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Abstract— In this article we consider tracking a maneuvering

target with a non-holonomic agent. The target and the agent
move in 2-dimensional space. The task is to capture/intercept
the moving target using a continuous time control scheme based
on artificial potentials and the sliding mode control technique.
The effectiveness of the proposed control scheme is established
analytically and demonstrated via a set of simulation results.

I. INTRODUCTION

In nature, the survival of many species may critically

depend on their ability to capture a prey (a target) or escape

capture from a predator (a pursuer). This problem has been

considered in the engineering literature where it is referred

to as pursuit-evasion or sometimes target tracking problem.

Recent studies on the problem of tracking a maneuvering

target can be found in [1], [2], where in [1] the authors

consider the problem of tracking with a single agent, whereas

in [2] they consider the problem of capturing/enclosing a

moving target with a swarm of agents with fully actuated

(holonomic) pursuers in both cases. The model of an agent

considered in [1], [2] is a general fully actuated model which

can represent some omni-directional robots as well as some

manipulators or even spacecraft [3]. However, in practice,

most of the mobile agents (i.e., differentially driven robots,

UAVs) have velocity constraints or they are underactuated

and may not obey the model in [1], [2]. In this article, we

consider tracking a maneuvering target with an autonomous

differentially driven non-holonomic agent (sometimes called

the unicycle model and described in more detail in Section II)

and extend the results in [1]. Note here that the setting here

constitutes more difficult setting (compared to the model

in [1], [2]) in terms of controller development and the

extension is not a straightforward one as the control design
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approach used in [1] cannot be applied directly to the non-

holonomic unicycle agent dynamics model. Therefore, in

this article, in order to perform a tracking task with non-

holonomic agents we use the artificial potential and sliding

mode control based approach in [4], where a distributed

control scheme for aggregation, foraging, and formation

acquisition/maintenance of swarms of non-holonomic agents

was considered.

The work in this article was inspired by the earlier works

of Guldner and Utkin (and their coworkers) on tracking

the gradient of potential functions (potential fields) using

sliding mode control [5]–[9]. Other relevant articles, mainly

on potential functions based navigation, aggregation, and

formation control include [1], [2], [10]–[17]. However none

of these applications (other than [1]) is in the context of the

particular tracking task considered here.

The paper is organized as follows. In Section II, the non-

holonomic agent model is introduced and the tracking prob-

lem is defined. In Section III, the control design procedure

for the solution of the tracking problem is presented in the

form of a constructive analysis. In Section IV, some simu-

lation results are presented. Finally, the paper is concluded

with some final comments in Section V.

II. AGENT DYNAMICS AND TRACKING PROBLEM

Consider a system in which an agent with non-holonomic

dynamics labeled as A, is required to pursue and intercept

a moving target, labeled as T , under system uncertainties

and additive disturbances (discussed below). Assume that

agent A has the configuration depicted in Figure 1 and the

equations of motion given by

ẋA = vA cos(θA),
ẏA = vA sin(θA),

θ̇A = wA,
v̇A = 1

mA
[FA + fvA

] ,

ẇA = 1

IA
[τA + fwA

]

(1)

where pA(t) = [xA(t) yA(t)]⊤ denotes the position of A
at time instant t in Cartesian coordinates, θA is the steering

angle, vA is the linear speed, and wA is the angular speed

of A. The quantities mA and IA are positive constants and

represent the mass and the moment of inertia of agent A,

respectively. The control inputs for agent A are the force

input FA and the torque input τA. The functions fvA
and

fwA
represent unknown additive disturbances for agent A.

The disturbances are assumed to be bounded such that

|fvA
| < f+

v and |fwA
| < f+

w for known bounds f+
v and f+

w .

In addition to the unknown additive system disturbances it
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is assumed that the exact values of mass mA and inertia IA

for agent A are unknown, however they are upper and lower

bounded such that 0 < M < mA < M and 0 < I < IA < I
and the bounds M, M, I, and I are known.

Fig. 1. Illustration of an agent with the non-holonomic unicycle dynamics.

Remark 1: In this article, all the angles including θA are

assumed to take values within (−π, π]. Because of this, all

addition operations on the angles are performed (mod 2π)

with −π radians shift. For example, θ1 + θ2 and θ1 − θ2

are calculated as [(θ1 + θ2 + π)(mod 2π) − π] and [(θ1 −
θ2 + π)(mod 2π)− π], respectively. Similarly, θ̇A(t) will be

defined as

θ̇A(t) = lim
∆t→0

(θA(t) − θA(t − ∆t) + π)(mod 2π) − π

∆t
.

Our objective in this paper is to track a maneuvering target

T , with a non-holonomic agent A, with the dynamics given

in (1). In other words, we would like to design the control

inputs u1 = FA and u2 = τA such that agent A follows

target T and intercepts it. Letting pT (t) = [xT (t) yT (t)]⊤

denote the position of the target, at a certain time instant t,
we can formulate the problem as follows.

Problem 1: (Single Tracking Problem) Consider a non-

holonomic agent A which has motion dynamics given by (1),

and a moving target T . Assume that, at any time instant t,
A can sense its own position pA(t) and position pT (t) of T .

Also, assume that velocity ṗT (t) of T is known and bounded

such that ‖ṗT (t)‖ ≤ βTv
, however, the acceleration of T is

unknown and bounded such that ‖p̈T (t)‖ ≤ βTa
for known

bounds βTv
and βTa

. With the above assumptions at hand

the aim is to design the control inputs

u = [u1 u2]
⊤ = [FA τA]⊤

for agent A such that the inequality

lim
t→∞

‖pA(t) − pT (t)‖ ≤ ǫ, (2)

where ǫ > 0 is a small design constant, is satisfied.

Note here that for solving Problem 1, we need the relative

position of the target and not its actual position. In other

words, we need the value of (pA(t) − pT (t)) and not the

value of pT (t). Also, although knowing the velocity of the

target is a strong assumption, there are methods to estimate

the relative velocity ṗA − ṗT , such as using vision-based

techniques, which can be used by the method considered

here.

We approach Problem (1) using artificial potentials and

sliding mode control. In the next section we discuss the

development of the controller to solve problem (1).

III. CONTROL DESIGN

A. Artificial Potential Functions

With the objective of satisfying the requirement in (2),

artificial potential functions are used in order to construct

an attractive force between the tracking agent and the target.

The potential function that will be used in this work needs to

be a function of the positions of the agent and the target or

a function of the distance between them. Also the potential

function is required to have a unique minimum at pA = pT .

Similar to [1] in this article we use

J(pA, pT ) = J(‖pA − pT ‖) =
1

2
‖pA − pT ‖

2 (3)

as the potential function between the agent and the target.

This function, which can be viewed also as a Lyapunov

function, is chosen among other possibilities because of its

simplicity. However, other functions are also possible.

In order to satisfy (2), the chosen potential function needs

to be a decreasing function of time. The time derivative of

J is

J̇ = ∇pA
J⊤(pA, pT )(ṗA − ṗT ) (4)

which is obtained from the fact that

∇pA
J(pA, pT ) = −∇pT

J(pA, pT ).

If, similar to [1], agent A is forced to move according to

equation

ṗA = −σ∇pA
J(pA, pT ) − βsgn(∇pA

J(pA, pT )) (5)

where σ and β are constants such that β ≥ βTv
(β is greater

than the bound on the velocity of the target) and σ > 0, then

we have

J̇ ≤ − σ‖∇pA
J(pA, pT )‖2

2

− β‖∇pA
J(pA, pT )‖1 + βTv

‖∇pA
J(pA, pT )‖1,

which implies that

J̇ ≤ −σ‖∇pA
J(pA, pT )‖2

2. (6)

This equation guarantees that the artificial potential J ≥ 0
is decreasing. As the minimum of J is at ∇pA

J(pA, pT ) =
pA − pT = 0, this implies as t → ∞, J → 0, J̇ → 0
and ∇pA

J(pA, pT ) → 0. However, there is one drawback of

this method. The time derivative of the sgn(∇pA
J(pA, pT ))

function is unbounded at the instances when ∇pA
J(pA, pT )

switches sign. (The time derivative of the right hand side

of (5) is needed for the development of the sliding mode

controller as will be discussed later in this paper.) In order
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to overcome this problem we use a continuous and differen-

tiable approximation of the sgn function. In other words, we

require the motion dynamics of agent A to satisfy

ṗA = −σ∇pA
J(pA, pT ) − βh(∇pA

J(pA, pT )) (7)

instead of the dynamics in (5). Here, for a scalar ki ∈ R the

function h : R → R is given by

h(ki) =







−1 , ki < −ǭ

sin
(

πki

2ǭ

)

, |ki| ≤ ǭ
1 , ki > ǭ

(8)

where ǭ > 0 is a small constant. Similarly, for a vector

k ∈ R
n such that k = [k1...kn]⊤ the function h : R

n → R
n

is defined as h(k) = [h(k1)..h(ki)..h(kn)]⊤. Note that

this function introduces a boundary layer and has the same

behavior as the sgn function outside the interval [−ǭ ǭ].
This, on the other hand, implies that, when the components of

the gradient ∇pA
J(pA, pT ) are outside the interval [−ǭ ǭ],

equations (5) and (7) are equivalent implying that (6) is

satisfied and the potential J is decreasing. In contrast, when

the components of the gradient ∇pA
J(pA, pT ) are within

the interval [−ǭ ǭ] the time derivative J̇ of the potential

function becomes

J̇ ≤ − σ‖∇pA
J(pA, pT )‖2

2

− β∇pA
J⊤(pA, pT ) sin

(

π∇pA
J(pA, pT )

2ǭ

)

+ βTv
‖∇pA

J(pA, pT )‖1.

The second term on the right hand side of the equation

always satisfies

β∇pA
J⊤(pA, pT ) sin

(

π∇pA
J(pA, pT )

2ǭ

)

≥ 0

which means the potential function is still decreasing inside

the interval [−ǭ ǭ] to a point where the value of the gradient

of the potential function becomes so small that the value of

the third term above exceeds the value of the sum of the first

two terms and the potential function can not be guaranteed

to decrease any more. However, this region is always smaller

and located componentwise inside the interval [−ǭ ǭ] (i.e.,

it is located inside the region [−ǭ ǭ]2). With these facts one

can see that provided (7) is satisfied, the tracking problem

in (2) is solved for some ǫ < ǭ. Moreover, the tracking error

can be made arbitrarily small by choosing ǭ appropriately.

Therefore, the problem has become designing appropriate

controller such that (7) is satisfied. We present a sliding mode

technique based controller in the next section.

B. Sliding Mode Control Design

Sliding mode control [18], [19] is a widely used technique

in various application areas, including gradient tracking con-

trol of mobile robots, target tracking and multi-agent system

coordination and control as mentioned in Section I. This is

mainly because of its suppressive and robust characteristics

against the uncertainties and the disturbances in system

dynamics. The shortcomings (of the raw form of the sliding

mode control scheme), on the other hand, are the so-called

chattering effect and possible generation of high-magnitude

control signals [18], [19]. Note that these shortcomings may

possibly be avoided or relaxed via boundary layer approach,

integration, and some filtering techniques.

In a typical sliding mode control design, a switching

controller with high enough gain is applied to suppress the

effects of modeling uncertainties and disturbances, and the

agent dynamics are forced to move along a stabilizing man-

ifold, which is also called sliding manifold. The value of the

gain is computed using the known bounds on uncertainties

and disturbances.

In this section, we present a sliding mode control scheme

to solve Problem 1. For simplicity, let us define p ,

[p⊤A, p⊤T ]⊤. Depending on the value of ‖∇pA
J(p)‖ two dif-

ferent expressions will be considered. We will refer as Case

1 to the controller expression when ‖∇pA
J(p)‖ 6= 0 and as

Case 2 to the controller expression when ‖∇pA
J(p)‖ = 0.

The objective is to force the agents to move according to

equation (7) for which we need

−σ∇pA
J(p) − βh(∇pA

J(p)) =

[

vA cos(θA)
vA sin(θA)

]

(9)

to be satisfied. Let

−Z , −σ∇pA
J(p) − βh(∇pA

J(p)) ,

[

−Zx

−Zy

]

. (10)

In other words, to achieve (9), we need

vA = ‖Z‖, θA = ∠([−Zx,−Zy]
⊤), (11)

where ∠
(

[x y]⊤
)

∈ (−π, π] for an arbitrary vector

[x y]⊤ ∈ R
2 denotes the counter-clock-wise angle from

the cartesian coordinate x-axis to the vector [x y]⊤.

Note that since the inputs in the agent model defined by (1)

are u1 = FA and u2 = τA, i.e. vA and θA cannot be applied

directly, the terms

vd , ‖Z‖, θd , ∠([−Zx,−Zy]
⊤) (12)

need to be considered as desired set-point values for vA and

θA, respectively.

Our objective is to force the motion of agent A such that

the differences |vA − vd| and |θA − θd| converge to zero.

With this objective in mind, similar to [6], [7], [9] and [4],

let us define two sliding surfaces, namely one for the linear

speed vA and one for the orientation θA, respectively, as

Case 1: (‖∇pA
J(p)‖ 6= 0)

sv = vA − vd (13)

sθ = cθ(θ̇A − θ̇d) + (θA − θd), (14)

Case 2: (‖∇pA
J(p)‖ = 0)

sv = vA (15)

sθ = cθ θ̇A + θA, (16)

where cθ > 0 is a positive constant, and vA and θA are

the actual linear speed and orientation angle, respectively,

whereas vd and θd are the desired linear speed and orientation

angle as defined in (12). With these definitions, our objective
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becomes designing the control inputs u1 and u2 such that

sv → 0 and sθ → 0 in finite time and when they are achieved

we will have vA → vd and θA → θd. The existence of the

additional term cθ(θ̇A − θ̇d) in (14) comes from the double

integration relationship between the terms θA and u2 = τA.

It is well known from the sliding mode control theory that

if we have the reaching conditions

svṡv ≤ −ε1|sv| (17)

sθṡθ ≤ −ε2|sθ| (18)

satisfied for some constants ε1, ε2 > 0, then sv = 0 and

sθ = 0 will be achieved in finite time [18], [19].

In order to satisfy (17) we choose the first control input

u1 = FA as

u1 = −K1sgn(sv) (19)

with which the time derivative of sv becomes

Case 1: (‖∇pA
J(p)‖ 6= 0)

ṡv = −
K1

mA

sgn(sv) +
1

mA

fvA
− v̇d

Case 2: (‖∇pA
J(p)‖ = 0)

ṡv = −
K1

mA

sgn(sv) +
1

mA

fvA

Then, for Case 1 we have

svṡv ≤ −

(

K1

M
−

1

M
f+

v − ¯̇vd

)

|sv|

whereas for Case 2 it is the same equation with ¯̇vd omitted.

In the equation above, ¯̇vd is a computable upper bound on

v̇d such that |v̇d| ≤ ¯̇vd. In other words, we have

|v̇d| ≤ ‖Ż‖

≤ σ

∥

∥

∥

∥

d

dt
(∇pA

J(p))

∥

∥

∥

∥

+ β

∥

∥

∥

∥

d

dt
h(∇pA

J(p))

∥

∥

∥

∥

≤ σα1(p) + βh1(p) = ¯̇vd (20)

where α1(p) and h1(p) are bounds on the corresponding

terms. The existence and properties of α1(p) depend on the

properties of the potential function, which is chosen by the

designer. Letting ∇pA
J(p) = [Jx Jy]⊤, for the chosen

potential J the value of α1(p) is computed as
∥

∥

∥

∥

d

dt
(∇pA

J(p))

∥

∥

∥

∥

= ‖ṗA − ṗT ‖ ≤ ‖ṗA‖ + βTv
, α1(p).

Similarly, h1(p) can be computed using the equality
d
dt

h(∇pA
J(p)) =






















{

(

π
2ǭ

)

cos

(

πJx

2ǭ

)

d
dt

(Jx), |Jx| ≤ ǭ

0, |Jx| > ǭ
{

(

π
2ǭ

)

cos

(

πJy

2ǭ

)

d
dt

(Jy), |Jy | ≤ ǭ

0, |Jy | > ǭ

. (21)

Then by choosing K1 such that

Case 1: (‖∇pA
J(p)‖ 6= 0)

K1 ≥
M

M

[

M ¯̇vd + Mε1 + f+
v

]

(22)

Case 2: (‖∇pA
J(p)‖ = 0)

K1 ≥
M

M

[

Mε1 + f+
v

]

(23)

one guarantees that (17) is satisfied and sliding mode occurs

(i.e., sv = 0 is satisfied) in finite time.

Similarly, for the second sliding surface in (14) choosing

the control input as

u2 = −K2sgn(sθ) (24)

the time derivative of sθ becomes

Case 1: (‖∇pA
J(p)‖ 6= 0)

ṡθ = −cθ

K2

IA

sgn(sθ) +
cθ

IA

fwA
− cθθ̈d + ωA − θ̇d (25)

Case 2: (‖∇pA
J(p)‖ = 0)

ṡθ = −cθ

K2

IA

sgn(sθ) +
cθ

IA

fwA
+ ωA (26)

Then, for Case 1 we have

sθṡθ ≤ −

(

cθK2

I
−

cθ

I
f+

w − cθ|θ̈d| − |θ̇d| − |ωA|

)

|sθ|

(27)

whereas for Case 2 it is the same equation with θ̈d and θ̇d

terms omitted.

By choosing K2 as

Case 1: (‖∇pA
J(p)‖ 6= 0)

K2 ≥
I

cθ

(

cθ

I
f+

w + cθ
¯̈
θd + |θ̇d| + |ωA| + ε2

)

, (28)

Case 2: (‖∇pA
J(p)‖ = 0)

K2 ≥
I

cθ

(

cθ

I
f+

w + |ωA| + ε2

)

, (29)

where
¯̈
θd is a computable bound (discussed below) such that

|θ̈d| ≤
¯̈
θd, one can guarantee that (18) is satisfied and the

second sliding surface sθ = 0 in (14) will as well be reached

in finite time.

In order to be able to compute the value of sθ one needs

the time derivative of θd, which is given by

θ̇d =
d
dt

(Zy) · Zx − d
dt

(Zx) · Zy

(Zx)
2
+ (Zy)

2
. (30)

As mentioned above, the bound (
¯̈
θd ≥ |θ̈d|) on the

acceleration of the desired steering angle is needed in order to

determine the controller gain K2. This bound can be defined

as

|θ̈d| ≤
‖Z̈‖

‖Z‖
+ 2

(

‖Ż‖

‖Z‖

)2

,
¯̈
θd.

In the equation above the value of ‖Z‖ is known and

bounded away from zero since in Case 1 (only for which

it is calculated) we have ‖∇pA
J(p)‖ 6= 0 and therefore
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‖Z‖ 6= 0. An upper bound on ‖Ż‖ was calculated as ¯̇vd

in equation (20). The term ‖Z̈‖ can be calculated as

‖Z̈‖ ≤ σ

∥

∥

∥

∥

d2

dt2
(∇pA

J(p))

∥

∥

∥

∥

+ β

∥

∥

∥

∥

d2

dt2
h(∇pA

J(p))

∥

∥

∥

∥

≤ σα2(p) + βh2(p) (31)

where α2(p) and h2(p) are bounds on

∥

∥

∥

d2

dt2
(∇pA

J(p))
∥

∥

∥
and

∥

∥

∥

d2

dt2
h(∇pA

J(p))
∥

∥

∥
, respectively. They can be calculated as

α2(p) =
K1

M
+

f+
v

M
+ |vA||wA| + βTa

and using the equation
d2

dt2
h(∇pA

J(p)) ≤






















{

(

π
2ǭ

)

α2(p) +
(

πJ̇x

2ǭ

)

2

, |Jx| ≤ ǭ

0 , |Jx| > ǭ
{

(

π
2ǭ

)

α2(p) +
(

πJ̇y

2ǭ

)

2

, |Jy | ≤ ǭ

0 , |Jy | > ǭ

(32)

where the accelerations of T and A are bounded such that

‖p̈T ‖ ≤ βTa and

‖p̈A‖ ≤
K1

M
+

f+
v

M
+ |vA||wA|,

respectively.

Once sliding mode occurs on all the surfaces (which

happens in finite time), agents start to move according to (7)

and from the discussion in the preceding section we know

that Problem 1 is solved.

One issue to note about the tracking algorithm discussed

here is that after occurrence of sliding mode we reach vA =
vd but not necessarily θA = θd. In fact, after occurrence of

sliding mode we have θA → θd exponentially fast and the

speed of convergence depends on the slope of the sliding

surface − 1

cθ
. Therefore, one needs to choose cθ as small as

possible in order to achieve faster convergence and avoid any

instabilities. Note also that decreasing the parameter cθ will

require increasing the controller gain Ki2.

We would like to emphasize that the procedure based on

the sliding mode control technique presented here will guar-

antee proper behavior despite the presence of uncertainties

in the mass mA and the inertia IA of the robots and additive

disturbances fvA
and fwA

to the linear and angular speed

dynamics which constitute very realistic assumptions.

IV. SIMULATION RESULTS

In this section we present simulation results to verify the

effectiveness of the control scheme proposed in the previous

sections.

One issue to note about the algorithm is that the sgn
function which is used in the calculation of the control

inputs works well in theory. However, in practice it creates

numerical problems during simulations. Instead of the sgn
function, we used the function tanh(γy), where γ is a

smoothness parameter which determines the slope of the

function around y = 0 and therefore the similarity between

the sgn and tanh functions. The smoothness parameter in

our case is chosen as γ = 20.

The simulation lasts 50 seconds. The target moves in R
2

with the dynamics

ẋT (t) = 0.05 + 0.1 sin(2t)(m/s),
ẏT (t) = 1.5 sin(0.5t)(m/s).

From the above equation, the bounds on the velocity and the

acceleration of the target are found to be βTv
= 1.5075 and

βTa
= 0.7762. The parameters in equation (7) are chosen as

σ = 0.01 and β = 1.6 (β > βTv
). The size of the boundary

layer in (8) is chosen as ǭ = 0.2.

The actual values of the mass and inertia of agent A are

unknown and determined randomly at the beginning of the

simulation according to upper and lower bounds M = I =
1.2 and M = I = 1.0. The bounded unmodeled dynamics

and disturbances are assumed to be

fv(t) = fw(t) = 1.2 sin(1.2t)

and the corresponding known bounds on them become f+
v =

f+
w = 1.2. The slope parameter for the sliding surface sθ is

chosen as cθ = 0.1 and the sliding mode gains are calculated

at every step according to inequalities (22), (23), (28) and

(29). The initial position of target T is chosen as pT (0) =
[3 3]⊤. The initial position pA(0) of agent A is chosen

randomly within the square region [0 1] × [0 1].
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Fig. 2. Paths of Agent A and Target T (pT (0) = [3 3]⊤).

Figure 2 shows the paths of the target and the agent. It is

observed that with random initial positions the agent quickly

catches the target and starts to track it with a small error. This

implies that ‖pA(t) − pT (t)‖ ≤ ǫ in finite time.

Figure 3 illustrates the satisfaction of equation (2) in

Problem 1. In the figure the distance between agent A
and target T and its x-axis zoomed version are plotted.

It is observed that the distance converges a small region

close to zero (the of the error is less than ǭ) in finite time

(≈ 5 seconds) as expected. The variation of the distance

is because of target’s movement. When target makes sharp

turns the distance increases slightly. This phenomenon can

be overcome with the cost of high magnitude gain signals.

The plots in Figures 4 and 5 show the first and the second

control inputs u1 and u2, respectively, for agent A. High

magnitude control signals phenomenon of sliding mode can

be observed from the figures. It is seen roughly from the
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Fig. 3. Distance between the target and agent A.
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Fig. 4. First control input u1 = FA.
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Fig. 5. Second control input u2 = τA.

figures that the control signal gains are bounded as K1 ≤ 4
and K2 ≤ 200.

V. CONCLUDING REMARKS

In this paper, the task of capturing and tracking a maneu-

vering target has been discussed. In order to realize this con-

trol goal, a control scheme based on artificial potential func-

tions and sliding mode techniques has been designed specif-

ically for an agent with non-holonomic unicycle dynamic

model, modeling uncertainties and additive disturbances. It

has been shown, both theoretically and via simulations, that

using the proposed control scheme the agent would intercept

the target and track it.

A potential future research direction could be examination

of the system performance in the existence of position

and distance sensing errors. Issues such as decreasing the

magnitude of control signals or achieving tracking under

bounded control inputs with pre-defined bounds, which were

not considered here, could be also potential subject of future

work.
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