 1. As soon as the sense-compute-turn state is
completed agents immediately pass to the move straight
state (with the probability of 1). However, the move
straight state is followed by the sense-compute-turn
state depending on some probabilistic measure or rea-
soning. Let the following state of move straight state be
sense-compute-turn state with probability of pg. and
again move straight state with probability of 1 — py,,.

We assume that each agent has a low level
control which guarantees that the agent turns to the
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computed orientation with the specified angular speed.
We are not concerned with the low level dynamics and
how the low-level control is implemented. Therefore,
the analysis below is applicable for many systems with
variety of different low-level vehicle dynamics includ-
ing heterogenous swarms/systems (i.e. swarms consist-
ing of more than one type of agents). Moreover, in the
current study we ignore the issue of collisions between
the agents. The resulting sequence of behaviors can be
summarized as: turn to the computed orientation. Wait
for a predetermined time interval. Then sense the ori-
entations of the neighbor agents and turn again in the
computed orientation.

Recall that during the sense-compute-turn behav-
jor the i" agent gets the orientations of the neigh-
bor agents and then computes its next desired orienta-
tion. However, during these sensing and computing pro-
cesses of the i'" agent the neighbor agents may be in
their sense-compute-turn state and therefore the mea-
sured orientations of the neighbor agents may be out-
dated. Moreover, the measurement of the orientations
of the neighbor agents may itself incur some delays.
Whether any type of sensors or even communication
are used, the propagation delay of the signals may lead
to measurement of old (outdated) orientations. Simi-
larly, delay will also be present even if the orientations
are obtained by inter-agent communication. Therefore,
the modeling of the dynamics of agents working for a
common orientation problem should be designed tak-
ing into account the orientation sensing delays. Refer-
ring to this phenomena we introduce the variables 1:3. (1)

which satisfy 0 < *rff(t) <t in order to represent the de-
lay in the orientation measurements. In other words,
we assume that at time 7 agent i knows 0; (7’ (1)) in-
stead of the actual 0;(¢) about the orientation of agent
j. In other words, 8 j(rj. (1)) is the perceived orienta-
tion of agent j by agent i at time ¢. Also, since each
agent operates on its local clock following the state
machine cycle on Fig. 1 without a need for synchro-
nization with the other agents, we introduce a set of
time indices T', i =1,2,...,n, at which the agent i
updates its orientation 0; where the sets T are inde-
pendent subsets of the set {0, 1, 2,...}. It is assumed
that at the other instances the agent i does not perform
orientation calculation (it might be in one of the other
states/behaviors at these time instants). Note that in
the synchronous model 7, (1) =t and T* = {0, 1, 2, ... .}
forall t>0andi=1,2,...,nand j=1,2,...,n. In
other words, in the synchronous case all the agents
have the exact and current orientation information of
their neighbors and perform updates at all time instants
simultaneously/synchronously.

We believe that the asynchronous model is more
realistic (compared to the studies performed earlier with
a synchronism assumption) since in real world applica-
tions (such as robots coordinating to achieve a common
orientation) or animal flocks (such as schooling behav-
ior of fish) usually there is no synchrony between agents
and time delays are also possible. In our model we
utilize the study on the relation between the syn-
chronism and asynchronism in the parallel computing
systems in [56].

The asynchronism between the agents (i.e. robots,
fish) may be at different levels due to the characteristics
of each agent itself or some environmental disturbance.
In some multi-agent systems the asynchrony may be
negligible (leading to a synchronism assumption) and
the behavior of these systems may be computable or
predictable. On the other hand, in some systems asyn-
chronism may drastically change the performance of the
system. In these kind of systems the behaviors of agents
may be difficult to predict. Nevertheless, unbounded or
excessively long delays in the information flow or act-
ing of the agents may result in the violation of “agent
interaction” concept of multi-agent systems. In other
words, it might be difficult to view the systems experi-
encing unbounded or excessively long delays or systems
with agents some of which do not act for unbounded
amount of time as a single multi-agent system. This is
because an agent that never performs sensing or never
acts cannot be considered as a member of the group.
Therefore, the level of asynchronism should be limited
in such a way that the agents still can interact and form
a single multi-agent system. Hence, here we state an
assumption (as utilized in the study [55]) which estab-
lishes a bound on the maximum possible time delay
as well as guarantees uniformity in the updates of the
agents.

Assumption 1. There exists a positive integer B such
that

(a) For every i and every t > (), at least one of the ele-
ments of the set {t,t +1,...,7 + B — 1} belongs
to T,

(b) There holds r — B<t/(1) <1 Vi, t > 0,1 €T".

This assumption basically states that (i) every
agent performs an update or change in its orientation in
at most B time steps; (ii) the delay in sensing the orien-
tations of the neighbors of the agent is bounded as well
by at most B time steps. This assumption in a sense
restricts the level of asynchronism in the multi-agent
system. Assumption 1 is taken from [56] where it is
utilized for parallel and distributed computing systems.
Systems satisfying Assumption 1 are being referred to
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as partially asynchronous systems in the parallel and
distribution computation literature [56].
Let

Ni(t) ={j : |j #i, (xi(t) — xj())?
+ (i (1) — yj)? < 8%

denote the actual set of neighbors of agent i at time ¢ and
| Vi (t)| denote the number of agents in the set N;(¢).
For the asynchronous system which also considers
the time delays in sensing/communication the set of
neighbors of agent i at time ¢ can be described as

Ni (@) ={j : 1j #i, @) — x;(50))
+ (i (1) — y; (@))% < 6%)

where t; (1) represents the last instant at which agent
i obtained the orientation information of agent j dur-
ing the last sense-compute-turn state. Note that during
the delays in the information gathering and computing
states the neighbor agent j may leave the neighborhood
region or any other agent may enter this region.

Below we describe three different strategies for
the orientation computation of the agents.

III. STRATEGIES FOR ORIENTATION
AGREEMENT

3.1 Strategy 1 (averaging)

This strategy is based on the averaging of orienta-
tions of neighbor agents. The new orientation of agent
i at step 4+ 1 is determined by the following equation:

0; (t41) = i+ Y ﬂ,,-(rj(rn) :

—— |0,
1+|N; (1) ( JeN; (1)
teT (3a)

0;(t +1)=0;(t), t¢T'. (3b)

As mentioned above, we assume that at time ¢ agent i
knows 0; ('r; (1)) instead of the actual 0;(¢) about the
orientation of agent j. In other words, 0 j(r*'. (1)) is the
perceived orientation of agent j by agent 7 at time ¢.
Consequently, if agent i has not yet obtained any infor-
mation about the j** agent’s orientation and still has the
initial orientation information, then ri. (t) =0 whereas

Tif(t) =1 means that agent i has the current orientation
information of the j' h agent. The difference between the

current time ¢ and the value of the variable 1:; (1), i.e.,
(t —rfi (¢)) is the delay occurring due to the sensory, com-
puting and/or communication processes or other rea-
sons. Note from Assumption 1 that f — IZ- (t)<B should
be satisfied.

One drawback with the rule in (3a) is that it may
sometimes result in directions of motion that are not
very intuitive. For example, assume that there are two
agents with directions of motion +5° and +355°. Based
on the rule in (3a) on the next step both the agents
will turn to 180° (i.e. they will flip direction) while the
intuitive direction is 0° for both. Here we assumed that
the orientation angles are defined between 0° and 360°.
The situation will not change if they are defined between
—180° and +180° since the same problem will occur
around 180° this time. The reasons for such behavior
are discussed in more detail in the discussion section.

3.2 Strategy 2 (relative angles)

In this strategy the agents determine their new ori-
entations by considering the orientation differences be-
tween themselves and their neighbors or basically the
relative orientations. The next orientation of agents is
found by the following equation:

e i
0,(I+l):9;(f)+‘m, teT (43)

it + ) =0;(t), 1¢T' (4b)
where @ is the total of differences between the orienta-
tion of the agent itself and the orientations of its neigh-
bor agents. The orientation of an agent itself and its
neighbor’s orientation may appear in four different ar-
rangements (Fig. 2). Therefore, © is calculated consid-

ering the four different cases with the following pseudo
code.

®=0

FOR j € N; (1)
A=6;(7;() — 0;(t)
IFA<nORA>-n (CASE1O0OR3)

O=0+A

ELSE IF A>n (CASE 2)
@=0+A-2n

ELSE IF A<—n (CASE 4)
O=0+A+2n

END

END
where 0;(t) € [0, 2n) Vi, t. This pseudo-code is also
equivalent to the equation

O= Y mod@;(t)—0;(t)+r2n)—n. (5
JjeN;(t)
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CASE1 CASE 2

6.1
(1)

a<m l/ 7 axm A4S~
il Vo il >

8,(x'(1)
8t/ (1)
CASE 3 CASE 4 _
0,(1'(1)
0,1 o
A>-m @1'(1)
<-T
v
P
0,(1)

Fig. 2. Possible arrangements of orientation of an agent and its neigh-
bor’s orientation.

The rule in (4a) is more intuitive compared to rule
(3a) since it considers the relative orientations and al-
ways chooses the smaller angle. However, it may also
have problems in the cases of some symmetries. For
example if three agents are oriented such that the ori-
entation difference between each pair is 120°, they will
continue their motion with their previous orientations
and will not achieve orientation agreement. The details
of such behavior are also discussed in the discussions
section.

3.3 Strategy 3 (vector sum)

Strategy 3 is based on the vectorial sum of unit
vectors that lie along the orientations of agents. Let r;
denote the unit vector in the direction of motion of agent
i. Then the orientation rule becomes

0 (t + 1) = angle (n—(r) 4= ¥ ¥ (r[}(t))) ,
JjeN;(z;(0)

teT! (6a)

0;(t+1)=6;(t), teT' (6b)

where angle(v) is the function that returns the angle of
any given vector v. In implementations it can be com-
puted by using the atan2(Py, Px) function where Px
and Py are the components of the computed vector on
the right hand side of (6a) along the x and y directions,
respectively.

Fig. 3. Orientation rule of Strategy 3 for only one neighbor (j) of
agent i.

For instance in Fig. 3 we see the calculation of
new orientation, 0;(t 4+ 1) of i'" agent with only one
neighbor ().

Rule (6a) is another intuitive rule that is used in
determining the agent directions. However, as was the
case with rule (4a) it may be difficult to decide the next
orientation using rule (6a) in some cases with symme-
try. However, these cases have very low probability in a
swarm of many agents. In implementation if such a case
occurs one may choose the turning direction randomly
until the symmetry is broken. The limitations of Strat-
egy 2 and 3 in cases of symmetries and the drawback
of Strategy 1 explained in Section 3.1 are investigated
in more detail in the discussion section.

IV. TURN ANGLE RESTRICTIONS

As discussed previously we assume that the agents
update their orientation based on their own orientation
and the orientation of their neighbors. In this section
we additionally assume that there is a restriction on the
maximum possible turning angle of the agents due to
mechanical or physical reasons. Therefore, the dynam-
ics of the orientation angles of the agents are given by

0i(t + 1) = 0;(t) + min(abs(¢; (1)), o)
x sign(¢; (1)), te€ T (7a)

0;(t +1)=0;(t), t¢T’ (7b)

where o is the maximum possible turn angle per step and
¢; (1) is the desired turn angle which is computed at time
t by using one of the three strategies given above. Due
to (7a), during an update i’" agent can turn at most the
angle « in the direction of ¢;(f) (clockwise or counter
clockwise).
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Adding the turn angle restrictions we can rear-
range the rules of the previous three strategies for com-

puting ¢, (1) as
For Strategy 1

1 :
D= (G4 0t (¢
%@ 14+ |N;(@)] ( ® je%(z) J(TJ()))

—0;(t), teT'. (8)
For Strategy 2
S i
‘f’;‘(f):m teT )]

where @ is calculated by the pseudo code given in Sec-
tion 3.2.
For Strategy 3

¢;(t) = angle (r;(!) + 3 ?'j(Ti,-(I)))
JjeN;i(t; ()

—6;(t), teT'. (10)

We would like to emphasize here that having turn
angle restrictions is a very realistic assumption since
most real agents will have such constraints. However,
such restrictions have not been considered in the litera-
ture so far.

V. NUMERICAL SIMULATION RESULTS

We simulated the motion of n =50 agents. Ini-
tially the agents are located in a square region of size
100 x 100 units and the constant speed of all of the
agents is set to 1 unit/step. The simulations are per-
formed for T time steps (7 = 500 for unbounded region
and T = 1000 for bounded region). The agents perform
updates depending on a stochastic function of B. The
probability of update of an agent is distributed along the
interval t € (t — B, t] such thatitis 1/(B—Q+ 1) where
Q is the number of steps that the agent has not per-
formed an update since the last update. In other words,
if the agent has just performed an update in the previous
step the probability that it will perform an update again
is 1/B, whereas if it has not performed an update for
3< B steps then its probability of update is 1 /(B —2). If
the agent has not performed an update for B time steps
then its probability of update becomes 1. At each time

Table 1. Pseudocode.

Draw the initial positions and orientations of agents
randomly from a uniform distribution
FOR i=1:n DO
set Q; = 1; (X is the number of steps
that agent i has not performed an update.
At the beginning Q; is one for every agent.)
END
FOR t=1:T DO (T =number of simulation steps)
FOR i=1:n (n=number of agents) DO
prbOfUpdate = 1/(B-Q; + 1);
c=randint(1, 100); (Generate random integer from
uniform distribution to compare with prbOfUpdate)
IF (c < prbOfUpdate = 100) (performing update)
FOR j=1:n DO
T =randint(t-B,t)
(t is the random step drawn between last
step orientation updated and current step
Consider T as the last step that agent i
received /measured the orientation of agent j)
IF agent j is neighbor of agent i
Use 0 j () in the computation of the new
orientation
(based on formula for the current strategy)
END
END
Q; =1; Set to one since the agent is updated
ELSE (No update will be performed)
Q; =Q; + 1; (increment number of steps
that no update performed)
No change in agent i’s orientation
END
END
END

step at which the agent does not perform an update the
value of Q is incremented by 1 and at each time step
the agent performs an update, the value of Q is reset to
zero. Note that this implementation is not a real discrete
event based asynchronous system. Instead it mimics
such systems and is sufficient for illustrating /verifying
the performance of the asynchronous system discussed
in this article. The initial positions and orientations of
agents are generated randomly and for each simulation
the same initial conditions are utilized. We provide 20
simulation results performed for different initial con-
ditions generated randomly and present the mean and
variance of the results. The algorithm performing these
steps is presented in Table 1. In order to measure the
performance of the system we used the following four
performance metrics

eq(t) = Z Z

lzi () —z; O, t=1
- 1)1—] Jj=i+1
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2 n—-1 n
et)=—==23 3 16:®O-6;®|, =1

nin—1) i3 j=
1 n
éo(t)z;Z 10; () —0: (¢ — DI, =2
i=1

where z;(t) =[x;(¢), yi(t)]" is the position vector of
agent i. Basically e4(r) is the average distance between
the agents, and eg(t) is the average of orientation dif-
ferences between the agents, and ég(t) is the average
rate of change of orientation of the agents at time 1.
The fourth performance metric is the number of clus-
ters formed by the agents. A cluster is defined as the
group of agents which are connected to (meaning “are
neighbors of™) each other either directly or indirectly
through other agent. (Note that agents i/ and j belong
to the same cluster at time ¢ if ||z; (1) — z;(t)[| <9.)
As e4(1) gets lower, the agents get closer to each other
which implies that the multi-agent system performs bet-
ter in clustering. The metric, number of clusters, is also
a performance criterion in determining the success of
clustering of agents. Note that as the number of clus-
ters decrease or size of clusters increase (resulting in
lower e4(t)) the number of agents traveling with the
same heading increases. Therefore, if the performance
in clustering is better, then the performance in orienta-
tion agreement is also better. On the other hand, as eg(#)
gets lower, the agents are heading in closer orientations
which means they have better performance in orienta-
tion agreement. The agents have more steady headings
if ég(t) converges to zero.

We have conducted simulations in order to deter-
mine the effects of asynchronism and time delays on the
cluster formation by varying « (turn angle restrictions)
in unbounded and bounded regions.

5.1 Effect of o (unbounded region)

Here, we compare the effects of o and asynchro-
nism on the performances of the three orientation strate-
gies. d is set to 20 units. Note that in all simulations
B =0 corresponds to the synchronous case and B =10
corresponds to an asynchronous case.

5.1.1 Effect of « for unbounded region in synchronous
model

In Figs. 4 and 5 we plotted e;(t) and eg(r) at the
end of simulations (f =T = 500) versus « values. It is
seen that as the o value increases (which means that
the restriction on the turning angle decreases) the val-
ues of both €4(T) and eyp(7T") decrease in all strategies.
The total distance between agents is smaller for higher
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Fig. 4. e4(T) for strategies 1 (bold solid line), 2 (solid line), 3
(dash-dot line) for synchronous case and unbounded region.
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Fig. 5. ep(T') for strategies 1 (bold solid line), 2 (solid line), 3 (dash-dot
line) for synchronous case and unbounded region.

o values. This is an expected result when we consider
the fact that as the restriction gets weaker, the agents
perform better turning motion and therefore, they ag-
gregate better. On the other hand, the decrease in the
sum of orientation differences eg(7T) implies that the
number of agents moving with different headings de-
crease and also the difference between the heading of
clusters decreases, since the orientation adjustment be-
comes easier at lower turning restrictions. In Fig. 6 we
see the clustering performance of the three strategies
with varying o. As seen all strategies get better as the
turning angle restrictions get smaller.
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Mean of number of clusters at the end of simulation
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Fig. 6. The number of clusters at + =T for strategies 1 (bold solid
ling), 2 (solid line), 3 (dash-dot line) for synchronous case
and unbounded region.

In all Figs. 4, 5, and 6 the first strategy has the
best performance for all o values. The second and third
strategies are close to each other.

The total of rate of change of orientations of all
agents at each step, éy(t) is plotted in Figs. 7, 8, and 9
for strategies 1, 2, and 3, respectively. In all three fig-
ures the results for o =1° show lower values than the
ones for o = 180° because as o gets lower the maximum
possible rate of change of orientations of each agent
gets lower as well. The agents having lower o values
cannot form large clusters as stated above. Therefore,
they continue their motion in relatively small clusters
(there are many of them) which are spreading away. As
the clusters get out of neighborhood range of each other
with different orientations then there exits no possibil-
ity for them to change their orientations to travel with
the same heading. Therefore, in all figures, after some
amount of steps éy(f) settles to zero implying that no
change of orientations of clusters or agents occur. Note
that in Fig. 7 for o =1° there are some peaks around
140", 270" and 440" steps that means some small
clusters come across.

5.1.2 Effect of o for unbounded region in
asynchronous model

Here, we present the results of simulations of the
three strategies for the asynchronous case. In Figs. 10
and 11 we plotted ¢4(¢) and eg(t) at the end of simula-
tions (ft = T = 500) versus o values. Like the results for
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Fig. 7. Total of rate of change of orientations of agents at each step

for a=1° (upper subplot) and o= 180° (lower subplot) for
an arbitrary initial condition (Strategy 1 - synchronous case -
unbounded region).
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Fig. 8. Total of rate of change of orientations of agents at each step
for «=1° (upper subplot) and «=180° (lower subplot) for
an arbitrary initial condition (Strategy 2 - synchronous case -
unbounded region).

the synchronous case as the o value increases the values
of both e4(T") and ey(T") decrease in all strategies. Com-
paring with the synchronous case, we can conclude that
in the asynchronous case all strategies have worse per-
formances. This is an expected result when we consider
the delays in the sense and computing states (which re-
sult in lack of valid information about the orientations
of its neighbor agents) of the agents and the fact that the
agents may not perform orientation update at each time
step. These two reasons make the performances worse.
In Fig. 12 we see the clustering performance of the three
strategies with varying o for the asynchronous agents.

© 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society



222 Asian Journal of Control, Vol. 10, No. 2, pp. 212-232, March 2008
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Fig. 9. Total of rate of change of orientations of agents at each step
for «=1° (upper subplot) and x=180° (lower subplot) for
an arbitrary initial condition (Strategy 3 - synchronous case -
unbounded region).
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Fig. 10. e4(T) for strategies 1 (bold solid line), 2 (solid line), 3
(dash-dot line) for asynchronous case and unbounded region.

As seen all strategies perform better as the turning an-
gle restrictions get weaker. However, like the worse
performances in e;4(t) and eg(t) with respect to the syn-
chronous case, the number of clusters for a specific o
value is worse (higher) too, for the asynchronous dy-
namics.

Like the synchronous case all plots in Figs. 10,
11, and 12 show that the first strategy again has the best
performance for all o values. The performances of the
second and the third strategies are close to each other.
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Fig. 11. eg(T) for strategies 1 (bold solid line), 2 (solid line), 3
(dash-dot line) for asynchronous case and unbounded region.
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Fig. 12. The number of clusters at t =T for strategies 1 (bold solid
line), 2 (solid line), 3 (dash-dot line) for asynchronous case
and unbounded region.

The asynchronous results for ég4(7) are plotted in
Figs. 13, 14, and 15 for Strategies 1, 2, and 3, respec-
tively. As in the synchronous case all three figures show
that results for & = 1° have lower values than the ones
for «=180° due to lower maximum possible turning
angle values at each step. In all figures the amount of
steps that ég(r) settles to zero is higher with respect to
synchronous case. Again note that since the clusters are
spread away as time passes the possibility of orientation
adjustment with respect to neighbor clusters diminishes.
Therefore, the fluctuation amounts are diminishing in
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Fig. 13. Total of rate of change of orientations of agents at each step
for «=1° (upper subplot) and o= 180° (lower subplot) for
an arbitrary initial condition (Strategy 1 - asynchronous case
- unbounded region).
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Fig. 14. Total of rate of change of orientations of agents at each step
for «=1° (upper subplot) and o= 180° (lower subplot) for
an arbitrary initial condition (Strategy 2 - asynchronous case
- unbounded region).

time. There are some out of order peaks at the different
steps that may be caused by the asynchronism in the dy-
namics or some clusters come across with each other.

5.2 Effect of o (bounded region)

The simulation parameters and initial conditions
used in this section are the same with those used in the
previous sections except that in this case we restrict the
arena in which the agents move. They move in a 100 by
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Fig. 15. Total of rate of change of orientations of agents at each step
for =1° (upper subplot) and o= 180° (lower subplot) for
an arbitrary initial condition (Strategy 3 - asynchronous case
- unbounded region).

100 square region. When an agent faces any boundary
it continues to its motion with the orientation that is
the reflection of its previous orientation just like a light
beam reflects on a mirror. In the following sections again
we present the simulation results for synchronous and
asynchronous cases.

5.2.1 Effect of a for bounded region in synchronous
model

The plots of e4 () and ey(t) are presented in Figs.
16 and 17, respectively. As in the previous results we
see that as the o value increases the values of both e4(T)
and eg(T') decrease in all strategies. In Fig. 18 we see
the clustering performance of the three strategies with
varying o. As seen all strategies get better in clustering
as the turning angle restrictions get smaller.

The first strategy has again best performance as
seen in Figs. 16, 17, and 18. The second and third strate-
gies perform close to each other. As expected, since the
region is bounded the performances of this case are bet-
ter than performances of its unbounded counterpart.

Figs. 19, 20, and 21 are the plots of the ég(t) for
synchronous and bounded case. The amounts of rate
of changes of the orientations of the agents are very
high compared to the unbounded region results. In the
unbounded region the agents settle down to some ori-
entation and continue with this orientation for the rest
of the simulation. However, if the region is bounded
the agents have to turn (to the reflection angle) when
they come across with the boundaries. Therefore, we
see some sharp peaks in the plots that resulted from
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Fig. 16. e4(T) for strategies 1 (bold solid line), 2 (solid line), 3
(dash-dot line) for synchronous case and bounded region.
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Fig. 17. eg(T) for strategies 1 (bold solid line), 2 (solid line), 3
(dash-dot line) for synchronous case and bounded region.

the reflection of clusters from walls. Note that during
this process some of the agents come across with the
boundaries before their neighbors that they travel with
the same orientations. Since the leader agents turn to a
reflection orientation, orientation strategies of all neigh-
bor agents calculate new orientations -different from the
one they all settled down. Hence, we see that for the
high restriction of turn angles -low o value- the new
orientation agreement of a cluster of agents may take
more time.
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Fig. 18. The number of clusters at 1 =T for strategies 1 (bold solid
line), 2 (solid line), 3 (dash-dot line) for synchronous case
and bounded region.
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Fig. 19. Total of rate of change of orientations of agents at each step

for a=1° (upper subplot) and o= 180° (lower subplot) for
an arbitrary initial condition (Strategy 1 - synchronous case -
bounded region).

5.2.2 Effect of « for bounded region in asynchro-
nous model

The results of the asynchronous version of the
previous bounded region simulation is presented in
Figs. 22, 23, and 24. As seen the results are similar in
terms of getting better as the turning angle restrictions
weaken. Comparing the synchronous and asynchronous
results, again we find that the asynchronism leads to
worse performance. Here the second and third strate-
gies perform close to each other and worse than the first
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Flg 20. Total of rate of change of orientations of agents at each step
for ®=1° (upper subplot) and «= 180" (lower subplot) for
an arbitrary initial condition (Strategy 2 - synchronous case -
bounded region).
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Fig. 21. Total of rate of change of orientations of agents at each step
for «=1° (upper subplot) and o= 180° (lower subplot) for
an arbitrary initial condition (Strategy 3 - synchronous case -
bounded region).

strategy again. Moreover, as expected since the region
is bounded the performances of this case are better than
performances of its unbounded counterpart.

The last three Figs. 25, 26, and 27 are the plots of
the ég(¢) for asynchronous and bounded case for strate-
gies 1, 2, and 3, respectively. As seen from the figures
for o= 1.the agreement of orientations of agents is not
achieved at all. Every agent changes its orientation due
to its orientation strategy and/or facing of boundaries.
The agents having o = 180° perform better than agents
o= 1° in this case but they have still worse performance
compared to the agents with synchronism assumption,
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Fig. 22. e4(T) for strategies 1 (bold solid line), 2 (solid line), 3
(dash-dot line) for asynchronous case and bounded region.
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Fig. 23. ep(T) for strategies 1 (bold solid line), 2 (solid line), 3
(dash-dot line) for asynchronous case and bounded region.

V1. DISCUSSIONS

In this study the initial conditions of the agents
are set randomly with uniform probability in the inter-
val [0, 27) since the initial orientations of agents are re-
quired not to be biased towards any direction. In other
words, the probability of an agent i starting with orien-
tation 6;1(0) € [0, 27) is equal to the probability of agent
i starting with any other orientation 6;2(0) € [0, 27).
Therefore, the probability distribution function of the
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Fig. 24. The number of clusters at t =T for strategies 1 (bold solid
line), 2 (solid line), 3 (dash-dot line) for asynchronous case
and bounded region.
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Fig. 25. Total of rate of change of orientations of agents at each step
for o=1° (upper subplot) and o= 180° (lower subplot) for
an arbitrary initial condition (Strategy 1 - asynchronous case
- bounded region).

initial orientations of the agents in the simulations is
given by

1
—, if0=<0<2
F@10,2m= | 22+ W V=2m (11

0, otherwise.

Depending on the initial conditions (orientations and
positions), the agents may show different behavior for
each of the three strategies. Note that, the group of
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Fig. 26. Total of rate of change of orientations of agents at each step
for & =1° (upper subplot) and o= 180° (lower subplot) for
an arbitrary initial condition (Strategy 2 - asynchronous case
- bounded region).
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Fig. 27. Total of rate of change of orientations of agents at each step
for «=1° (upper subplot) and o= 180° (lower subplot) for
an arbitrary initial condition (Strategy 3 - asynchronous case
- bounded region).

agents in the neighborhood of agent i, is in fact a sample
set of the population distributed uniformly. Considering
the asynchronism of updates, the orientations of the set
of agents that agent i is utilizing their orientations in
performing its orientation update is also a sample set of
a uniformly distributed set.

The following analysis is valid for only ¢t > 1.
However, it is sufficient to illustrate the general tenden-
cies of the strategies considered in this article.
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In Strategy 1 (the averaging strategy), the agent in
any cluster will update its orientation according to

1 N
8,(f+ l)zﬁzl OJ(I) (12a)
=

where N is the number of the agents in the neighbor-
hood of agent i including itself. (Note that N is differ-
ent from |N;(f)| which we used in previous sections.
In fact N includes the number of neighbors and agent
itself such that N = | N;(¢)| + 1.) Recall that the orienta-
tions of agents at f =1 in any neighborhood are in fact
in a sample set of the uniform distribution we stated
above. Therefore, the expected value of the outcome of
the averaging rule is the mean of the uniform distribu-
tion. In other words, the expected value of the updated
orientations for t =1 (initial step) is
E[Bs(t+l}]:y:2ﬂ—;0=:r. (13)
This shows that the agents utilizing the first strategy
will tend to orient themselves towards or basically to
agree upon an orientation close to m where the orienta-
tions of agents are distributed uniformly in the previous
state (t = 1 in this case). In other words, the agents cal-
culating their new orientation based on the averaging
strategy (Strategy 1) will have a bias towards the angle
. This fact will not change even if the topology is not
fully connected or synchronous or there are time delays
or turn angle restrictions in the system. This is because
taking convex combinations between a set of values (and
that is what exactly the averaging rule does) cannot lead
to values outside the initial set. Therefore, for any sub-
group in the swarm the bias will be towards the initial
average orientations of the group and as the number of
the members in the group increases or the groups join
or disjoin this average will tend to be closer to 7. In fact,
we have noticed in the simulations that the flocks for the
first strategy always tend towards the left of the screen
(which is the expected result based on the discussions
above). The reason for the drawback/shortcoming of
flipping directions in this strategy (mentioned before)
is exactly due to this tendency towards n. Note also
that the averaging strategy uses global orientations. In
other words, for its implementation all the agents need
to have means to measure global orientations (e.g., each
of them needs to have a compass) and they have to agree
a priori on a global reference frame (i.e., the compasses
have to be calibrated properly). We believe that this is
the main reason for the better performance (faster con-
vergence) of the first strategy. The swarm under this
strategy seems as a guided swarm with global bias and
the model of Strategy 1 might be suitable for such

applications. However, for many minimalist multi-agent
applications it may not be possible to have global in-
formation (i.e., a global reference frame agreed upon a
priori). Therefore, for such applications it may not be
possible to implement Strategy 1 even though it con-
verges faster.

We would like to also emphasize that if the orien-
tations of agents were drawn from a uniform distribu-
tion of angles which is between (—=, 7] (instead of the
set [0, 27)) then the expected value of the updated ori-
entations would be = n+4(—m) /2 = 0. This means that
the agents are guided towards 0 of the global reference
frame and the qualitative behavior does not change.

In Strategy 2, the agents will update their orienta-
tions according to

0i(t+1)=0;(t) +

X
[N;i(2)]
[Ni(1)]
Z mod (0 (t)—0; (t)+m, 2n)—n

i=1
(14)

where |N;(7)| is the number of agents in the neighbor-
hood of agent i (not including agent itself). In (14),
the part ELE{”' mod(0;(t) — 0;(t) + n,2n) — wisina
sense the estimation of function u(6—6;(t)) = mod(0—
0, (t) +r, 27) — m. For simplicity lets call @ = 0 —0; (¢).
Then u(®) =mod(® + =, 21t) — n. The expected value
of u(0®) is

o0

Elu(®)]= f u(@)id@) (15a)
2n

—00

where given the fact that the (absolute) orientation an-
gles are uniformly distributed in the interval [0, 27)
(initial-f = 1-orientations in this case) one can show
that the probability density function of ® is given by

F(©| = 0i(1), 2m — 6; (1))

_Jioe if —0;(t) <0<2mn—0;() 16)

0, otherwise.

The function u(®) is a piecewise continuous function

O+2n, if —2n<O<-—x
Q, if —m<0®<n
u(@®) = (17)
®—-2n, fn<®<2m
0, otherwise.
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Therefore, the expected value of u(®) is given by

= 1

E[u(@)]zf (@ + ZE)EdG (18a)
+ @ldG) (18b)
e oW
2n 1
+ (®—2n)—dO. (18¢c)
27

One can simply show that
Eu(®)]=0. (19)

Therefore, for the case with fully connected topology
and synchronous motion, the expected value of 0; (1 +1)
becomes

E[6;(t + D] = E[0;()] + E[u(9)] (20a)
=0;(t) + E[u(©)] (20b)
=0;(t) (20¢)

which implies that agent i utilizing the second strat-
egy will be tending to preserve its previous orientation.
Since agent i was chosen arbitrarily, the same will hold
for all the agents, which, on the other hand, implies that
there is no global reference or bias towards which all
the agents tend to converge. This observation explains
why the agents perform worse in Strategy 2 compared
to Strategy 1. Note that even though Strategy 2 performs
worse than Strategy 1, it might be more suitable for
many multi-agent applications. This is because first of
all it does not require agreement on a global coordinate
system between the agents. Second, in real applications
in Strategy 1 the agents have to pass their global orienta-
tions to each other by means of some kind of inter-agent
communication. In contrast, in Strategy 2 the agents
can determine themselves the relative orientations (in
their local reference frame) of their neighbors by means
of local sensing (without a need for inter-agent com-
munication). In fact, even though Strategy 1 has been
inspired by natural phenomena such as the global mo-
tion of schools of fish, flocks of birds, or swarms of
bacteria or synchronization of the flushing of fireflies
[25] and has been used to explain such phenomena, it
is difficult to imagine that such natural systems operate
based on global information (such as Strategy 1) and
operation based on local (relative) information (such as
Strategy 2) seems more realistic or natural.

For Strategy 3, the next orientation is calculated as

j=l

N
H,-(t+1):ang!e(z r_,-(t)) (21)

where N is the number of the agents in the neighbor-
hood of agent i including itself and as one can recall that
r;(t) denotes the unit vector in the direction of 6 i (1).
Therefore, the x and y components of unit vector r (1)
become

xj(t) =cos(0;(t)) (22a)
yj(t) =sin(0;(1)). (22b)

Substituting these into equation (21), the next orienta-
tion of agents is calculated as

G;(t+1)
N
=angle ( i) yj(t)]) (23a)
j=1

=angle (|:
J‘ =

N N
=angle ([Z (cos(B;(1))) 3 (sin(0; (t)))])
j=1

J=1

M™M=

Il
Pt

N
(xj(), 3 (yj(f))D (23b)
=1

(23c)

or

N
0;(t + 1) = angle (|:l > (cos(0;(1)))
Nj=|

1 N
— 2 (sin(6;(2))) (24)
Nj:l

where %37 (cos(0;(1))) and £3°Y_, (sin(0; (1))
are the estimations of means of cos(f;(t)) and
sin(0;(t)), respectively. The expected x = cos(0; (t+1))
and y=sin(0;(t + 1)) values of next orientation be-
comes

Elx]= E[cos(0;(t + 1))]
1 N
=E |:E > (cos(0; (t))):| (25a)
j=1
Ely]l= El[sin(0;(t + 1))]
1 N
—F [F 3 (sin(0; (r))):| . (25b)
Jj=1

To find the estimations of means of the sinusoidal
functions of 0;(r) we will utilize the following relation
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[57, 58]. If # is uniform in the interval [0, 27), the prob-
ability distribution of x=a sin(f + y) is given by

fl)= —a<y<a. (26)

1
nva? — o2
Therefore, the probability distributions of y = sin(6;(t))
and x = cos(0(t)) =sin(0;(t) + n/2) are found as

f(x)=;. —l<x<l (27a)
v 1 — x2
1
= -1 1. 27b
f» Y <y< (27b)

The estimation of x is

1 1
= A S 28
Elxl f_l"xm = (282)

= VIR 1L (28b)
=0. (28c)

The same result can be found for the estimation of y
as well. Hence, the expected results of means of x and
y are 0. This result states that there is no particular
expected output for the next orientation since there is
no solution for 0 satisfying sin(0) =0 and cos(0) =0.
In other words angle([0, 0]) = @. This result shows that
there is no guided initial direction or bias for the agents
using Strategy 3. In this sense Strategy 3 is similar to
Strategy 2. Therefore, as was the case in Strategy 2,
it is natural to expect that Strategy 3 as well is worse
than Strategy 1 (which has a bias towards = as one can
recall). Hence, most of the comments for Strategy 2
hold for Strategy 3 as well.

VII. CONCLUSIONS

In this study, we compared the performances of
three different orientation agreement strategies. We an-
alyzed the behavior of multi-agent systems utilizing
these strategies with different combinations of the fol-
lowing properties: (i) the multi-agent systems are syn-
chronous or asynchronous; (ii) they travel in bounded
or unbounded regions; and (iii) the mobile agents have
various amount of turning speed restrictions. The agents
try to orient themselves in the same direction depend-
ing on three different interaction rules while at the same
time moving with constant speed. We performed each
simulation for various turn angle restrictions to observe
the effects of non-holonomic dynamics. The agents ex-
hibit best performance in orientation agreement in the

case in which they are synchronous, holonomic and us-
ing Strategy 1 and in bounded region. In general for
all simulations Strategy | has the best agreement per-
formance. As discussed in the Section VI we believe
that this is mainly due to the fact that in Strategy 1
the agents are guided (i.e. have a bias) towards angle
7. We showed that if the initial orientations of agents
are drawn from a uniform distribution between [0, 27)
the orientation updates of agents will be guided towards
the angle 7 of global reference frame for Strategy 1.
In contrast, the orientation updates of agents utilizing
Strategy 2 and 3 are not guided towards any direction.
Each of these strategies have advantages and disadvan-
tages (as discussed in the Discussion section). While
Strategy 1 performs best in orientation agreement, for
implementation it needs agreement on a global refer-
ence frame and measurement of the angles with respect
to that frame, whereas Strategy 2 can be implemented
using only relative information. For guided orientation
agreement problems Strategy 1 would be a good choice.
On the other hand, for the cases where global reference
frame should not result in bias in orientations of swarms
the second and third strategies are better to be utilized.
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