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Development  of  3-D  Surface  Data  Acquisition  Systems  Using  Non-Calibrated  Laser 
Alignment Techniques

Abstract

The development of cost-effective, but robust desktop-based 3-D surface reconstruction systems 
have  recently  been  made  possible  by the  increase  in  computing  power  of  low  cost  personal 
computers and the availability of high-resolution but inexpensive webcams. Low cost 3-D surface 
reconstruction  systems  can  be  implemented  either  by  adapting  stereo  vision  or  by  optical 
triangulation approaches.

Optical triangulation approaches require the estimation of the parameters of a 'virtual triangle'. This 
is made up of the centre of  a calibrated camera, an external light  source and the point on the 
surface of the object illuminated by the external light source. To achieve this, the traditional optical 
triangulation based 3-D surface data acquisition systems required the external optical source to be 
manually aligned to a reference coordinate frame of the system.

The objective of  this study was to design a novel  optical  triangulation based 3-D surface data 
acquisition system that could accurately determine the relative pose between the camera and the 
external optical source, without any manual intervention, in real time, using low cost off-the-shelf, 
readily available components.

The above objective was achieved by designing and implementing a system framework, consisting 
of a webcam, two planar objects and a freely moveable laser line emitter. A major advantage of the 
developed freehand scanning system is that the user may repeatedly scan the surface of interest, to 
generate denser 3-D points to represent the surface, and hence increase the signal to noise ratio by 
“brushing” across the surface several times.

Another major issue with the traditional triangulation process is that one needs to know the pose of 
the external plane, for  e.g. the plane formed by the divergence of a single optical light source 
passing through a biconcave lens. In the current study the pose of the external plane, the laser 
plane,  was  estimated  by using  the  geometric  constraints  obtained  through  the  process  of  the 
intersecting the laser plane with two planar objects. The constraints are the pair of 2-D straight 
lines formed, on the two planar objects and captured in the camera image. These constraints were 
projected  to  the  camera  3-D  coordinate  frame.  A key  element  in  determining  the  projection 
parameters is to accurately locate the salient features lying on the planar objects. Extensive studies 
were carried out and an accurate salient features detector was subsequently identified. Since the 
projected 2-D constraints should lie on a plane in 3-D, novel methods were developed and their 
performances were critically evaluated. The pose of the laser plane was thus estimated on the fly, 
during the freehand 3-D surface data acquisition process, without using any extraneous attachments 
or sensors. This eliminated the need for any specialised and expensive attachments to find its pose.

The developed 3-D surface acquisition system was also applied to another real-world application, 
viz. calibrating the pose of the laser plane in a turntable based 3-D surface reconstruction system. A 
robust  method was developed to automate the turntable pose calibration process. Accurate and 
robust procedures were implemented to automate the traditional laborious calibration process.

A further real-world application was designed and implemented. It consisted of two vision based 
respiration monitoring methods; namely mono-vision and stereo-vision. These were developed to 
estimate the motion of the human chest during the respiration process. The estimated motion was 
subsequently used to successfully determine the respiration rate.
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Glossary

In the case if

A point which is situated in three dimensional space, is referred to as a 3-D point in 

what follows.

A straight  line  under  consideration,  lies  in  a  particular  two-dimensional  or  three- 

dimensional space, we will refer to this line as a 2-D or 3-D line, respectively.

A surface situated in three dimensional space is commonly called as a 3-D plane.

Pose is referred to as position and orientation in 3-D.
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Nomenclature

A three dimensional row vector is denoted by [x , y , z ] . Its transpose, converts it to a 

column vector i.e. [x , y , z ]T = [xyz ] .
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Acronyms/Abbreviations

In the case if

3-D: Three dimensional

BPM: Breath per minute

CCD: Charge-coupled device

GUI: Graphical User Interface

H&S corner detector: Harris & Stephen corner detector

HSV: Hue, Saturation and Value

LSE: Lease Square Estimations

MIA: Moment of Internal Analysis

PC: Personal computer

RANSAC: Random Sample Concensus

RGB: Red, Green Blue

WLSE: Weighted Least Square Estimations
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Chapter 1: Introduction

1.1 Background

The use  of  a  three  dimensional  (3-D) surface  data  acquisition  system allows us  to 

obtain 3-D geometry information of an object in digital form. This information can 

subsequently be processed, analysed and stored digitally. The process of acquisition of 

3-D  surface  data,  representing  the  surface  of  an  object,  can  be  carried  out  using 

different types of electronic sensors.

A distance measuring electronic sensor can be used to perform the task of acquiring 3-

D surface data. The output of the distance measuring sensor is a single measurement, 

which is the relative distance of a specific point lying on the object from the origin of 

the sensor.  The 3-D surface information of the object can then be acquired by first 

moving the scanner to other known locations and then measuring the relative distance 

to the surface of the object from those locations. To represent the surface of an object, 

relative distances to a minimum of three different points on the surface of the object, 

from the corresponding three different known locations, need to be determined. Let the 

three measured distances to the surface of the object from the three known locations, 

0,0,  x1 ,y1 ,  x2 ,y2 ,  be   z0 , z1 , z2 respectively.  Using  the  two  sets  of 

information, the coordinates of the three 3-D points P0 , P1  and P2 on the surface of 

the object could be found as [0,0, z0]
T , [x1 , y1 , z1]

T , [x2 ,y2 , z2]
T respectively. Using 

the estimated 3-D locations of the three points on the object, the surface of the object, 

enclosed within the three points, can be approximated by interconnecting the points in a 

triangle as shown in Figure 1.1.

The process could be repeated by systematically moving the distance measuring sensor, 
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with a known displacement, using for example a mechanical rig, around the object. At 

the end of this scanning process, a set of 3-D locations are estimated on the surface of 

the object. Connecting this set of 3-D locations with a mesh of polygons yields a cloud 

of 3-D points representing the surface of the object being scanned.

The  major  shortcoming  in  the  above  approach  is  the  need  for  an  arrangement  to 

systematically move the distance measurer around the object.  This could be achieved 

by,  instead  of  attaching  the  distance  measuring  sensor  to  a  mechanical  rig  and 

systematically scanning the object, the sensor is removed from the mechanical rig, and 

used to freely sweep across the surface of interest by hand. This freehand scanning 

process allows more densely distributed data points to be recorded on the surface of the 

object. The dense set of data points ensures a more accurate reconstructed surface using 

polygonal meshing process.

In the current study a freehand scanning process to reconstruct the surfaces of 3-D 

objects has been designed and implemented.

A 3-D  surface  data  acquisition  system  can  be  implemented  by  using  mechanical 

actuators or by electronic components. The resolution of the mechanical arrangements 

is limited to the arrangement of their actuators. They also introduce constraints related 

to the manner the surface data is collected. 
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Figure 1.1: Figure illustrating the digitisation of the 3-D surface of an object, which is being scanned,  
using a single distance sensor.
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It is possible to use large, and expensive, electronic position sensors for collecting the 

data but the extra weight, introduced by the heavier sensor, would need to be physically 

carried by the user. Freehand systems provide a facility for the users to freely move the 

external optical source (e.g. a laser emitter) with their hands. The freehand scanning 

system allows the user to repeatedly scan the same surface of interest, to generate a 

denser cloud of 3-D points  for representing the same part  of the surface and hence 

increase the signal to noise ratio by “brushing” the surface multiple times.

The rational and motivation of the current study was related to the need for objects' 

surface information in many areas. The following surface information application areas 

have been investigated in this study:

● Reconstructing the surface of small parts and objects whose surface information 

cannot be easily captured by other methods.

● Reconstructing the surface of human anatomy.

● Monitoring human respiration rate by determining the changes in the surface of 

the chest or abdomen.

1.1.1. Reconstructing the surface of objects 

Surface information of small objects with intricate details is very hard to capture in 

digital form using means such as 3-D digitiser [1]. For these situations, the freehand 3-

D scanning system designed and implemented in this study is the best suited. Moreover, 

the freehand 3-D scanning system can handle small as well as larger objects because 

the system does not require any specific equipment or attachment like a mechanical 

arm or translator.

1.1.2. Reconstructing the surface of human anatomy 

Capturing the surface details of the human anatomy is much more complicated than the 

surface information of inanimate objects for the following reasons:

● Physical contact needs to be avoided.

● The surface needs to be scanned speedily, since one cannot expect the subject to 

keep still for long time periods.
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1.1.3. Baby Active Breathing Evaluator (BABE)

Respiration rate is a physiological parameter used by clinical experts to monitor various 

illnesses. An abnormal respiratory rate is indicative of an illness such as cardiac arrest 

or the need for admission to the intensive care unit (ICU). Respiration rate is better than 

other  physiological  measurements,  such as pulse and blood pressure for  identifying 

between  the  stable  patients  and  patients  at  risk.  The  ability  to  accurately  measure 

respiration rate can significantly help in reducing the mortality of the patients and thus 

makes significant life savings for the National Health Service.

Guidelines were published by the National Institute for Clinical Excellence (NICE), 

UK, in 2007 stating that measurement of respiratory rate is obligatory in the assessment 

of  children  with  fever  in  the  hospital  setting  [2].  At  least  one  assessment  of  the 

respiratory rate needs to be carried out for every child visiting hospital's emergency 

department. The results of the respiratory rate measurements are subsequently used to 

monitor the changes in the state of health of the patient. The respiration rate of every 

patient in children's wards and Intensive Care Units is monitored at least once every 

few hours.

Visual  observation  is  the most  basic  method for  measuring respiration rate.  In  this 

method, the back of hand is kept very close to the patient's nose to detect changes in the 

exhaled air temperature and air flow. This approach is subjective [3] and its accuracy is 

thus questionable. Equipment like nasal temperatures probes (e.g. thermistor) and chest 

strain gauges require the sensor to be attached to the patient's body. This requirement 

(especially  for  children)  can  cause  discomfort  and  result  in  the  distress.  The 

attachments can can also interfere with breathing. In order to deal with these limitations 

non-contact methods of respiration monitoring need to be developed. In this study a 

vision based respiration monitoring system is devised.

1. 2 Aims and objectives of the study

The aim of this  study was to design and implement a 3-D surface data acquisition 

system.  The  study  led  to  creation  of  a  vision  based,  freehand  3-D  surface  data 

acquisition  system for  reconstructing  the  surfaces,  in  particular  of  human anatomy, 

using a personal computer. The overall objectives of this study were to:
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• Identify  the  limitations  of  existing  vision  based  3-D  surface  reconstruction 

systems. 

• Investigate, from the system point of view, the essential elements required to 

design and implement  a  vision based,  freehand 3-D surface data  acquisition 

system.

• Critically evaluate the accuracy of identifying the corners lying on the planner 

object.  Corner  detection  is  an  essential  element  of  the  3-D  surface 

reconstruction system implemented in this study.

• Design and implement  an accurate  method of determining the pose (i.e. the 

position and orientation) of the laser line emitter, in real time, during the free 

hand scanning process.

• Based on the above work, implement a position sensor-less, personal computer 

based, 3-D surface data acquisition system, using off-the-shelf equipment.

• Investigate the effectiveness of the devised 3-D surface reconstruction methods 

for turntable calibration and real time, non-contact respiration monitoring. 

1.3 Research methodologies

A major  part  of  the  work  carried  out  in  this  study  consisted  of  developing  and 

implementing a freehand surface data acquisition system. The basic operations of the 

system consisted of recording a camera image (from a USB or Firewire camera), low 

level image processing and displaying the information in real-time. These processes 

were achieved by using a  range of  in-house software,  e.g. MIMAS toolkit  [4]  and 

HornetsEye  [5],  developed at  Sheffield  Hallam University.  Using  a  basic  geometry 

computer vision feature [6] available in MIMAS toolkit, the possibilities of creating a 

freehand  3-D surface  data  acquisition  system was  explored.  The  ability  to  process 

camera  images  in  real-time  with  the  geometry  computer  vision  techniques  was 

subsequently used to scan surfaces.
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1.4 Contribution

The main contributions of this study were:

i. Developing  a  framework  to  construct  a  system to  perform  a  vision  based, 

freehand  3-D  surface  data  acquisition  system.  This  framework  had  all  the 

critical elements for creating an accurate 3-D surface data acquisition system. 

The framework is described in Chapter 3.

ii. A critical survey and evaluation of the most suitable salient features detector for 

a vision based, freehand 3-D surface data acquisition system was carried out. A 

critical  quantitative  comparison  of  the  template  based  corner  detector  with 

several other conventional corner detectors was performed. The results of the 

evaluation are discussed in Section 4.4 and the conclusions of the evaluation are 

presented in Section 4.5.

iii. Using the principle of RANdom SAmple Consensus (RANSAC) [7], two novel 

methods  for  estimating  the  pose  of  the  laser  plane  were  designed  and 

implemented. These are discussed in Section 5.2.4. The implemented methods 

were critically evaluated (Section 5.4) and their performances are discussed in 

Section 5.5.

iv. Using the developed laser plane pose estimation technique in Chapter 5 and the 

principle  of  planar  homography,  the  process  of  turntable  calibration,  with 

extensive  manual  intervention,  was  improved.  An  automatic  turntable 

calibration technique using various procedures was proposed. This is described 

in Chapter 6. Using the developed automatic turntable calibration technique, a 

turntable based 3-D surface reconstruction system was calibrated. The results of 

the surface reconstruction with the proposed system are given at  the end of 

Chapter 6.

v. Mono and stereo vision approaches to monitor respiration rate were devised. 

These are discussed in Chapter 7. 
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1.5 Organisation of the thesis

A literature  review of  the  existing  freehand 3-D surface  data  acquisition  system is 

provided in  Chapter  2.  A more focused literature  survey,  regarding all  the essential 

elements, from the system point of view, is given in Chapter 3.

Using the identified framework, a freehand 3-D surface data acquisition system was 

constructed.  The  developed  system,  along  with  the  result  of  3-D  surface  data 

acquisition and the reconstructed surfaces, are provided in Chapter 3.

An essential requirement of the designed freehand scanning system was the ability to 

estimate  the  salient  features  lying  on  the  calibration  planes.  In  Chapter  4,  three 

categories  of  salient  features  detectors  are  reviewed  and  their  performances  with 

respect  to the requirement of the system are critically evaluated.  The results  of the 

evaluation are shown and discussed at the end of the chapter.

Another requirement for the freehand 3-D surface reconstruction system was that it 

must be able to accurately estimate the pose of the laser plane in real-time. A number of 

approaches for this purpose are discussed in Chapter 5. 

In  order  to  perform  a  full  3-D  scanning  of  objects,  traditional  3-D  surface 

reconstruction systems require rotation of the object to be scanned on the turntable. 

Using geometric principles, the laser plane and the camera are manually aligned to the 

coordinate axes of the turntable before the scanning process. This manual operation is 

laborious, time consuming and error prone. Errors introduced during the alignment of 

the components result in an inaccurate estimate of the 3-D location of the points lying 

on the surface of the object. A set of auto-calibration procedures, to estimate the pose of 

the components of the turntable based surface reconstruction system, are proposed in 

Chapter 6.

A critical review of the existing respiration monitoring methods are presented at the 

beginning of Chapter 7. Machine vision based methods, using mono vision and stereo 

vision  are  proposed  to  estimate  the  breathing  rate.  The  proposed  methods  were 

evaluated in the laboratory environment, with a baby mannequin. Chapter 8 concludes 

this thesis and future research directions are proposed.
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Chapter 2: Literature Review and Background 

Information for 3-D Surface Data Acquisition 

System

2.1 Introduction

Recently there has been renewed interest in the field of 3-D surface data acquisition [8]

[9][10][11]. Some of the main factors contributing to this are:

● Extensive improvement in the price over performance of personal computers. 

The U.S. Consumer Price Index (CPI) of personal computers is dropped by a 

ratio of around 731.7% (July 1999 (CPI: 591.5), July 2009 (CPI: 80.838 )) [12]. 

● Vast improvement in the price performance of electronic digital data capturing 

equipment [12].

● Creation of 3-D surface data information applications in a variety of fields from 

healthcare [13] to medical education [14], entertainment and gaming [15] to 

biometric applications [16].

The techniques and technologies to acquire 3-D surface data has improved over the 

years. In earlier years, one required dedicated equipments such as a linear translator 

[17], a scanning rig [18], or an articulated arm [19] in order to move the sensor around 

the scanning object and collect the 3-D surface data. Recently however, the field has 

developed  to  a  level  that  one  only  needs  to  have  just  a  digital  image  capturing 

equipment [20][11]. The remaining parts of this chapter will discuss the background 

information relevant to 3-D data acquisition and subsequently, outlines the techniques 

and technologies to perform 3-D data acquisition.
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2.2 Background to 3-D surface data acquisition

The techniques and technologies, developed for 3-D data acquisition, mostly use the 

method of estimating the parameters of a triangle. The triangulation is normally formed 

by the data capturing mechanism, a point on the surface of the object being scanned and 

yet another source which could be another data capturing mechanism or a light source 

[21]. There are other techniques which make use of difference methods like structure 

from motion [22][23], albedo map and texture height field [20].

Among these mechanisms, optical based systems are very popular. The reasons are, 

their relatively low cost (a cheaper camera), a greater number of data points on the 

surface  of  the  object  that  could  be  estimated  per  image,  and  the  ease  of  their 

implementation (i.e. triangulation). 

The process of triangulation provides a measurement of relative distance of a physical 

point to the optical centre of the camera. The triangulation is formed by using either a 

single camera with an extra optical source, (e.g. laser point/lines emitter, projector) or 

two cameras (stereo). The model of the camera and the principle of triangulation are 

explained in the following section.

2.2.1 The camera pinhole model

The camera was modelled by using a camera pinhole model [24]. The camera pinhole 

model expresses the mathematical relationship between the coordinate of a point in 3-D 

and  its  projection  onto  the  camera  image  plane,  in  an  ideal  pinhole  camera 

configuration (see Figure 2.1). The aperture of the camera is described as a point and a 

lens is not used to focus the light. This first order approximation of the model does not 

take into account the distortion types,  e.g. barrier distortion and chromatic distortion 

caused by the imperfect lens, hence, the validity of the model is completely dependent 

on  how close  is  the  used  camera  with  respect  to  the  ideal  pinhole  camera  model. 

Equations  (2.1)  and  (2.2)  are  used  by the  camera  pinhole  model  to  determine  the 

location of a point in the 2-D image plane u , v   with respect to the corresponding 

3-D coordinate point X ,Y , Z .
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where f is the orthogonal distance between the pinhole to the image plane, and  is 

equal to 
1
Z .

2.2.2 The principle of triangulation

A virtual triangle is formed by three points C1 , C2 ,C3  as shown in Figure 2.2. A 

triangle can be defined with two angles 1 ,2  and known length b . Knowing 

the parameters of the triangle, the distance l , to the point C3  from the origin of 

the camera, could be estimated using the sine law.
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u=f X

(2.2)v=f Y

(2.1)

l=
b sin 2

sin180−1−2
(2.3)

Figure 2.1 The camera pinhole model.
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To perform triangulation, one needs to know the relative location and orientation, (i.e. 

the pose) between the camera and the extra optical source. This can be achieved either 

by manually aligning them to a defined reference coordinate frame of known pose, or 

by attaching a position sensor that  provides the pose.  The position sensor could be 

either  mechanical  or electrical.  Thus,  the optical  based 3-D data  acquisition system 

could be categorised as the types with and without the position sensor. Since a major 

contribution of the current study is to design a method of 3-D data acquisition without 

the position sensor, the following sections provide a review of these two categories.

2.2.2.1 Three dimensional data acquisition with position sensor

Traditional 3-D reconstruction systems use different mechanical systems to move the 

camera and the laser plane emitter  systematically around the object  being scanned. 

These mechanical systems can use a linear translator [17], a scanning rig [18], or an 

articulated arm [19]. A mechanical type system can also be a turntable [25][26][27], to 

rotate the object. The images of the deformed laser line, which is the intersection of 

laser plane and the scanned object, are captured using the camera. The points on the 

laser line are extracted and then triangulated to produce a cloud of points in 3-D. These 

points represent the surface of the scanned object [28].
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Figure 2.2: Using camera pinhole model with an extra optical source to perform the triangulation.
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To obtain  the  pose  of  the  laser  plane  the  laser  line  emitter  could  be  attached to  a 

mechanical articulated arm [19], or wireless sensors [29] or optical motion tracker [30] 

that could be tracked, attached to the laser line emitter and hence, to provide the pose of 

the laser plane.

There are other non-stereo optical  based systems, where the position of the camera 

needs to be kept static throughout the scanning process. For example in the structured 

light based methods[21][26][31], several scans are required from different camera view 

points  of  the  scanned object.  The resulting  clouds  of  points  in  3-D,  from different 

camera view points, are then registered using a software by correspondence matching 

of the acquired 3-D points [32].

2.2.2.2 Three dimensional data acquisition without position sensor

The methods of estimating the pose of the laser plane, making use of position sensors, 

have limitations. For example, the articulated arm might limit the movements of the 

operator, due to the extra weight of the attached position sensor or the markers may 

become occluded and thus disturb the scanning process. These limitations are avoided 

in the freehand scanning system.

Another major advantage of a freehand scanning system is that it is not limited to the 

resolution of the position sensor. Instead, the user can repeatedly scan the same part of 

the surface of interest, to generate more densely distributed 3-D points to represent the 

object's surface and hence increase the signal to noise ratio by “brushing” across the 

surface several times [32]. 

For the freehand scanning system, one needs to know the pose of the laser plane for the 

triangulation process. Many novel methods were proposed to estimate the pose of the 

laser plane, as discussed below.

Bouguet  [21]  implemented  a  3-D  surface  reconstruction  system using  a  calibrated 

camera, a static light source, and a stick to cast a shadow line onto the surface of the 

object being scanned, lying on a flat surface, e.g. a table. A virtual shadow plane was 

hence formed by the shadow line and the light source. The flat surface was used as one 

of the reference plane to resolve the pose of the shadow plane. The pose of the surface 
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of the table, with respect to the camera coordinate frame, was initially determined. The 

process of light  source calibration was performed to  resolve a  3-D coordinate  of  a 

point, with respect to the camera coordinate frame, representing the source of the light. 

Once the two calibration processes were completed, the stick was slowly waved across 

the object to be scanned to acquire the 3-D surface data points. A series of camera 

images, with a shadow line intersecting the flat surface and the object to be scanned, 

were captured and stored. The shadow points lying on the surface of the object to be 

scanned, in each image,  were extracted and used by the process of triangulation to 

generate  3-D  points  representing  the  surface.  The  process  of  triangulation  requires 

knowledge of the pose of the shadow plane in each image. The pose of the shadow 

plane was determined by using three points; a point representing the source of the light, 

and two points from the shadow, lying on the flat surface, not occluded by the object to 

be scanned. To achieve maximum accuracy, the two points from the edge of the shadow 

should be as separate as possible, e.g. at the beginning and the end of the edge of the 

shadow. A cloud of 3-D points representing the surface was hence produced at the end 

of the scanning. In the case if the source of light is not static,  e.g. sunshine, a second 

flat reference surface can be used to determine the pose of the shadow plane. Some 

more similar studies can be found from Bouguet' website [33].

In 2008, Winkelbach  et. al. [32] designed and implemented a very similar system by 

replacing  the  shadow  mechanism  with  a  laser  line  emitter.  Two  planar  objects 

implanted  with some markers  at  known locations  were installed  as  the background 

planes, one on the left and one on the right. A calibrated camera was installed at a 

distance such that its field of view covered the two planar objects. The poses of the two 

planar  objects  were  subsequently  estimated.  The  object  to  be  scanned  was  placed 

between  the  two  planar  objects  and  the  calibrated  camera.  A camera  image  was 

captured and stored as a background image. The process of 3-D surface data acquisition 

was  started,  the  laser  line  emitter  was  swept  across  the  object  to  be  scanned, 

intersecting both the background planes, and the images were captured. The laser line 

in  the newly captured  image was detected by using image subtraction  method,  the 

difference between the newly captured image with laser and the background image 

provided the location of the laser line in the image. A RANSAC [7] based method was 

proposed by Winkelbach et. al. to estimate the pose of the laser plane, formed by the 

laser light source and the laser line, on the fly. Three detected laser pixels, lying on the 
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background plane, resulting in three surface points in camera coordinate frame, were 

randomly selected to estimate the pose of the laser plane.

The result 3-D points cloud of the optical based 3-D surface data acquisition system is 

limited to the field of view of the camera. To perform a full reconstruction of the object 

to be scanned, multiple scanning with different view of the object to be scanned were 

performed and multiple clouds of 3-D points were created. A registration technique was 

then needed to register all the scanning results. To deal with this issue, a fast surface 

registration technique was proposed  by Winkelbach  et.  al.  [32]  to  register  multiple 

scanning. A free open source surface registration software is provided by MeshLab [34] 

to perform a similar task.

A real  time  3-D  model  acquisition  system  with  multiple  stripes  was  designed  by 

Rusinkiewicz  [10]  using  a  camera  and  a  projector.  The  relative  pose  between  the 

projector  and  the  camera  was  calibrated.  Knowing  the  locations  of  each  projected 

stripes, 3-D points were generated by using the process of triangulation. The boundary 

of the stripes lying on the object were tracked between camera image frames and hence 

the object was localised during the process of scanning. With this tracking ability, the 

object could be rotated in small increments to create a full 3-D model.

Instead of applying a software registration technique to register the scanning results 

from multiple  views,  Zagorchev  and  Goshtasby [35]  proposed  the  use  a  hardware 

reference frame method to perform the registration in their laser based 3-D surface data 

acquisition system. A reference double-frame was used as the coordinate system of the 

object  to  be  scanned.  The  reference  double-frame  consisted  of  two  frames  with 

different  size with known distance in  between them. The object  to be scanned was 

placed in between the frames. Only one of the reference frame was used from each 

camera view. This was the one between the object to be scanned and the camera. The 

pose of the reference frame was hence estimated. During the scanning process, the pose 

of  the  laser  plane  was  estimated  by intersecting  the  laser  plane  with  the  reference 

frame. Since the pose of the reference frame was previously determined, four points 

(two points from each vertical bar) were used to determine the pose of the laser plane. 

All  the  acquired  surface data  points  (previously addressed,  e.g. the reference  plane 

method) in the camera coordinate frame were transformed into the reference double-
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frame. 

Hebert [8] added an extra pair of camera and laser plane, along with a projector to 

overcome the disadvantages of using reference planes/frames. Unlike the previously 

discussed freehand laser scanner, a laser line emitter was physically attached to each 

camera and the pose with respect to each camera was calibrated. The cameras and the 

laser emitter were firmly attached to a hand-holdable rig and the relative pose between 

the two cameras were calibrated. The created self-referenced hand-held laser scanner 

made use of projector to project light pattern to the scene to create virtual landmarks. 

Making use  of  the  advantage  of  stereo  camera  configuration,  the  initial  landmarks 

(minimum three are required) visible within the common view of both cameras were 

firstly triangulated to provide an initial location of the hand-held laser scanner. A cross 

shape was formed by intersecting the laser lines. This was made visible by the two 

cameras. The two camera images with the illumination of laser lines on the object to be 

scanned were captured. Only the laser line belonging to the camera was triangulated to 

create the 3-D points representing the surface of the object to be scanned. The unused 

laser line was used by the opposite camera to validate the computed 3-D points. The 

change of landmarks, entering or leaving the scene, in the new stereo images were used 

to register the newly triangulated 3-D points to the initial location of the hand-held 

scanner. In each of the subsequent scanned scene. The study was commercialised and 

now available in the market [36]

Using the colour data available in the scene being scanned and triangulation method, 

Popescu et. al. [9] took a similar challenge, without using any reference planes/frames 

to perform the registration, to acquire 3-D points of the scene being scanned. Sixteen 

low cost  laser  points  pointers and a colour camera were used by Popescu  et.  al  to 

perform the 3-D surface data acquisition. The sixteen laser point pointers along with the 

camera were mounted to a rig and the locations of each of the laser point pointer, with 

respect to the camera were calibrated. All the sixteen laser blobs were detected and 

triangulated during the scanning process. A novel algorithm based on dense colour and 

sparse  depth  (result  of  triangulation)  was  subsequently  used  by  Popescu  et.  al.  to 

perform fast registration of the scanning result.
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2.3 Conclusion

With the publicly available image processing software libraries, established extensive 

studies  of  geometry  vision  algorithms,  increasing  computing  power  of  personal 

computer and low cost digital image acquiring system, the implementation of a position 

sensor-less,  desktop  based  freehand  3-D surface  data  acquisition  system was  made 

possible.  A literature  survey  of  different  kind  of  position  sensor  less  3-D  surface 

acquisition systems, with the know of author, was produced and summarised in this 

chapter. 
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Chapter 3: Essential Requirements for a 

Freehand 3-D Surface Reconstruction System

3.1 Introduction

The essential requirements of a freehand 3-D surface reconstruction system developed 

in this study are described in this chapter. The system can be divided into two parts, 

namely the freehand laser scanning part and the 3-D surface reconstruction part. The 

freehand  laser  scanner  was  constructed  by  using  readily  available  off-the-shelf 

components, namely a laser line emitter, two planar objects and a webcam (see Figure 

3.1). The output of the freehand laser scanning is shown as a cloud of 3-D points. An 

open source 3-D surface reconstruction software, like PowerCrust [37] etc., was used to 

reconstruct a 3-D surface from the cloud of 3-D points. An important characteristic of 

the designed 3-D laser scanner is that it allows the user to hand sweep the laser line 

across the object to be scanned. 

The set up of the freehand laser scanner system is shown in Figure 3.1. The planar 

object and the object to be scanned are placed at the centre of the horizontal plane. 

Figure 3.2 illustrates the system block diagram of the designed freehand 3-D scanner.
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3.2 Overview of the components of the freehand 3-D scanning 

process

An overview of the hardware and software components of the freehand 3-D scanning 

process, shown in the system block diagram Figure 3.2, is provided below. 

An  off-the-shelf  webcam's  intrinsic  parameters  were  estimated  using  a  calibration 

process. The calibrated camera and the MIMAS [4] machine vision software library 

were then used by the system to acquire images. Then an estimate of the corners of a 

regular planar pattern were obtained.

Once the camera intrinsic parameters were estimated, the camera's image acquisition 

properties like focus, gain etc. were not adjusted.

The calibrated camera was placed, in a fixed location, in such a way as to be able to 

view the object to be scanned and the two planar reference objects. The image of the 

planar object with the checker board pattern on it was captured and stored. This image 

is referred to as the background image  Imgbg . Using Imgbg  of the planar object, 

the pose of the horizontal plane  T H
C   and the pose of the vertical plane  TV

C  , 

with respect to the camera frame as global reference frame, were estimated; see Figure 

3.3 for more details. 
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Figure 3.1: Set up of the 3-D reconstruction system.
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Making use of the camera intrinsic parameters, obtained during the camera calibration 

process, and the corner features correspondences, provided by the corner detector, the 

pose  of  each  planar  object  was  estimated  using  the  planar  homography estimation 

process. The pose of each planar objects, the relative rigid transformation between the 

global  reference  coordinate  frame  and the  camera  coordinate  frame,  was  estimated 

using planar homography.

Once the pose of each of the two planar  objects  was estimated,  their  relative pose 

between the camera and the planar object was not disturbed.
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Figure 3.2: The system block diagram of freehand 3-D scanner.
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Subsequently  the  3-D  scanning  operation  was  performed  by  sweeping  a  laser  line 

across the object to be scanned. As the laser line was being swept, images of the laser 

line were captured and laser points in the camera image were extracted. The laser points 

on the planar objects were used to determine the pose of the laser plane, with respect to 

the global reference coordinate frame, during the laser plane pose estimation process. 

The  depths  of  the  laser  points  on  the  scanned  object,  with  respect  to  the  camera 

coordinate  frame,  were resolved using triangulation process.  A cloud of  3-D points 

were produced at the end of the scanning process. This process is further explained 

below.

In the scene image, a region of interest was defined to enclose the object to be scanned. 

Using the laser line emitter, a laser line was swept across the surface of the object. To 

use the method of triangulation, the angle between the viewing axis of camera and laser 

plane should be as large as possible. The images  ImgL  of the laser line sweeping 

across the object were captured. The points of the laser line seen in the image were 

generated by the laser plane intersecting the horizontal and the vertical planes of the 

planar object and the surface of the object being scanned. These points were detected 

and their 2-D co-ordinates were estimated in each of the images. Knowing the pose of 

the  planes,  of  the  planar  object,  the  laser  points  laying  on  the  two  planes  were 

transformed to their corresponding 3-D coordinate points, with respect to the camera 

coordinate system. By using this estimated 3-D coordinates, of the points on the laser 

plane, the equation representing the laser plane in each of the images was estimated. 

Knowing the equation of the laser plane, in each of the images, the 3-D coordinates of 

all the laser points on the surface of the object were estimated for each of the images. 

These points represented the points on the surface of the object, that was being scanned. 

A cloud of 3-D points representing the surface of the object being scanned was thus 

created at the end of the scanning process. PowerCrust [37], an open source algorithm 

for 3-D surface reconstruction, was applied to the cloud of 3-D points to create a set of 

polygon  mesh  and  thus  to  approximate  the  surface  of  the  reconstructed  object. 

MeshLab [34], an interactive open source 3-D viewing and mesh editing program, was 

then used to display and smooth the generated set of polygonal mesh.

Both the extracted points on the laser line, in the 2-D image coordinate frame and the 3-
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D global reference frame, were rendered and displayed as intermediate result, in real 

time. The real time display is very helpful as it provides to the user an indication, of the 

part of the object being scanned and the resulting 3-D cloud points. This helps the user 

to identify the part of the object which needs to be swept further to either acquire new 

points or to improve the quality of the acquired points.

In the following sections, the techniques used to implement the above discussed steps 

are provided in detail under the section headings Camera Calibration and 3-D points 

cloud construction.

3.3 Camera calibration

A basic webcam consists of a lens, an array of photoelectric light sensor and an on 

board embedded system. The lens directs the ray of lights, from the scene in front of the 

camera, onto the surface of the array of photoelectric light sensor. The sensor digitises 

the  ray  of  lights  and  stores  the  result  onto  the  internal  memory  of  the  on  board 

embedded system. A camera image in the digital format is created according to the 

specific data format used by the system. Depending on the data interface provided by 
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the embedded system, the created image can be stored on board and transferred to an 

external computer through a standard interface, i.e. USB, Firewire 1394, and etc. 

The  created  digital  camera  image  is  the  output  of  the  digitisation  process.  This 

digitisation output depends on the physical property of the system, e.g. the dimension 

and symmetry of each of the photoelectric sensors in the array and the distance of the 

lens with respect to the array of photoelectric sensors, i.e. the camera focal length. 

The  camera  system  is  modelled  as  a  camera  pin-hole  projection  model  [24].  The 

created digital camera image can be modelled as being dependent on the location of the 

sensor array with respect to the centre of the projection of ray of lights. The process of 

camera calibration resolves the relationship of the camera's physical details with the 

formed digital image.

A camera can be modelled as a pin-hole projection model as shown in equation (3.1).

The pixel dimension is expressed as fsx and fsy, the skew factor by fsθ, and the optical 

centre coordinates by Ox, and Oy. These characterise the camera intrinsic parameters (

Intrinsic3x3 ). The relative rigid transformation is expressed by a four by four matrix 

with  three  by  three  rotational  matrix  R  and  translation  3-vector  T .  A 3-D 

homogeneous coordinate point  M [X ,Y , Z , 1]T  is projected by the pin-hole model 

onto the image with coordinate m' [u ,v ,]T .

The  objective  of  the  camera  calibration  process  is  to  recover  the  value  of  camera 

intrinsic parameters, Intrinsic3x3 . The relative rigid transformation, Object
Camera , is 

also resolved at the end of the camera calibration process.

In the camera pinhole model, a 3-D point in the real world is mapped to a 2-D point on 
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a camera image by using a three by four projection matrix P  as shown by equation 

(3.2).

Using the relative rigid transformation matrix, referred as  Object
Camera

 in Equation 

(3.3),  a  point  in  the  real  world,  expressed  in  the  object  coordinate  frame,  with 

homogeneous  coordinate  [X ,Y , Z , 1]T  can  be  transformed  into  the  camera 

coordinate frame and subsequently projected as an image coordinate point [u , v ,1]T . 

The image coordinate will have a scale factor   , depending on the location of the 

image frame from the origin of the camera along the z-axis of the camera coordinate 

frame as shown in Figure 3.4. 
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Figure 3.4: Coordinate frames and transformation in details
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3.3.1 Camera calibration process

Camera calibration is carried out based on a homogeneous relationship, i.e. one to one 

correspondence  between  a  world  3-D  point  and  it's  projected  2-D  camera  image 

location. To calibrate the camera, one requires a suitable calibration apparatus to make 

the  correspondence  from  the  world  3-D  point  to  it's  projected  2-D  camera  image 

location. 

There are several types of calibration apparatus discussed in the literature. They can be 

classified into four categories  [38], namely 3-D reference object, 2-D plane, 1-D line 

and 0-D self calibration. 

3.3.1.1 Three-dimensional (3-D) calibration object 

For the  3-D object  based  calibration  apparatus,  a  3-D object  with precisely known 

dimensions  or  markers  at  precise  locations,  on the  3-D object  surface,  are  used  to 

establish the correspondence.

The cost of building a precise 3-D calibration object,  e.g. a cube with some precise 

markers on each side of the cube surface is  quite expensive.  Instead,  a set-up with 

precise known motion of a plane in the 3-D world coordinate, can provide the 3-D 

reference points. These points can be used to establish the correspondence. 

The  sets  of  3-D  coordinate  points  with  their  corresponding  detected  2-D  image 

coordinates are subsequently used to calibrate the camera [38].

3.3.1.2 Two-dimensional (2-D) planar object

Camera  calibration  with  a  2-D  planar  object  can  be  carried  out  by  using  planar 

homography.  Planar homography or plane collineation [39] expresses the one to one 

relationship, i.e. the non-singular linear transformation, of a projection of a point in 3-D 

on a planar object to its corresponding 2-D camera image coordinate. This process can 

be  interpreted  as  a  transformation  of  coordinates  from  one  projective  system 

(coordinate frame on a 3-D planar surface) to another projective system (coordinate 

frame on an image), with reference to a fixed coordinate frame of reference (camera 
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coordinate frame).

A 2-D planar object can be easily constructed by marking salient features, like points or 

squares, with known dimensions onto a planar object. A typical example of a ready to 

use 2-D planar object is a checker board. A checker board pattern can easily be created 

by printing the pattern and attaching it to a rigid planar surface.

3.3.1.3 One dimensional (1-D) line

Using a freely moving 1-D object it is, in principle, impossible to calibrate a camera 

[38].  Zhang  has  proposed  a  method  to  calibrate  a  camera,  using  a  1-D object,  by 

rotating, for example a rigid stick or a taut string, with 3 or more markers on it, around 

a fixed point. 

An advantage of using the 1-D calibration object is when the line object is swinging 

around,  the  markers  will  be  easily  visible  to  all  the  cameras  in  a  multi-camera 

environment.  A calibration algorithm is  proposed by Wang [40]  to  calibrate  all  the 

cameras in a multi-camera environment using a 1-D calibration apparatus.

3.3.1.4 Self-calibration

Self-calibration, calibrating camera without any calibration apparatus, was achieved by 

making use of the correspondences in a sequence of images of a static scene. Pollefeys 

[41] used the principle of absolute quadric [42] to perform camera self-calibration in 

the presence of varying internal camera parameters. Self-calibration with the presence 

of  varying  internal  camera  parameters  in  the  sequence  of  images  was  achieved by 

Mendoca [43] by extending the Hartley's self-calibration technique[44].

In this study, we have used the 2-D planar object to perform the camera calibration. 

Camera calibration using a 2-D planar object is discussed in detail in the next section.

3.3.2 Camera calibration using a 2-D calibration rig

A 2-D camera calibration rig with a planar object is easier to fabricate as compared 

with a 3-D rig. Moreover, it provides a better accuracy as compared with the 1-D rig 
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and the self calibration methods [38]. For the above reasons a 2-D calibration rig was 

considered best suited to our work.

Zhang proposed a flexible method to calibrate camera with a few images of a planar 

object captured in different poses [45]. Each planar homography induced by the planar 

object on each camera image was extracted and used to resolve the camera intrinsic 

parameters. The planar object used in our study is a checker board shown in Figure 3.5. 

The process of planar homography estimation and its subsequent usage to estimate the 

camera intrinsic parameters are explained in the following sections.

3.3.2.1 Estimation of planar homography

It  has been shown in reference [39] that  the projection of a  planar  3-D point  with 

homogeneous  coordinates  [X ,Y ,0,1]T  onto  an  image  plane  with  homogeneous 

coordinate [u , v , 1]T  can be modelled by a planar homography ( Homography3x3 ) 

as shown by equation (3.4).
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[uv1]=[h1 h2 h3

h4 h5 h6

h7 h8 h9
]


:=Homography3x3

[XY1 ] (3.4)

                                           (a)                                                                              (b)

Figure 3.5: The planar objects used in the study.(a) L-corner checker board pattern. (b) X-corner  
pattern. 



By using equation (3.5), the planar homography (eight unknowns, with h9 normalised to 

one) can be estimated using four correspondences (each non-collinear correspondence 

gives  two  independent  equations).  The  eigenvector  corresponding  to  the  smallest 

eigenvalue of matrix M provides the solution of the linear least square system.

In each of the images, the first approximated locations of the four outer most corners of 

the checker board were marked by the user. Using the approximated locations of the 

corners in the four images, and knowing the actual dimensions of the checker board 

pattern,  the  programme  estimates  the  first  approximation  of  a  3×3  homogeneous 

matrix. The accuracy of the estimated homogeneous matrix could be improved by using 

more corners on the checker board image. An error-minimisation algorithm that can 

handle more than four corners had been implemented and integrated into MIMAS [4]. 

The  algorithm  applies  singular  value  decomposition  (SVD)  and  provides  the  first 

approximation of a homography matrix. 

Using the first approximation of the homography matrix, the corners of the checker 

board were re-estimated.  Then, a corner  detection algorithm was used to locate the 

actual corners of the checker board. The most recent fine tuned estimated position of 

the four corners formed a homography for each set of the images.

3.3.2.2 Zhang' camera calibration algorithm

The process of using homographies to resolve the camera intrinsic parameters has been 

explained in detail in the paper by Zhang [45]. The process in briefly described below.

Each set  of  the  estimated  homography provides  two constraints  (or  conditions),  as 

illustrated by equations (3.10) and (3.11). From equation (3.6), it can realised that the 

27

(3.5)
X 1 Y 1 1 0 0 0 −u ' 1 X1 −u '1 Y 1 −u '1
0 0 0 X1 Y 1 1 −v '1 X1 −v '1 Y 1 −v '1
X 2 Y 2 1 0 0 0 −u ' 2 X2 −u '2 Y 2 −u '2
0 0 0 X2 Y 2 1 −v '2 X2 −v '2 Y 2 −v '2
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
X N Y N 1 0 0 0 −u 'N XN −u 'N Y N −u 'N

0 0 0 X N Y N 1 −v ' N XN −v 'N Y N −v 'N


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⋮
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h32
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

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=
 ' 11

 ' 12

 ' 21

 ' 22

⋮
 ' N1

 ' N2




:=E



planar homography is the composition of camera intrinsic parameters and a modified 

notation of the rigid transformation matrix Object
Camera [45].

Vectors rc1 and rc2 are two orthonormal vectors from a rotational matrix hence their dot 

product is equal to zero (see equation3.10). Moreover, the vectors rc1  and rc2  are 

unit vectors, hence their magnitudes are equal to one. (see equation (3.11)). Zhang [45] 

demonstrated a flexible method to calibrate a pin-hole model camera by making use of 

the  above  two  constraints  (see  equations  (3.10)  and  (3.11))  as  shown in  equations 

(3.15).

Let  Homography3x3=[hc1 hc2 hc3] ,  where  hci  is  ith column  of  matrix 

Homography3x3  e.g. hc1=[h1 h 4 h7]
T  and hc2=[h2 h5 h8]

T .

We know, 

with

and

Hence from equation (3.6)
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(3.6)

(3.7)

(3.8)

(3.9)

With the first constraint rc1⋅rc2=0 , hence hc1
T B−T B−1hc2=0 (3.10)

Homography3x3= Intrinsic3x3 AbusedExtrinsic 3x3

AbusedExtrinsic3x3={ac1 ac2 ac3}={r c1 rc2 t 3x1}

B=[f sx f s Ox

0 f sy O y

0 0 1 ]
Intrinsic3x3

[hc1 hc2 hc3 ]=B [rc1 rc2 t 3x1]



Hence

The eigenvector corresponds to the least eigenvalue of  SYS and is the solution for 

the linear equations. Once the value of  S  is obtained by the operation of Singular 

Value Decomposition, the inverse of the camera intrinsic, B−1 , can be recovered by 

using the Cholesky decomposition, as shown in equation (3.14). The camera intrinsic 

parameters, B , is subsequently resolved by inverting the result of equation (3.14), as 

shown in equation (3.15).

and

To resolve the five unknown camera intrinsic parameters (fsx, fsy,  fsθ,  Ox, and  Oy), at 

least three sets of homographies ( N=3 , equation (3.13)) are needed. If we want to 
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With the second constraint ∥rc1∥=∥rc2∥=1 , hence 
(3.11)

Where cholS is a function to perform the Cholesky decomposition of S .

(3.14)

N , the number of homographies. (3.13)

hc1
T B−T B−1hc1=hc2

T B−T B−1 hc2

Let 
(3.12)S=B−T B−1=[S11 S12 S13

S21 S22 S23

S31 S32 S33
]


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take  into  account  the  radial  distortion  of  the  lens,  it  introduces  another  two  extra 

unknown variables. Hence, at least seven constraints are to be provided to the camera 

calibration algorithm. This requirement is satisfied by using four sets of homographies 

estimated from the checker board images at four different poses.

Starting with the very first estimate of the camera intrinsic parameters, the final values 

are estimated using Levenberg-Marquardt optimisation process as suggested by Zhang 

[45]. The cost function used by the Levenberg-Marquardt optimisation process is the 

difference between the locations of the re-projected corners, obtained by making use of 

the calculated camera intrinsic parameters, and the actual camera image corners.

The above described camera calibration method is implemented by Bouguet [46] and 

also available in the MIMAS toolkit, a C++ real-time computer vision library [6].

3.4 Three-dimensional (3-D) points cloud creation

As shown in the system block diagram in Figure 3.2, the 3-D points cloud creation 

process consists of the three major operations namely, planar object pose estimation, 

laser plane pose estimation and 3-D points cloud estimation. The requirements of the 

above listed three operations are discussed briefly below.

The planar object pose estimation provides us the position and orientation of a stable 

reference plane with respect to the fixed camera coordinate frame. Making use of these 

reference planes one can subsequently estimate the position and orientation of the laser 

plane by detecting the points on the laser line. This is performed by taking into account 

the fact that the laser line is formed by the intersection of the laser plane with the planar 

object plane. Once the laser plane pose is estimated, the location of the 3-D points, 

illuminated  by  the  laser  line,  on  the  surface  of  the  object  being  scanned  can  be 

approximated. The points on the surface of the 3-D object are illuminated by the laser 

line through the process of sweeping the laser line on the surface of the object being 

scanned.

The details of the three operations are discussed briefly in the following sections.
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3.4.1 Planar object pose estimation

Once the camera intrinsic  parameters have been determined,  the pose of the planar 

object, i.e. the rigid transformation matrix Object
Camera

 given in equation (3.3) can be 

resolved by using equation (3.17).

From the equations (3.6) and (3.7), we get

Thus, the rigid transformation matrix, given by equation (3.3) can be resolved by 

3.4.2 Laser plane pose estimation

To estimate the 3-D location of the points on the surface of a 3-D object, we needed to 

perform the following operations.  First  the pose of  the laser  plane is  needed to  be 

estimated, in order to find the relative position and orientation of the laser plane with 

respect to the calibrated camera reference coordinate frame. By knowing the relative 

position and orientation of the laser plane, any image pixel illuminated by the laser 

plane can be transformed from the image coordinate point to a 3-D coordinate point 

with respect to the calibrated camera reference coordinate frame.

Normally a 3-D reconstruction process starts with adjusting the position and orientation 

of the calibrated camera to make sure the object to be digitised is within the viewpoint. 

Once the camera viewpoint is decided, the laser plane will be projected to the scene and 

some fine adjustments between the camera and laser plane will be carried out to get the 

best image. The laser plane calibration process had to be carried out before the 3-D 
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Where rc1×rc2 is the cross product between rc1 and rc2 .

(3.17)

r c1=1⋅Intrinsic3x3
−1⋅ac1

rc2=2⋅Intrinsic3x3
−1⋅ac2

rc3=rc1×rc2

t 3x1=3⋅Intrinsic3x3
−1⋅ac3

1=1/∥Intrinsic3x3
−1⋅ac1∥

2=1/∥Intrinsic3x3
−1⋅ac2∥

3=12∗0.5

AbusedExtrinsic3x3=Intrinsic3x3
−1⋅Homography3x3 (3.16)



reconstruction  process  (turntable  based,  linear  translator  based  3-D  surface 

reconstruction systems) or during the scanning (freehand 3-D surface reconstruction 

system). The laser plane calibration process is only needed to be carried out once, if 

both the camera and the laser emitter are not going to be moved after this calibration 

process, e.g. turntable based 3-D surface reconstruction system [25,26].

The laser plane pose estimation involved the detection and extraction of the points on 

the image illuminated by the laser and fitting a line to the detected set of points. Using 

the fitted line, the laser plane pose was estimated.

3.4.2.1 Laser pixel extraction process

The intersection of a laser plane with an object produces a set of illuminated pixels in 

the camera image which is referred as a laser line in the following discussion. The laser 

line can be defined by using two points on the line. But at least three non-collinear 

points are needed to define the plane in the 3-D space. Hence, two sets of non-collinear 

laser lines are needed to be generated in the camera image. To achieve this, the laser 

plane is made to intersect two non collinear planes. 

Any planar object could be used for the above discussed operation for acquiring two 

non collinear lines in a single image. In this study, a folded checker board (see Figure 

3.1), which had been previously used for camera calibration, was used for this purpose.

The illuminated laser points are needed to be detected to estimate the pose of the laser 

plane.  The  3-D  reconstruction  process  is  normally  accomplished  in  different 

environments, for example in a dark room, where the ambient light is under control, or 

in an environment where the ambient light is affected by the flickering of fluorescent 

light (if it is indoors), or by variation in sun light (if it is outdoor). The intensity of the 

image pixel  illuminated by the laser vary depending upon the environment.  Hence, 

suitable robust methods are needed to detect the pixels on the laser line for the laser 

plane pose estimation process.

Depending  on  the  environment,  one  can  use  either  of  the  two  methods,  namely 

Thresholding or Background subtraction, to estimate the pixel locations illuminated by 

the laser.
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3.4.2.1.1 Estimation of pixel locations, illuminated by the laser, 

using thresholding

The algorithm to detect the laser line on a camera image in a controlled environment is 

easier than uncontrolled environment. Because the knowledge about the properties of 

the pixels illuminated by the laser in the image, e.g. the RGB (Red, Green Blue colour 

space)  or HSV (Hue,  Saturation,  Value colour space)  value of the laser  illuminated 

pixels can be known beforehand. This eliminates the requirement of the user to provide 

the range of values for the thresholding process.

Also, in a controlled environment the ambient light can be adjusted (e.g., its intensity 

reduced)  such  that  an  image  with  high  quality  information  (pixel  with  maximum 

intensity)  of  the pixels  illuminated by the laser  can be produced without  using the 

maximum power of the laser generator. 

The known HSV range of values, which adequately represent the pixels illuminated by 

the laser better than RGB colour space, were used in the thresholding process to filter 

the image. 

Figure  3.6  shows  the  result  of  the  thresholding  process  by  using  a  predefined 

thresholding RGB colour space value. Figure 3.7 shows the plot of the HSV colour 

space information in one of the row of the same image. The result of the thresholding 

by using the observed HSV colour space value for the pixels illuminated by the laser is 

shown in Figure 3.8. The result of the thresholding provides the information regarding 

the position of the pixel locations illuminated by the laser in the image. Depending on 

the threshold values used, the width of the line, formed by the extracted pixels, was 

approximately two to five pixels. 

The extracted pixel locations illuminated by the laser provide the spatial information to 

form the laser line which is basically the intersection of the laser plane and the planar 

object  namely the checker  board.  The following section provides  the details  of the 

process of fitting a line to the extracted pixel locations.
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Figure 3.6: Images showing laser line detection using RGB.

(a) The laser plane intersected by the checker board. 

(b) The detected points on the laser line by thresholding the image using RGB channel information(any 
pixel with red channel value =240+/-10, the maximum value is 255).

(c) Image showing only the detected points on the laser line which are inside the checker board frame.

(d) The fitted line (green colour,with polar space, theta =61 and radius=85) and some of the original  
thresholded points marked on the fitted line (little dot in blue colour)

(a) (b)
(c) (d)
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Figure 3.7: Image showing the pixels' HSV values plot along the row number 159 (the row between two 
yellow colour lines). The Blue colour plot, which indicates the V channel of the HSV, peaks (100%, 
minimum value 0%, maximum value 100%) at the location of the pixels illuminated by the laser. 

The Red colour plot is for the Hue channel (minimum value 0 degree, maximum value 359 degree) and 
the Green colour plot is for the saturation channel (minimum value 0%, maximum value 100%).

0

159

                                          (a)                                                                             (b)

Figure 3.8: Image showing the thresholded pixel locations illuminated by the laser using different  
threshold value. 

(a) V=0.90, (b) V=0.99

The width of the extracted line formed by the pixel locations line (left), using threshold value V=0.9, is  
thicker (3 to 4 pixels wide) than the line (right) extracted using V=0.99 (2 to 3 pixels wide).



3.4.2.1.2 Estimation of pixel locations, illuminated by the laser, 

using background subtraction

If  one  does  not  have  a  control  on  the  environment  like  lighting  condition,  an 

inappropriate threshold value will result in the false detection of the pixels illuminated 

by the laser.  Different types of noise will be always present in any image,  hence a 

thresholding  process  with  hard  coded  values  may  fail  to  detect  the  the  pixels 

illuminated by the laser. Hence instead of using specific threshold values, a better way 

of detecting the pixels illuminated by the laser was designed and is explained herein. 

The  alternative  approach  involved  background  subtraction.  Briefly,  the  background 

subtraction can be carried out by first taking an initial image with the laser emitter 

turned off  and then powering on the laser  emitter  and pointing it  at  the scene and 

capturing another image (Figure 3.9). The additional component in the second image, 

that is the pixels illuminated by the laser, can be detected by finding the difference 

between the two images. The main objective of using background subtraction process is 

to avoid the use of any thresholding. The process is discussed in detail below.

The  pixels  illuminated  by  the  laser can  be  detected  by  applying  a  general  image 

processing technique,  the background subtraction method.  Firstly an image without 

laser lines (background image) was captured. The background subtraction method was 

performed with each of the subsequent images (laser image). The difference between 

each image, the projected laser line, was detected. A range of grey values from 0 to 255 

(8-bits) have been commonly used to represent the intensity of a pixel in an image. A 

brighter component has a higher intensity value, e.g. white component is represented by 

value 255 and black is 0. A pixel illuminated by the laser in an image will have a higher 

intensity value in the red channel and a lower intensity value in the rest of the colour 

channels. Therefore, the result of the subtraction, will produce a resulting RGB image, 

where the pixels with the highest intensity value in red channel can be safely assumed 

as the pixels illuminated by the laser. 

The following process is used to collate all the pixels illuminated by the laser. Firstly 

along each row of the image the pixel which has the highest intensity value in the Red 

channel  will  be marked as  a possible  pixel  illuminated by the laser  and the image 
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coordinate was recorded. To eliminate extraneous points, the fact that the the pixels 

illuminated by the laser will be closer to one another was made use of and the nearest 

neighbourhood method was applied and explained as follows. A window with size of 

5×5 was placed around a marked possible pixel illuminated by the laser. If there were 

any other marked pixel locations within the window, the detected pixel was most likely 

to be a pixel illuminated by the laser. Those marked points which were far away from 

other marked points, were removed in this process. Figure 3.13 shows the output of the 

thresholding,  of  the  difference  image,  with  different  relative  rates.  The  process  of 

thresholding, of the difference image, was performed using only the value of the red 

channel in the RGB image. This avoided the noise contamination which might have 

occurred if the other colour channels were used.
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Figure 3.9: Two images for background subtraction method. The background image(a), The image with 
laser(b)

(b)(a)
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(c)

Figure 3.10 Result of Hough Transform line detection by using the output of background subtraction 
method, the marked blue colour laser pixel (c) within the defined checker board region(a) and (b) The 

two detected laser line are plotted in green colour (c).

(a) (b)



3.4.2.2 Laser line fitting process

To estimate the location of the laser line and hence the pose of the laser plane, a 2-D 

line was fitted through the earlier estimated image pixel locations, illuminated by the 

laser.  In  this  study,  the Hough transform [47]  2-D line fitting process  was  used to 

estimate  the  equation  of  the  line  on  the  image  from  the  detected  set  of  points 

illuminated  by  the  laser.  The  advantage  of  this  method  is  its  spatial  property  and 

robustness against false pixel location detection. The false detection of pixel location 

illuminated by the laser could happen due to reasons like the threshold value giving 

extraneous  locations  due  to  the  specular  reflection  of  the  laser  or  due  to  the 

misbehaviour of the camera CCD. 
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Figure 3.11: Resulting image of laser pixel detection. The points in blue colour are the pixels with  
highest intensity across each row of the image. The dots marked with bright red colour are the detected 

laser pixels inside the defined checker board boundary (Figure 3.10 a,b).



As mentioned above, the model that needed to be fitted, to the set of pixel locations, is 

the function representing a straight line. The equation of the straight line is expressed in 

polar space. One needs at least two points, in 2D space, to define a unique line. A line 

w1 , passing through these two points (say  P1 to  P4 ), can be defined by the 

two polar parameters, namely the orthogonal distance  ro , of the line to the origin, 

and the angle,  a ,  between the orthogonal line and one of the Cartesian axis,  u 

(Figure 3.12). The values of ro  and a can be resolved as follows :

Let w0  be the normal to the line w1  drawn from the origin.

Let w0  intersects w1  at the location P2u , v  . 

The polar co-ordinates for the intersecting point  P2 ,  can be resolved by using a 

general point equation (3.20).

Then, the values of  ro  and  a  can be resolved by using equations (3.18) and 

(3.19) respectively. 
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Figure 3.12: The polar parameters of a line passing through the two points P1 and P4.
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3.4.2.2.1 Effect of threshold values used to estimate pixel locations 

illuminated by the laser 

It is important to note that the accuracy of the laser line fitting process is completely 

dependent on the output of earlier  thresholding process, extracting the image pixels 

illuminated by the laser. Each thresholded image pixel will contribute equal weight for 

a possible line in the image. An erroneous thresholding value will result in the false 

fitting of a line due to the weight of the noise pixel in the image accidentally forming a 

false line. Hence, a proper range of thresholding value is needed for this approach to 

guarantee the accuracy of the fitted line. 

Figures 3.13 and 3.14 illustrate the effect of choosing different threshold values while 

detecting the pixel points illuminated by the laser and the effect it has in the line fitting 

process. In Figure 3.13, when a threshold value 0.9<v<1.0 was used, for Value in the 
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Where

(3.18)

(3.19)

Where

Pl , any point on a line

Ps , a starting point of the line

∥w l∥ , the unit vector of the line

 , the length of the line from Ps to Pl .

(3.20)

ro=P2u
2P2v 

2

a=cos−1 [1 0 0 ]T× w 0

w0=[−∥w1v∥ ∥ w1u∥ 0]T

∥ w1∥=[∥ w1u∥
∥ w1u∥

0 ]=∥[P4u−P1u
P4v−P1v 

0 ]∥
Pl=P s∥wl∥



HSV model, one can see that many false points being detected. But, because of the 

robustness of the Hough transform based line fitting process, the correct laser line is 

fitted. In Figure 3.14, because of the choice of a different threshold value (0.99<v<1.0), 

Value in the HSV model, the number of extraneous points has greatly reduced. The 

property of the fitted line is slightly different from the earlier line shown in Figure 3.13.

Table 3.1 lists the properties of lines fitted through the points detected using different 

threshold values. 

The  width  of  the  laser  line  varied  from  two  to  five  pixels,  depending  on  the 

thresholding value, for the Value in the HSV model, used.
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Figure 3.13: (a) The thresholded image using the threshold 0.9<v<1.0 in the HSV colour space.

(b) The fitted line (  =61 and r =86 in the polar space) drawn in green colour.

Figure 3.14 (a) The thresholded image using the threshold 0.99<v<1.0 in the HSV colour space.

(b) The fitted line (  =61 degree and radius, r =85 in the polar space) drawn in green colour.



3.4.2.2.2 Sub-pixel operator

Along with the value of Value in the HSV model, the intensity value of each pixel 

illuminated by the laser pixel can further be used to find the actual location of the laser 

line, in each row of the image with up to sub-pixel accuracy. It is assumed that the laser 

line will  never  be horizontal  to  the image.  The performances  of different  sub-pixel 

operators had been evaluated by Trucco [48] and found that Blais and Rioux (1986) 

[49] fourth order operator gave the best performance for their application of extracting 

pixels illuminated by a laser, in their study of laser stripe profiler. 

This section will expand on how the locations of the points illuminated by the laser 

were  estimated  with  sub-pixel-accuracy.  Both  the  previous  thresholding  and 

background subtraction processes provided a range of pixel locations, in each row of 

the image, illuminated by the laser. The process of identifying the centre of the laser 

line with sub-pixel-accuracy starts (Figure 3.15) with the reading of the intensity values 

of the pixels around the peak value of the identified pixel.  Based on the theoretical 

property  of  the  Gaussian  energy dispersion,  the  intensity  values  of  the  laser  pixel 

should fit into a Gaussian curve and hence the centre of the laser line lying on the peak 

of the Gaussian curve (Figure 3.16). The sub-pixel detector will be used to detect the 

peak  of  the  signal  with  up  to  sub-pixel  accuracy.  The  operation  of  the  sub-pixel 

operator is expressed next.
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Table 3.1: Result of the Hough transform line fitting process through points detected 

using different threshold value range.

Threshold value for the 
parameter Value in the HSV 

model

Number of line detected Polar co-ordinates of the fitted line. Theta(  , 
degree) and Radius( r )

0.90<v<1.0 1  =61, r =86

0.92<v<1.0 1  =61, r =86

0.94<v<1.0 1  =61, r =86

0.95<v<1.0 2  =61, r =86

 =61, r =87

0.96<v<1.0 1  =61, r =86

0.98<v<1.0 1  =61, r =86

0.99<v<1.0 1  =61, r =85



The values of Value of the HSV model at row number 159 (Figure 3.7), around the 

pixels illuminated by the laser were extracted.

The location of the pixel with highest value was identified. Three columns of values, 

left and right, around the peak were selected. An index was assigned to each value and 

the location of the sub-pixel was obtained as discussed below.

44

V 0.862 0.878 0.960 0.976 1.000 1.000 0.976 0.964 0.929 0.909

Pixel # 253 254 255 256 257 258 259 260 261 262

V 0.862 0.878 0.960 0.976 1.000 1.000 0.976 0.964 0.929 0.909

Pixel # 253 254 255 256 257 258 259 260 261 262

c0 c1 c2 c3 c4 c5 c6

Peak

Figure 3.15. The flow chart of the sub-pixel operator
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The result of the sub-pixel accuracy estimation of the pixels illuminated by the laser is 

shown in Figure 3.17. The algorithm performed very well,  except where part of the 

laser line was absorbed by the checker board pattern,  i.e. black colour square of the 

checker board. The false detection (Figure 3.18) was due to the row operation filtering 

process  on  an  image  subjected  to  chromatic  aberration.  The  effect  of  chromatic 

aberration, which is an artifact of the webcam poor lens quality, created an edge of 

saturated pixels along the border between dark and light shades of the checker board 

patterns. When the pixels around those borders were illuminated by the laser line the 

pixel location with the largest illumination value was not any more at the centre of the 

laser  line but  rather  at  the border  between the dark and light  shade of  the checker 

pattern.  Hence  the  algorithm to  estimate  the  location  with  sub-pixel  accuracy  got 

applied around the wrong location, in the same row, having the highest illumination. 

Figure  3.18 shows  the  wrongly  detected  pixel  location  with  high  intensity  value 

(marked in Red) and the actual pixel location in the laser line (marked in White).
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Figure 3.16 Close up plotting of the Value of the HSV model from image in Figure 3.7. The location of  
the centre of the laser line was obtained using the Blais and Rioux forth order [49] sub-pixel operator.
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Figure 3.17: The result(red dot in bright colour) of thresholding with the intensity value of HSV which 
belong to laser line with sub-pixel accuracy are plot on top with the result of Hough Transform line 

detector(green line) for comparison. 



3.4.2.3 Inverse projection of the 2-D coordinates of the image 

pixels illuminated by the laser onto the checker board plane

The coordinate of the image pixel  [u v 1]T   illuminated by the laser line was 

back  projected  to  the  planar  object  by  using  equation  (3.21).  The  inverse  of  the 

estimated  planar  homography  was  used  to  transform  the  coordinates  of  the  pixels 

illuminated by the laser to the surface point ( [X Y 1]T ) on the checker board.

3.4.2.4 Rigid transformation of 3-D points on the checker board 

coordinate frames to the camera coordinate frame 

There are more than one coordinate frames in the system, namely one coordinate frame 

with respect to the camera, one coordinate frame with respect to each of the horizontal 
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Figure 3.18: False laser pixel detection in a row of the image. The detected pixel (bright red) and the 
actual position (white colour) at the same row.

From equation (3.4) we inverses the Homography3x3  to obtain the equation (3.21)

(3.21)

[uv1]=[h1 h2 h3

h4 h5 h6

h7 h8 h9
]


:=Homography3x3

[XY1 ]
X [XY1 ]=[h1 h2 h3

h4 h5 h6

h7 h8 h9
]
−1


:=Homography3x3

[uv1 ]



and vertical checker board planes. Since we have more than one coordinate frames in 

the  system,  all  the  detected  points  have  to  be  transformed  to  a  global  reference 

coordinate frame. The camera coordinate frame has been chosen as our global reference 

frame  (Figure  3.19).  Equation  3.22  shows  how  a  point  in  a  coordinate  frame  is 

transformed to the camera coordinate frame.

3.4.2.4 Laser plane pose equation

As  mentioned  earlier,  the  laser  plane  pose  estimation  involves  the  detection  and 

extraction of the points on the image illuminated by the laser and fitting a line to the 

detected  set  of  points.  Using  the  fitted  line  information,  the  laser  plane  pose  was 

estimated. 

The previous sections (3.4.2.1 and 3.4.2.2) elaborated the detection and extraction of 

the points on the image illuminated by the laser and fitting a line to the detected set of 
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Where

(3.22)

Figure 3.19: Transformation from the checker board coordinate frame to the camera coordinate frame.

Pcamera4x1= object
camera

4x4⋅Pcheckerboard4x1

Pcheckerboard 4x1=[ X Y 0 1 ]T



points. This section will give a brief outline of how the pose of the laser plane can be 

estimated by using the 2-D coordinates of the image pixels illuminated by the laser line. 

Chapter 5 will discuss in detail the laser plane pose estimation.

A 3-D plane (Figure 3.20) can be defined by any 3-D point on the plane m  and the 

unit normal vector of the plane  n . Then, any 3-D point  X  on the plane will 

satisfy the equation (3.23). 

Using  the  3-D  points  locations,  estimated  through  the  detection  of  the  points 

illuminated by the laser, the equation of the laser plane and hence m,n of the laser 

plane can be estimated. This process is elaborated in more detail in Chapter 5.
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(3.23)n⋅ X−m=0

(3.24)=
180cos−1n1⋅n2



Figure 3.20: A plane in 3-D space (shaded).
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3.4.3 Three dimensional (3-D) points cloud estimation

The  final  component  which  is  required  for  3-D  surface  acquisition  is  the  three 

dimensional coordinate points estimation. Once the pose of the laser plane has been 

estimated (Section 3.4.2) the 3-D points on the surface of the object can be estimated 

by finding the intersection of the laser plane with the surface of the object. This could 

be achieved by the process of triangulation. The triangulation process is discussed in 

detail as follow.

3.4.3.1 Triangulation process

The 3-D reconstruction process was completed with the generation of a cloud of 3-D 

points by extracting the laser line and transforming the 2-D points on the laser line to 

the 3-D space. This process was performed as described below.

The laser line seen in an image is caused by the intersection of the laser plane and the 

surface of the object being scanned. Hence, the points on the laser line seen in an image 

are the points on the surface of the object. Using the image of the laser line, captured by 

the camera, the 3-D co-ordinates of the laser line can be computed. From the camera 

pinhole projection model, a point on an image will lie on a line which passes through 

the centre of the camera and the point on the scanned object which formed the image. 

Using this  model  the  3-D coordinates  of  the point  on the scanned object  could  be 

resolved by finding the intersection of the camera projection ray with the laser plane 

line.  A set  of  generated 3-D coordinates  were  then  transformed to  the 3-D surface 

points  by  resolving  the  position  of  the  turntable  during  the  time  the  image  was 

captured. Thus, a cloud of points, in 3-D, representing the surface of the scanned object 

was generated at the end of the 3-D reconstruction process.

The “depth”  of  a  laser  point  on an  object,  that  appeared  on an camera  image was 

resolved (Figure 3.21) by using the method of triangulation (equation (3.25)). A ray 

(equation 3.26) was formed starting from the origin of the camera coordinate frame, 

penetrating  the camera  image and terminating  on the object.  The length of  the ray 

(equation 3.27) was resolved by finding the intersection of the ray and laser plane.
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3.5 The implemented freehand 3-D surface data acquisition 

system

Based  on  the  identified  essential  requirements  for  a  Freehand  3-D  surface 

reconstruction system discussed in Section 3.2, a simple 3-D surface data acquisition 

software with Graphical User Interface (GUI) was designed and implemented. The GUI 

was created with Qt [50] and the machine vision algorithms were implemented with 

MIMAS Toolkit. The designed GUI was shown in Figure 3.22. 

A tool bar (with four buttons namely, 'C', 'O', 'B', 'L') was provided to perform the basic 
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Figure 3.21: Principle of triangulation.
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operations of the scanning system. The following provides a summary of the operations 

performed by each buttons.

• 'C': performed corner detection.

• 'O':performed object segmentation.

• 'B'; captured a camera image and saved it as a background reference image.

• 'L': started/stopped the laser scanning process.

Two canvases, namely the camera view and 3-D view were provided to display in real 

time the camera view and the result of triangulation respectively (Figure 3.23). The 

detected laser pixels  (blue colour in  Figure 3.23 left),  which were the result  of  the 

background subtraction, were superimposed onto the camera image. The pixels lying in 

the segmented object boundary were rendered in red colour. The pixels used for laser 

plane pose estimation were rendered in yellow colour.

Figure 3.23 illustrates an screen shot of the process of acquiring 3-D surface data points 

of a deformable breast phantom for medical training (Figure 3.24). The camera was 

positioned around 300mm from the top of the breast phantom (Figure 3.25). The result 

of the 3-D surface data point acquisition is shown in Figure 3.26. The 3-D point cloud 

was  subsequently  processed  by the  PowerCrust  to  create  the  surface  mesh  (Figure 

3.27). An smoothing filter provided by Meshlab was used to smooth the surface. The 

result of smoothing process, along with the colour rendering are shown in Figure 3.28.

The implemented software was running with a Intel Core2 Duo 2.10 GHz CPU (single 

process, not multi-threaded) that could perform at around 3 frames per second.
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Figure 3.23: A screen shot of the GUI during the process of scanning a breast phantom. The result of  
background subtraction operation was superimposed onto the capture camera image and displayed in  
the camera view canvas (Left). The result of triangulation was shown, in live, in the 3-D view canvas 

(Right).

Figure 3.22: Figure illustrated the designed and implemented GUI for 3-D surface data acquisition 
system. A tool bar and two canvas, namely, Camera view and 3-D view were provided.
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Figure 3.24: The object scanned, breast phantom.
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Figure 3.25: The setting for scanning the deformable breast phantom.
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Figure 3.26: Rendering the scanning result, a cloud of 3-D points, of the breast phantom with Meshlab.
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Figure 3.27: The surface meshes generated by PowerCrust.



3.6 Conclusion

A system framework,  consist  of  all  the essential  elements of a  position sensor-less, 

freehand  3-D  surface  data  acquisition  system  was  designed  and  proposed.  The 

framework clearly identify the processes flow between the essential elements in the 

system, right from the begining process of camera calibration to the end process of real 

time updating the display window with the acquired 3-D surface data points.

Difference camera calibration rigs were found from the literatures. The principle of 2-D 
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Figure 3.28: The result of smoothing the surface meshes with Meshlab. The nipple was able to visualised 
after the smoothing operation.



planar object based camera calibration algorithm was discussed and adopted in this 

project. The key element of 2-D planar object based calibration method, the estimation 

of planar homography and subsequently determining the pose of the planar object was 

used to carry out the laser plane pose estimation process.

An accurate method of extracting the image pixel illuminated by the laser line is the 

fundamental  of  the  laser  plane  pose  estimation  process.  Background  subtraction 

technique was found to perform better compared to the colour thresholding technique. 

A scan line based sub-pixel estimator found from the literature was adapted to extract 

the location of the image pixel, illuminated by the laser, with up to sub-pixel accuracy.

Using the explained triangulation method, the image pixels illuminated by the laser 

line, lying on the surface of the scanned object, were triangulated to produce a cloud of 

3-D points. A real-time updating window was implemented to allow the visualisation of 

the acquired 3-D data points during the scanning process.

Based on the proposed framework, a position sensor-less, freehand 3-D surface data 

acquisition  system  was  successfully  implemented.  The  implemented  system  was 

managed to perform the 3-D surface data acquisition on the fly, with around 3 frames 

per second.
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Chapter 4: Salient Features Detection and 

Evaluation

4.1 Introduction

As discussed in chapter 3 (section 3.3.2), camera calibration using 2-D planar object 

based calibration method requires planar homography estimation. Planar homography 

is also needed for planar pose estimation. To estimate planar homography, one needs to 

determine  the  correspondence  between  the  camera  image  of  the  planar  calibration 

object and the actual object itself (section 3.3.2.1). To estimate this correspondence, one 

needs to know the locations of the salient features of the planar object. Different types 

of markers or patterns can be implanted,  with known locations, on the surface of a 

planar object to suit this task. In deciding the best type of salient features, three basic 

requirements were proposed; namely, detecting the locations of the salient features in 

the image with up to sub-pixel accuracy, measuring the length and the angle of a well 

calibrated pattern (black square, say) on a planar object. It is a normal practice to use 

corners, formed by high contrasting colours, as the salient features. 

The pattern used in the current study was black squares of known dimension, repeated 

along the X and Y directions with a known distance between them. The features which 

were used to establish the extremities of the squares (and thus the locations, lengths and 

angles of the squares) were the corners of the squares.

In this study, three different categories of corner detection algorithms were selected for 

benchmarking. The first category was image intensity variation based. This category of 

algorithms uses the variation of the image intensity values for corner feature detection. 

The second category of method used was template-based corner features detector. In 
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this category a template based matching algorithm was used to correlate and detect the 

corner features within the image. In the last category, a model-based corner features 

detector was used. In this method the static templates, which were used in the second 

method, were replaced by different models of corners to match and detect the corner 

features in the image.

The performance of the selected corner detectors were evaluated and are described in 

the final section of this chapter.

4.2 Introduction to corner detector

The pattern which was used in the current study was black squares of known dimension 

repeated along the X and Y directions with a known distance between them. In this 

section, first the types of corners produced with different types of arrangement of the 

black squares are discussed. Then, the basic criterion for an accurate corner detector is 

discussed.  Sub-pixel  operator  was  incorporated  by  the  different  corner  detection 

algorithms to refine the result of corner detection. Two different sub-pixel operators are 

discussed at the end of this section. 

4.2.1 Introduction to different types of corners namely L-corner 

and X-corner

In this study, two different types of corner features were investigated and evaluated for 

their suitability. The two different types of corner features were L-corner and X-corner. 

Figure 4.1 shows the two different types of corner features, namely L-corner and X-

corner.

L-corner and X-corner are widely used in camera calibration applications. L-corner and 

X-corner patterns were used because they exhibit hight contrast in the image. The high 

contrast is achieved by the dark colour of the square against a white background. The 

squares used were of the same dimension repeated at regular interval. Since the size of 

all the squares and the interval between them are the same for each of the corners of the 

squares, a grid coordinate could be assigned. This is illustrated in Figure 4.2. In this 

study both the L-corner and X-corner were used to create the test images which were 
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used for calibration.

4.2.2 Basic criteria for an accurate corner detector for detecting 

corner on a planar checker board pattern

An image is formed when the checker board pattern is captured by a camera. Figure 4.3 

shows the sample images of two different checker board patterns when the checker 
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Figure 4.1: High contrast checker board pattern used for calibration. 

(a) The L-corner where a pattern is formed with one black square surrounded by three white squares  
(outlined in red)

(b) The X-corner where a pattern is formed with a pair of black squares and a pair of white squares  
diagrammatically opposite (outlined in red)

Figure 4.2: Pattern formed with dark squares of the same size repeated at regular interval. The repetitive 
planar pattern forms a 2-D grid coordinate system on a plane using which each of the corners are 

assigned with a fixed coordinate value.

(a)                                                                          (b)



board model is placed perpendicular to the camera viewing axis. Figure 4.3a depicts the 

L-corner that was formed by surrounding a black square (pixel value 0) all around by 

white squares (pixel value 255). Figure 4.3b depicts the X-corner that was formed when 

a black square is surrounded by white squares on its four sides and black squares along 

the two diagonals.

The image coordinate  system is  defined as  shown in Figure 4.3.  The position of a 

corner in an image is defined by a Cartesian coordinate (u , v). If the side lengths of 

each square of each side of the black square is 6 pixel units, i.e. the euclidean distance 

between C1 and C2 is 6 pixel unit, then the coordinates of the corners (L-corner in the 

left  image  and  X-corner  in  the  right  image)  in  the  images  are  C1(5,5),  C2(11,5), 

C3(11,11),  and C4(5,11),  correspondingly.  The angle  at  each corner location are 90 

degrees. The value of the angle at any corner could be obtained by the dot product 

between the unit vectors of the two sides which forms the corner. For example, the dot 

product between the unit vector formed by C1C2 andC1C4 gives the value of the angle 

of  the corner  formed by the sides  C1C2 and C1C4 which  should be a  right  angle 

(Equation 4.1).
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C1=cos−1∥ C1C2∥⋅∥ C1C4∥∗180 / (4.1)



4.2.3 Processes to refine the detected corner locations measured at 

discrete image locations

The process of detecting corner location in an image can be divided into two stages, 

namely firstly by applying the corner detector algorithm to detect the coarse location of 

the corner and subsequently refining the result to sub-pixel accuracy. Since both stages 

are processing intensive, for real time machine vision applications, we need to find a 

trade off between performance and accuracy.

A digital image captured from a camera, is the result of sampling an analogue scene 

into a two dimensional discrete set of values. The information in the original analogue 

domain can be reconstructed from the discrete digital image domain by using suitable 

interpolation techniques. 

The result of the corner detection process yields a set of measurements of the strength 

of the corner at discrete pixel locations. In order to get the precise location of the corner 

using these measured values, of the strength of the corner at discrete locations, one can 
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Figure 4.3: The figures show the Cartesian coordinate system of two pseudo images. Each image pixel is  
represented by a grey scale value ranging from from 0 (darkest) to 255 (brightest). 

6x6 dark square is shown at the centre of the image. The four corners of the dark square, at the centre,  
are marked by circling them in red.

(a) The L-corner. (b) The X-corner.
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make use of a surface fitting technique. One of the main requirements for the type of 

chosen surface is that it has only one peak. Therefore, we could get the only location 

where the corner measure is at its maximum. Quadratic surface fitting is best suited for 

this purpose, because it is the lowest order surface which has got a single peak and thus 

it is less processing intensive, as compared with the higher order functions.

To fit a quadratic surface to a set of values measured at discrete locations, two general 

quadratic surface fitting techniques, namely the linear least squares estimator and the 

weighted linear least squares estimator were adapted to fit a set of two dimensional 

array digital  values,  measured  at  discrete  locations.  Both  methods  are  discussed  in 

detail in the following sections.

4.2.3.1 Quadratic fit with Least Squares Estimation

As described above in order to estimate the precise location of the corner, with up to 

sub-pixel accuracy, one needs to fit a quadratic surface to the fitting values estimated at 

discrete locations.  The fitting of a  quadratic  surface to  a set  of values estimated at 

discrete  locations,  around the  possible  corner  location,  Px , P y ,  is  carried  out  as 

follows.

The coordinates of the neighbouring discrete image locations from which the fitting 

values are considered to fit the quadratic function is indicated by S img in Figure 4.4a. 

Figure 4.4b shows the coordinate system used to define the quadratic surface given by 

the equation (4.2).

Making use of the fitting values from the discrete locations, the quadratic surface is 

estimated using the linear least squares estimation as detailed below.

From a  three  by  three  window,  S img ,  (Figure  4.4),  centred  at  the  location  of  a 

probable corner, S img [1,1]  and the neighbourhood digital values within the three by 

three window are obtained. The origin of the quadratic fit coordinate system is located 

at the probable corner, i.e. S img [1,1] . For example, the value of the quadratic surface 
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QS x , y =C1 x2C2 xyC3 y2C4 xC5 yC 6 (4.2)



at location [0,0]  was obtained from the three by three window location S img [1,1] .

Solving  the  above set  of  equations  by using  linear  least  squares  estimation  results 

AT Ac=AT Q s . Hence

Subsequently the peak of the surface,  x , y , is estimated. This is taken as the 

best estimate of the corner location. The location of the peak of the quadratic surface is 

found by partially differentiating the quadratic function, i.e. equation (4.2), with respect 

to x  an y  and equating them to zero as shown by equations (4.4) and (4.5). By 

solving the equations (4.6) and (4.7), the values of   x and   y  were obtained. 

Making use of the location of the peak of the quadratic function, one can estimate the 

location where the maximum fitting occurs using Equation (4.8) which is the precise 

location of the corner.
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Ac=QS

[
1 1 1 −1 −1 1
0 0 1 0 −1 1
1 −1 1 1 −1 1
1 0 0 −1 0 1
0 0 0 0 0 1
1 0 0 1 0 1
1 −1 1 −1 1 1
0 0 1 0 1 1
1 1 1 1 1 1

]


A

[
C1

C2

C3

C4

C5

C6

]


c

=[
Simg [0,0 ]
Simg [1,0 ]
Simg [2,0 ]
Simg [0,1]
Simg [1,1]
Simg [2,1]
Simg [0,2]
Simg [1,2]
Simg [2,2]

]


QS

(4.3)c=AT A−1 AT Qs



4.2.3.2 Quadratic fit with weighted least squares estimation

Weighted least squares estimator could be used to determine the equation of the best 

fitting quadratic surface instead of using quadratic surface with least squares estimator 

[51]. To assign weights to each of the locations considered, within the window S img , 

a Gaussian function was used. The values of the weights depends on the normalised 

distance, (Figure 4.5a), of each pixel away from the centre pixel and were estimated 

using equation (4.9), where k a constant value. This process ensures that the further 

the location of the measured fitting digital value away from the centre, the lower the 

assigned weight , (Figure 4.5b), in the quadratic surface fitting process.
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Figure 4.4: The quadratic fit coordinate system (x,y) with least square estimator. (a) Simg indices. (b) The 
quadratic coordinate system (x,y).

∂QS

∂ x
 x , y=2C1 xC 2 yC 4=0 (4.4)

∂QS

∂ y
x , y=C2 x2C3 yC5=0 (4.5)

Deriving from (4.4)

 

Substituting the value of x  from equation (4.6) into equation (4.5) we get 

 x=x=
−C2 y−C4

2C1

 y= y=
2C1C5−C2C4

C2
2−4C1 C3

Px x ,P y y

(4.6)

(4.7)

(4.8)
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The process of quadratic fitting with weighted least squares estimation was performed 

as follows.

First,  the most  probable location of the corner  was identified by locating the pixel 

location, Px ,Pu ,with highest fitting digital value. Then, a three by three window, 

S img , (Figure 4.4), was centred at the location of the most probable corner location 

S img [1,1] .

The origin of the quadratic fit coordinate system is located at the centre of S img , e.g. 

the surface value of Qs[0,0]=Simg [1,1 ] . To estimate the initial six coefficients, x0

, of the quadratic function equation (4.2), six equations were formed by making use of 

the  fitting  digital  values  at  the  neighbourhood  of  the  five  pixels  (
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Where

(4.10)

Pi=e−d i
2/ k2 ; i={0,1, ...,8} (4.9)

d i=
x i

2 y i
2

∑
i=0

8

x i
2 y i

2
2

Figure 4.5: Figure illustrating the weight parameters equation (4.9) and distance measure equation 
(4.10) used to assign weighting to the fitting digital value measured around a pixel location. 

(a) The distance values d i (b) The weight parameters Pi
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S img [0,1] , Simg [0,2] , S img[1,0] , Simg [1,2] , Simg [2,1] )  locations  and at  the centre  pixel 

S img [1,1] as indicated in equation (4.11). 

Since  the  estimated  fitting  digital  values  could  become  corrupted  by  noise,  the 

quadratic surface estimated using the fitted digital values may not be the actual surface, 

we are interested. To estimate the actual quadratic surface, one needs to estimate the 

noise value. Equation (4.14) gives the relationship between the quadratic surface X

estimated using the fitting digital values, the actual quadratic surface  X0  and the 

noise parameter  x . The noise vector  x  was estimated by using equation (4.13). 

The  peak  of  the  actual  quadratic  surface  x , y was then  estimated  using  the 

equation (4.15).  Using  x , y  the  location of  the  actual  corner  was  found as 

Px x , P y y  .  Thus,  the  refined  corner  location  was  found  with  sub-pixel 

accuracy.
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A0 X0=QS
0

[
0 0 1 0 −1 1
1 0 0 −1 0 1
0 0 0 0 0 1
1 0 0 1 0 1
1 −1 1 −1 1 1
0 0 1 0 1 1

]


A

[
C1

C2

C3

C4

C5

C6

]


X 0

=[
Simg [1,0]
S img[0,1]
S img[1,1]
S img[2,1]
S img[0,2]
S img[1,2]

]


QS
0

(4.11)



4.3 Corner detection algorithms

In this section three different categories of corner detection algorithms are discussed. 

The first category is based on image intensity variation. This category of algorithms 

makes use of the variations in the image intensity values for corner feature detection. 

The  second  category is  template-based  corner  features  detector.  In  this  category,  a 

template based matching algorithm to correlate and detect the corner features within the 

image is used. In the last category, model-based corner features detector is used. In this 

method the static templates,  which are  used in the second method,  are replaced by 

different models of corners to match and detect the corner features in the image.

4.3.1 Corner detection based on image intensity variation

Dutta  et. al. in their survey of corner detection detection algorithms showed that 114 

corner  detection  algorithms  were  implemented  between  1977 to  2006 [49].  Of  the 

various corner detection algorithms, Harris and Stephens (H&S) corner detector [52] is 

a well known corner detection algorithm. The H&S corner detector built upon an earlier 

corner detector known as Moravec'  corner detector [53]. The major enhancement of 

H&S corner detector over Moravec' corner detector is the way the initial estimate of 

corners is performed. Also, H&S introduces a measure to estimate the cornerness of 

any detected corner locations.  Where cornerness is  a measure using which one can 

objectively measure the appropriateness of a pixel location being a corner [54].

The H&S corner detector works by determining the local maxima changes of pixel 

intensity within a small shifting window. The result of this initial estimate of the corner 

location  is  subsequently  refined  up  to  sub-pixel  accuracy  by  applying  a  sub-pixel 
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x=AT P A −1 AT P l

X=X0x

den= X2
X2−4 X3

X1

 x=
2 X3

X4− X2
X5

den

 y=
2 X1

X5− X2
X4

den

(4.13)

(4.15)

(4.14)



operator centred at the pixel location of each of the local maxima. The entire process is 

explained in detail in the following section.

4.3.1.1 Harris and Stephens corner detection method

A method to determine the cornerness of an image pixel location is by evaluating the 

changes of image intensity value, I, when moved from a particular image pixel location 

(x,y) in all the directions. Moravec [53] achieved this by evaluating the change in the 

image intensity value, within a small shifting square window. To start with a three by 

three window  S  was centred at the image pixel location (x, y) which needs to be 

evaluated for being a corner. The pixel values at the nine locations of the 3x3 window 

were obtained from the underlying image. Next, the 3x3 window was shifted in the 

eight directions (east, south east, south, south west, west, north west, north and north 

east). In a two dimensional image, this along the horizontal axis,  u, and the vertical 

axis,  v. The sum of the difference between each of the pixel values within the 3x3 

window, centred at the image location, and the pixel values within the window in the 

shifted location were found using equation (4.16). The minimum of these eight values 

at the image pixel location (x, y) was stored into the cornerness map,  C x , y   as 

indicated by (Equation 4.17).

A limitation of Moravec's approach is the strong cornerness response along the edges of 

an object in the image. This is due to the pixelisation, caused by the low resolution of 

the  camera,  and due  to  white  noise.  These limitations  of  Moravec's  approach were 

addressed  by Harris  et.  al.  [52] as  follows. To  minimize  the  noise,  Harris  et.  al.,  

convolved the image with a small square window of Gaussian weights. This smoothing 

operation was performed before processing the image to measure the cornerness at each 

pixel location in the image.
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Where direction (u,v) are east (1,0), south-east (1,1) south (0,1), south-west (-1,1), west 

(-1,0), north-west (-1,-1), north (0,-1)and north east (1,-1)

V u , v x , y =∑
a=−1

1

∑
b=−1

1

 I xua , yvb −I xa , yb2

C x , y =minV u , v x , y 

(4.16)

(4.17)



The problem of strong cornerness response along the edges was addressed, by Harris 

et.  al., as  explained  below.  A matrix  G x , y  ,  made  up  of  the  variation  of  the 

intensity values along the image horizontal axis, u, and the vertical axis v at the (x, y) 

location was created as indicated by equation (4.18). The direction of the variation was 

analysed. The eigenvalues 1,2 of the matrix G , representing the direction of 

the variation were compared. For the edges there is a strong variation perpendicular to 

the  direction  of  the  edges.  Hence,  one  of  the  eigenvalues  is  significantly  larger 

compared to the others. At corner locations are large variations in both the directions. 

Hence  the  values  of  both  1  and  2 ,  are  large  at  the  corner  locations.  The 

division of the eigenspace of matrix G into distinct features is shown in Figure 4.6 

[52].
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Where

and *, the convolution operator

w , the Gaussian weight

I, the intensity value of the pixel at the location (x, y)

(4.18)Gx , y =[ I u
2 Iu I v

I u I v I v
2 ]

I u=I w∗[−1,0,1]
I v=I w∗[−1,0,1]T

I w=I∗w



The determinant Det  of matrix G , is the value of the product of the eigenvalues 

1  and 2 ; while the trace ( Tr ) of the matrix is the value of the summation of 

the eigenvalues  1  and  2 . Using the determinant and the trace values of the 

matrix G Harris et. al. provided a cornerness measurement from the determinant and 

trace value (see Equation (4.3)). This equation gives a higher strength to the corner at 

an  image  pixel  location  with  higher  values  of  1  and  2 .  The  result  of  the 

cornerness map is varied according to the chosen  k value in the equation. Empirical 

testing [54] indicated that the range of k that yields the best result is 0.04 < k < 0.06. 

Figure 4.7 shows the contour plot of the cornerness map. Figures 4.8 and 4.9 show the 

H&S cornerness map of the image in Figure 4.3 for the value of  k=0.04. The pixel 

locations with local maxima, Px ,P y ,are highlighted by a small circle. 
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Figure 4.6: The division of eigenvalue space into distinct feature regions.
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The process of detecting all the corner locations of the L-corners, from the cornerness 

map produced by H&S corner  detector  algorithm,  required  careful  selection  of  the 

thresholding value. A thresholding value of 253 was used to threshold the cornerness 

map. Any pixel location with a cornerness value larger than the thresholding value was 

identified as a possible corner location. This is illustrated in the Figure 4.8.

The X-corner the thresholding process produces four two by two regions, with very 
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Where 

R is the cornerness measure.

Tr=I u
2I v

2

Det=I u
2 I v

2− I u I v 
2

and k∈ℝ  is usually a very small value.

(4.19)

Figure 4.7: The contour plot of cornerness map C(x,y) with k=0.04
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high cornerness response, around the location of the X-corner (Figure 4.9). Hence, the 

process of finalizing the corner locations using H&S corner detector requires one more 

step, namely, the non-maxima suppression, to mark the pixel location with maximum 

cornerness  value  within  a  small  window. Using  a  three  by three window the  pixel 

locations with comparatively lesser cornerness value are eliminated. The result of the 

non-maxima suppression is shown in Figure 4.10.

Once the local maxima,  Px ,P y ,  indicating the coarse location of the corner,  is 

estimated, a sub-pixel operator is applied, centred at the coarse location of the detected 

corner to estimate the actual location of the corner at sub-pixel accuracy.
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Figure 4.8: Cornerness map produced by the H&S corner detector on the L-corner image (Figure 4.3a). 

For each image pixel location the rounded normalised value of the cornerness at that location is given.  
The normalised cornerness value ranges from 0(weakest) to 255(strongest). 

The image pixel locations Pi
x ,Pi

y with the highest H&S cornerness value are circled in red.
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Figure 4.9: Cornerness map produced by the H&S corner detector on the X-corner image (Figure 4.3b). 

For each image pixel location the rounded normalised value of the cornerness at that location is given.  
The normalised cornerness value ranges from 0(weakest) to 255(strongest). 

The region of image pixel locations Pi
x , Pi

y having the highest H&S cornerness values are circled  
in red.
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4.3.1.1.1 Process of refining cornerness map

It is assumed that the cornerness values obtained by measuring the cornerness at the 

discrete locations around a probable corner location form a paraboloid surface profile. 

By determining the peak of the paraboloid surface, the precise location of the corner 

can  be  resolved.  Making  use  of  any  one  of  the  quadratic  surface  fitting  methods, 

described  in  the  earlier  sections,  one  can  fit  a  quadratic  surface  to  a  set  of  values 

measured at discrete locations. If one uses the cornerness values, evaluated at discrete 

locations, by fitting a quadratic surface to the set of values one can estimate the precise 

location of the corner up to sub-pixel accuracy. This process is explained below.

To  fit  a  set  of  two  dimensional  array  of  cornerness  values,  measured  at  discrete 

locations, to a paraboloid surface, the two methods discussed at sections 4.2.3, namely 

Least Squares-Estimator and Weighted Least Squares estimator are used
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Figure 4.10: Zoomed in version of the cornerness map of Figure 4.9 . 

The location of the local maxima, Pi
x , Pi

y  which was detected using non maxima suppression is  
the location of the corner. 

The location of the corner is marked with a smaller circle.
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4.3.1.1.1.1 Fitting a quadratic surface function with Linear Least 

Squares Estimator

Using the location of the peak of the quadratic function one can estimate the location 

where  the  maximum  cornerness  occurs  by  linear  least  squares  estimator  (Section 

4.2.3.1),  which is  the precise  location of the corner.  Figures 4.11 and 4.12 show a 

surface plot of the cornerness map around the corner C1 for L-corner and X-corner 

respectively. 
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Figure 4.11: Quadratic surface fit of the cornerness map produced by H&S corner detector at a L-
corner(C1 Figure 4.8). 

The horizontal planes indicate the cornerness value around the neighbourhood. The peak of the 
quadratic surface is at (  x  = 0.5413,  y  = 0.5413).



4.3.1.1.1.2 Fitting a quadratic surface function with Weighted 

Linear Least Squares Estimator

Similar  to  the  process  of  fitting  quadratic  surface  function  with  linear  least  square 

estimator  that  is  mentioned  in  section  4.3.1.1.1.1,  the  process  was  repeated  with 

weighted least square estimator. A similar surface profiles were obtained. The peak of 

the quadratic surface of L-corner was found at (  x =0.4942,   y =-0.4942). The 

peak  of  the  quadratic  surface  of  X-corner  was  found at  (  x =-0.5864,   y =-

0.5864).

4.3.2 Template based corner detector

In a template based corner detection, initially one designs a template which will match 

the shape and size of the corner one wants to detect, and then the image is convolved 

with the designed template.
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Figure 4.12: Quadratic surface fit of the cornerness map produced by H&S corner detector at a X-
corner(C1 Figure 4.9). 

The horizontal planes indicate the cornerness value around the neighbourhood. The peak of the 
quadratic surface is at (  x  = -0.5957,  y  = -0.5957).



To detect corners on a planar object, one needs to create a specific template for each of 

the four corners. We consider four different types of L-corner(Figure 4.13).

4.3.2.1 Detecting the L-corner with cross shape templates

To detect L-corner, in a binary image, Pachidis  et. al.[55] proposed the use of cross 

shaped corner templates of size 11×11 pixel. They designed two cross shaped templates 

(TemplateCenterS(Figure  4.14a)  and  TemplateCenterC(Figure  4.14b))  for  convolving  the 

image and located the corners. The difference between the two templates is that at the 

centre, one template has the pixel value of the background (white), while the other has 

the pixel value of the corner (black). The two templates were rotated at the centre by 

90,  180,  and 270 degrees  to  detect  the L-corners  at  Type2,  Type3,  and Type4 (see 

Figure 4.13) respectively. 

To find the cornerness response at a pixel location, the template is centred at the pixel 

location, the template pixel values are convolved with the image pixel values and the 

correlation coefficient is found (see equation 4.20). For each type of the corner (see 

Figure  4.13)  convolving  with  the  corresponding  pair  templates  yields  four  pixel 

locations with high cornerness response. To estimate the actual location of the corner, 

one needs to find the mean of the locations having the highest cornerness response. For 

example Figure 4.15 shows the pixel locations having the highest cornerness response. 

In Figure 4.15 the pixels locations with the highest cornerness response, to the pair of 
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Figure 4.13: Four different types of L-corner.

Type 1 Type 2

Type 3Type 4



templates, are (4,4),(4,5),(5,4) and (5,5), hence the corner location is the mean of the set 

of four pixel locations which is (4.5, 4.5).

The estimated corner location, by the above process, is an offset to the actual corner 

location.  Since the offset is uniform, one can subtract the offset  from the estimated 

corner location to find the actual corner location.

Since the error of all detected locations of the corner is constant, the result is offseted to 

get back the actual corner location. 

For binary images with a regular pattern (e.g. Checker board) Pachidis [55] has also 

proposed to scan along the slope of the line, formed by the current detected centre point 

((C1+C2+C3+C4)/4) with the previous detected centre point, to reduce the number of 

operations  required  for  scanning  through  the  entire  image,  hence  increasing  the 

performance by reducing the computational time of the template-based corner detector.
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Figure 4.14: Two different cross shape templates. The two templates vary by the template's pixel value at  
the centre of the window(highlighted in grey colour). 'S' indicates the pixel value of background colour,  

white. 'C' indicates the pixel value of the black square. 'x' indicates don't care.

(a) TemplateCenterS. (b) TemplateCenterC. 
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corr  Img ,Template = Cov  Img ,Template
Cov Img , Img∗Cov Template,Template (4.20)
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Figure 4.15 - shows the Correlation coefficient response map produced by the cross shape templates on a 
L-corner. 

'HS' and 'HC' indicate the pixels with high response to template TemplateCenterS and TemplateCenterC 

respectively.



The planar object used for camera calibration was a checker board made up of black 

squares on a white object. For the camera calibration process, one needs to detect the 

locations  of  the  corners  of  the  black  squares  in  the  camera  image.  Using  Pachidis 

template matching method [55], described in Section 4.3.2.1, one should be able to 

detect the L-corners in the binary image of the planar object.  But during the image 

capturing process the camera records the binary source image as a colour image. The 

resulting scene image of the checker board is no more a binary image. But Pachidis 

template  matching  method  [55],  can  only  handle  binary  images.  Faucher  [6]  had 

extended Pachidis template matching method to detect L-corners, with up to sub-pixel 

accuracy, in colour images. Faucher [6] integrated his method into the Mimas vision 

tool kit [4].

For this study the author used Faucher's [6] method through the Mimas vision tool kit 

[4] to test its capability to detect the four L-corners of each black coloured square. In 

Faucher [6] method instead of using the standard binary grey scaled values, i.e. 255 for 

white and 0 for black, the actual RGB values of the pixels in the white background and 

in  the black squares were used.  To get  the actual  RGB values  of  the pixels  in the 

camera  image,  the  user  was  given  a  graphical  user  interface  facility  to  choose 

representative locations to get the actual intensity (RGB) values of the background and 

the black square. These RGB values were used as cell values to form the template. A 

sample template formed using the RGB values of the pixels to represent the “white” 

background and the “Black” square is shown in Figure 4.16. To detect the corners of 

type C2, C3 and C4 (Figure 4.13), the template was rotated by 90, 180, and 270 degrees 

respectively  (Figure  4.16b,c,d).  The  Blais  and  Rioux  sub-pixel  estimator  (Section 

3.4.2.2.2) was subsequently used by Faucher to refine the result of the corner detection. 

The  sub-pixel  estimator  was  centred  at  the  pixel  location  with  the  highest  local 

correlation value, and the neighbour pixels along the image horizontal and vertical axis, 

were used to  estimate the sub-pixel  location along the horizontal  and vertical  axis, 

respectively. 

The  way  Faucher  estimated  the  sub-pixel  is  directional  dependant.  A directional 

independent  way of  estimating  the  sub-pixel  location,  the  quadratic  surface  fitting 

based sub-pixel detector was adapted. The surface fitting operation, estimates the peak 

of the surface made up of the correlation measures obtained through template matching. 
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This operation estimates the actual location of the corner much more precisely than just 

using the corner location obtained by only template matching based corner detection. 

The Pachidis' template-based corner detector, produces high response values distributed 

around the actual location of the corner, when the template is positioned centred at the 

actual corner.  In contrast,  the template detector designed by Faucher creates a high 

response at the internal of the L-corner (see Figure 4.17). The subsequent quadratic 

surface fitting, making use of the correlation measures, does not change the location of 

the corner. Hence, the final estimation of the corner location, making use of Faucher 

template, has a larger displacement from the actual corner location when compared to 

H&S corner detector.

It was found that the Faucher's set of templates could not detect the corners when they 

were presented in a rotated fashion (see Figure 4.18). The designed templates were 

rotated by 45 degree (see Figure 4.19) but this did not work well due to aliasing. Trying 

to design templates to match the rotated corners did not produce satisfactory results.

In conclusion, for camera calibration, if the checker board is presented normal to the 

camera axis, and if the checker board corners are not subjected to large perspective 

distortion,  then  the  template  matching  based  corner  detection  provides  satisfactory 

results.
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Figure 4.16: Figure illustrating the colour(R,G,B) distribution (Top right) for each pixel within the 
template. (a) Template to detect corner type C1. (b) Template C1 was rotated by 90. to detect corner type 

C2. (c) Rotated by 180 to detect corner type C3. (d) Rotated by 270 degrees to detect corner type C4.
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A A C(R,G,B) = ((WR+BR)/2,(WG+BG)/2,(WB+BB)/2 )
A A D(R,G,B) = C+10

B D E(R,G,B) =  (BR+10, BG+10, BB+10) 
C F(R,G,B) = (BR, BG,BB)

D E
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BR = “black” red channel

(a) BG = “black” green channel
BB = “black” blue channel
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Figure 4.17: Correlation coefficient response map produced by Faucher' cross shaped templates on the 
L-corners. 

'HF' indicates the pixel with the highest response when convolved with the designed templates.
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4.3.2.2 Detecting the X-corners

As detailed in section 4.2.1, there is another type of corners referred to as X corners. In 

this study, a cross shaped template was again used to design an X-corner detector. To 

detect all the four types of X corners (see Figure 4.20), just a pair of templates were 
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Figure 4.18: Figure illustrating a L-corner rotated by 45 degrees.
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Figure 4.19: Simply rotating the template by 45 degree was not able to match the corner location due to  
aliasing issue.
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needed.

The pair of templates (T21(0), T21(1)) are indicated in Figure 4.21. They needed to 

detect the four types of X corners superimposed on the top of the X corner types C1 

and C2. The X-corner of type C3 and C4 have the same properties as the X-corners C1 

and C2 respectively. Hence to detect the X corner of types C3 and C4, the same pair of 

templates used for the corner types C1 and C2 respectively were found to be adequate. 

To detect  X-corners when the checker board was rotated by forty five degrees (see 

Figure  4.22),  the  templates  T21(0)  was  rotated  clockwise  by  forty  five  degrees  to 

generate a corner template that generated a high response to the rotated X-corner. The 

rotated template T21(2), to detect the rotated X corner is shown in the Figure 4.22. To 

generate the rotated version of the template T21(1), the pixel values of 'F' and 'A', in the 

template  T21(2),  were  interchanged.  The  rotated  version  of  the  template  T21(1)  is 

template T21(3) is shown in Figure 4.22.

When the X-corner was rotated by 45 degrees, the corners might not span through the 

entire pixel (see Figure 4.23). Hence the pair of templates T21(2) and T21(3) needed to 

be modified such that the templates created a high cornerness response. 

The template T21(2) was modified as described next.

The three pixels at the centre of the template T21(2), were given a value 'C', which was 
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Figure 4.20: Two difference types of X-corner.

X-corner Type 1

X-corner Type 2



the average value of 'A' and 'F' (see Figure 4.23). The modified template is T21c(2).

The  modified  version  of  the  template  T21(3),  i.e. T21c(3),  was  generated  by 

interchanging the pixel values of 'F' and 'A', in the template T21c(2). 

The response measure, when the template was centred at the corner location, could be 

increased by convolving the template with more of the pixels around the corner. This 

was achieved by incorporating more pixels  around the centre pixel of the template. 

Figure 4.24 illustrates this issue. In Figure 4.24 two corner templates, namely T25(0) 

(to detect corner C1) and T25(1) (to detect corner C2) were formed by adding four 

more pixels around the centre pixel in the templates T21(0) and T21(1) respectively. 

The created templates, T25(0) and T25(1), were rotated by 45 degree (see Figure 4.25) 

to  create  T25(2)  and  T25(3),  respectively.  Using  T25(0)  and T25(1),  along  with  a 

similar modification to the template set T21c(2) and T21c(3), a new set of templates 

T25c (see Figure 4.26) was created.
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Figure 4.21: Designed templates (a) (T21(0) and (b) T21(1) to create high response on X-corners. The 
pixel location with a high response is highlighted with a bold box.
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                                       (a)                                                                                         (b)

Figure 4.23: (a) The template (T21c(2)) designed to create high response on a rotated X-corner. The 
template (T21c(2)) is got by replacing three templates values of the template T21(2) (Figure 4.22a). The 

template pixel value at locations marked by 'C' are the average value of the template pixel values at  
locations 'A' and 'F'. The pixel with high response is highlighted with a bold box. 

(b) The pixel location of 'F' and 'A' were interchanged to generate template T21c(3) to detect the same 
corner type with 90 degrees rotation. 

The symbols used to indicate the template pixel values were the same as stated in Figure 4.21.
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Figure 4.22: (a) The template (T21(2)) designed to create high response on a rotated X-corner. The 
template (T21(2)) is got by rotating the template T21(0) (Figure 4.21a) by 45 degree clockwise. The pixel  

with high response is highlighted with a bold box. 

(b) The pixel location of 'F' and 'A' were interchanged to generate template T21(3) to detect the same 
corner type with 90 degrees rotation. 

The symbols used to indicate the template pixel values were the same as stated in Figure 4.21.
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Figure 4.24: 

Figure illustrating the designed templates (a) T25(0) and (b) T25(1) to create high response on a X-
corner. These templates are almost the same as the two templates T21(0), T21(1) (Figure 4.21a,b) 

respectively except that an addition set of five pixel values (“Z” and “Y”) were added around the central  
pixel of the template. This modification was done to increase the cornerness response for the template.

The pixel location with the highest response is highlighted with a bold box.
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                                 (a)                                                                                        (b)

Figure 4.25: (a) The template (T25(2)) designed to create high response on a rotated X-corner. The  
template (T25(2)) is got by rotating the template T25(0) (Figure 4.24a) by 45 degree clockwise. The pixel  

with high response is highlighted with a bold box. 

(b) The pixel location of 'F' and 'A' were interchanged to generate template T25(3) to detect the same 
corner type with 90 degrees rotation. 

The symbols used to indicate the template pixel values were the same as stated in Figure 4.21.
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4.3.2.3 Refining the result of the template based corner detector 

with sub-pixel operator

Two of the previously discussed sub-pixel operators, namely quadratic fit  with least 

squares  estimator  (Section  4.2.3.1)  and  weighted  least  squares  estimator  (Section 

4.2.3.2) were used as the sub-pixel operator to refine the result of corner detection to 

sub-pixel  accuracy.  A window  of  correlation  coefficient  values  (Equation  (4.20)), 

produced during the process of convolving the template pixels with the image pixels, 

centred at the highest correlation coefficient values, was used to fit a quadratic surface. 
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                                  (c)                                                                                     (d)

Figure 4.26: Templates in T25c.

(a) T25c(0) was created by using template T25(0).

 (b) T25(1) was created by using template T25c(1).

(c) The template (T25c(2)) designed to create high response on a rotated X-corner. The template 
(T25c(2)) is got by using average RGB values 'C' as the template pixel value for the intersection of  

template and the corner. The template pixel value at locations marked by 'C' are the average value of the 
template pixel values at locations 'A' and 'F'. The pixel with high response is highlighted with a bold box.  

(d) The pixel location of 'F' and 'A' were interchanged to generate template T25c(3) to detect the same 
corner type with 90 degrees rotation. 

The symbols used to indicate the template pixel values were the same as stated in Figure 4.21.
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The process of refining the corner detection up to sub-pixel accuracy was achieved by 

estimating the peak of the quadratic surface as the final result of the corner detection.

4.3.3: Model-based feature detector

Model-based feature detectors, detect salient features, like corners, in an image making 

use of a model of the feature that needs to be detected. For example to detect corner 

features in an image, the feature models that could be used are L-corner/L-junction 

model or X-corner/X-junction model or Y-junction model etc., depending upon whether 

one needs to detect L-corner, X-corner or Y-corner respectively in the image.

The process of detecting features in an image, making use of feature models, starts with 

forming the model. The feature model is a two dimensional array of intensity values. 

The intensity values which form the feature model could be extracted from a sample 

image of the feature that needs to be detected subsequently. For example, Figure 4.27a 

and Figure 4.29a illustrate the intensity values of the 21x21 size feature models for the 

L-corner and the X-corner respectively. The pixels values of the feature models were 

extracted  from the  actual  image  intensity  values  of  the  L-corner  and  the  X-corner 

values (Figure 4.27b and Figure 4.29b respectively). The 3-D plotting of the L-corner 

and X-corner are shown in Figure 4.28 and Figure 4.30 respectively.

The size of the feature model is chosen according to the noise level of the image, the 

larger the noise level in the image larger will be the size of the feature model.

In this section, firstly different model-based corner detectors are discussed. Next the 

salient features of the model based detectors uniquely designed to detect L-corner and 

X-corner,  formed  by  the  checker  board  pattern,  are  discussed.  Lastly  the  results, 

demonstrating the efficiency of the model based corner detectors are discussed.

4.3.3.1 Past related work on the model-based L-corner detector

Different model-based feature detectors had been implemented to locate corners in a 

digital image. Deriche [56] proposed an efficient, model-based, approach to precisely 

locate  the  location  of  edges,  corners,  and  vertices.  His  proposal  uses  a  non-linear 
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minimisation process to efficiently fit a model to the local image grey level intensity 

values. He has discussed the relevant issues,  e.g. different type of models and their 

efficiency and the size of  the fitting window with respect  to  the noise level  in  the 

image. Olague [57] proposed a revolutionary algorithm that used affine transformation 

to automatically detect L-corners in an image. Olague [57] proposed method does not 

need any guessing of the initial set of parameter values for the optimization process. 

His algorithm, used a Unit Edge Function Model and a L-corner model. It was tested on 

both synthetic and real images and good results were reported. Olague [58] proposed 

another model based L-corner detector.  His method uses a Unit  Step Edge function 

model, a distribution function model, optical and physical characteristics. 

Due to the complexity of the algorithms (i.e. their requirement for non-linear fitting and 

their possible non convergence) and lack of availability of their original source codes, 

the  above  discussed  L-corner  model-based  detectors  were  not  implemented  in  this 

study.

4.3.3.2 Past related work on the model-based X-corner detector

Wedekind [59] proposed steerable filters to detect the X-corner by making use of hyper 

complex dual tree wavelet transform. Muhlich and Aach [60] designed multi-steerable 

filters to locate the X-corner and further refined the results up to sub-pixel accuracy by 

using paraboloid fitting. The orientation of the filter was estimated with high accuracy 

by using non-linear Lavenberg-Marquard optimization. The multi-steerable filters gave 

three times lower error as compared with the corner detector implemented by Bouguet 

[46].

The surface profile formed by the image intensities values around a X-corner can be 

represented by a  hyperbolic  paraboloid.  The  location  of  the corner,  is  the surface's 

saddle  point.  Hence  to  locate  the  corner  one  needs  to  first  linearly  fit  the  image 

intensities values to a quadratic function (equation 4.2). The saddle point, the critical 

point of the quadratic surface function is actually the intersection of two lines, defined 

by the partial derivative of the quadratic function with respect to the  x  and  y  

axis, as shown in equation (4.21) [61].
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Before fitting a quadratic surface to the image intensities, Lucchese [61] suggested to 

use cubic interpolation method to create an interpolated values of the original image 

pixel  values.  A similar  saddle  point  based  X-corner  detector  was  implemented  by 

Bouguet [46] This is discussed in the next section.
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2C1 xC2 yC4=0
2C3 yC2 xC5=0

(4.21)
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(a)

Figure 4.27: (a) The image intensities value around a L-corner. 

(b).The camera image of image intensities values shown in Figure 4.27(a).
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Figure 4.28: Mesh plot of the surface intensities in Figure 4.27a.

(b)
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(a)

Figure 4.29: (a) The image intensities value around a X-corner. 

(b) The camera image of image intensities values shown in Figure 4.29(a).
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Figure 4.30: Mesh plot of the surface intensities in Figure 4.29a..



4.3.3.2.1 Saddle point based X-corner detector

The  major  operations  of  a  saddle  point  based  X-corner  detector  implemented  by 

Bouguet [46] are to first  detect  the location of the corner approximately  i.e. coarse 

corner detection and then refining the coarse location of the corner. 

During  the  coarse  corner  detection,  the  approximate  location  of  the  X-corner  was 

estimated by making use of one of the corner detectors. The robust corner detector, 

H&S was chosen for this purpose. This was because it was found that the error by H&S 

in locating this type of corner was usually less than two pixels. 

The refining of the estimated coarse location of the corner is shown in Figure 4.31 and 

discussed in detail in the following section.
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Figure 4.31:Flow chart illustrating the steps involved in the saddle point based corner detection process.
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4.3.3.2.1.1 Refining of the estimated coarse corner location

The process of refining the located corners is explained in this section.

The  refinement  of  the  initial  coarse  corner  location  was  performed  by  repeatedly 

generating  a  new set  of  interpolated  image  pixel  values,  around  the  coarse  corner 

location.  This  was  achieved  by  correlating  the  original  pixel  values  with  the 

interpolation mask (for details see below).

The estimated coarse corner location was used to initialise the interpolation method,. 

For subsequent refinements, the just refined corner location was input to the method. 

The output of the method was the refined corner location with up to sub-pixel accuracy. 

The  operation  of  interpolation  and  thus  the  refinement  of  the  input  value  was 

performed, as described next.

Let the input value of the corner location be (cIx, cIy,). 

Let rup_cIx and rup_cIy be the rounded up values of cIx, cIy respectively.

Let rcIx be the difference between cIx and rup_cIx and rcIy be the difference between 

cIy and rup_cIy.

1) Use correlation process to get the interpolated pixel values of the image

First,  two  correlation  masks,  vIx and  vIy,  were  constructed,  using  rcIx, rcIy 

respectively, as shown in Figure 4.32. The values in the correlation mask, summed up 

to one, provided the information of the weight of each source pixel to the result of the 

interpolated.  The  process  of  correlation,  sum  of  multiply  of  the  weight  with  the 

corresponding  source  image  pixel  value,  produced  the  result  of  interpolation.  The 

process of interpolation required the use of these masks to correlate with the source 

image pixel values, within a window centred at the image location (rup_cIx, rup_cIy). 

The end of the above correlation process was a two dimensional array of interpolated 

pixel values. The size of the array was  wintx by  winty, and was centred at  rup_cIx, 

rup_cIy  (see  Figure 4.33).  This  array of values was subsequently correlated with a 

Gaussian kernel to produce a continuous two dimensional function. 
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2) Perform quadratic function fitting

The set of values obtained at the end of the correlation process (see above) were used to 

fit a quadratic function.  The linear least squares estimation method (Section 4.2.3.1) 

was used to fit the quadratic function. This quadratic function fitting process produced 

a set of coefficients C1 ,C2 ,C3 ,C4,C5 ,C6  of the fitted quadratic function. 

3) Estimate the saddle point

The saddle point (SP),  i.e. the critical point of the quadratic surface function was the 

intersection of two lines, produced by the partial derivative of the quadratic function. 

The two lines are in fact the slope of the quadratic. This pair of lines is defined by the 

equation (4.21); The saddle point was estimated by making use of the set of coefficients 
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Figure 4.32: Figure illustration the two correlation masks used for interpolation.
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Figure 4.33: Figure illustrating the window location for the saddle point detection process.
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obtained at the end of the quadratic function fitting process. This latest located saddle 

point value is given by the equation (4.24).

3) Refine the process:

For each coarse corner location, the above three steps were, repeated at least ten times 

(n_iteration = 10) or until the Euclidean distance between the latest estimated saddle 

point and the earlier estimated saddle point was very small,  i.e. less than the defined 

tolerant/threshold value (tol)

4.3.3.2.2 Chen and Zhang X-corner detector

Instead of using H&S corner strength to locate the initial coarse location. For any type 

of corner, Chen and Zhang [62] proposed to use the principle of the Hessian matrix 

(4.25) to locate the X-corner. The Hessian matrix is the matrix of second order partial 

derivatives of a function, in this case, the image function. The elements of the Hessian 

matrix,  i.e. the second order derivative of the image, were found by correlating the 

image pixel values with the three by three mask shown in the figure 4.34.

For a two dimensional image at any location, there will be two eigenvectors. At the 

saddle point of a two dimensional image, one of the eigenvalue will be the maximum 
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From 4.21

(4.23)

(4.22)[2C1 C2

C2 2C3][xy ]=[−d
−e ]

[xy ]=[2C1 C2

C2 2C3]
−1

[−d
−e]

SP=rup_cIxx , rup_cIy y  (4.24)

Figure 4.34: The second order derivative mask used to correlate with the image.
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and the other the minimum. Hence, an X-corner point is located at the image pixel 

location where the Hessian matrix  (4.25) has its  the maximum eigenvalue  1  and 

minimum eigenvalue  2 . Hence, the location of the X-corner (x0, y0) can be located 

using the equation (4.26), where S is the local negative extrema.

Where  r xx , r yy , r xy are  the  second  order  partial  derivatives  of  the  image  function 

r x , y .

Where r x , r y are the first order partial derivatives of the image function r x , y .

For  sub-pixel  refinement,  Chen  and  Zhang  [62]  proposed  to  use  a  second  order 

polynomial equation to describe the local intensity profile at the coarse approximate 

location of the corner. It is assumed by Chen and Zhang that the sub-pixel location of 

the X-corner is located at  x0s , y0t  , where  s ,t   is within a one pixel by one 

pixel window, centred at x0, y0 . The saddle point of the local intensity profile can be 

extracted by the equation (4.27).

4.3.3.2.2.3 Sojka corner detector

Another  model  based  corner  detector  was  proposed  by  Sojka  [63].  Sojka's  corner 

detector was designed based on measuring the variance of the directions of the gradient 

of brightness or image intensity values. An L-corner model was introduced by Sojka 

and the location of the corner in the corner model was defined by two theorems. Sojka 
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s=subpx x0 , y0=
r y r xy−r x r yy

r xxr yy−r xy
2

t=subpy x0 , y0=
rx rxy−r y rxx

r xx r yy−r xy
2

(4.27)

H=[r xx r xy

rxy r yy] (4.25)

S=1⋅2=r xxr yy−r xy
2 (4.26)



compared the results  of his  implementation against  several  famous corner  detectors 

(Beaudet  [64],  Deriche-Giraudon [65],  Harris-Stephen [52],  Kitchen-Rosenfeld [66], 

Noble [67], SUSAN [68]). His approach was effective for not only on L-corners, but 

also  on  X,Y,T  type  corners.  Sojka's  corner  detector  was  selected  as  one  of  the 

benchmarking candidate for evaluating the model-based corner detector. Sojka method 

had  been  compared  against  other  corner  detectors  and had  been  shown to  provide 

promising results. It implementation source code is also publicly available [69].

4.4 Performance analysis of the salient features detector

In  this  section  the  performance  of  the  three  different  methods,  in  detecting  and 

localising the salient features, is evaluated and discussed in detail. Also at the end, the 

performance of the three methods is compared with each other. The evaluation of the 

different methods was carried out by making use of both synthetic images as well as 

real world images, captured by the camera.

4.4.1 Evaluation of the image intensity variation based corner 

detector algorithm H&S corner detector

The performance of Harris & Stephen corner detector, which is a image intensity based, 

was evaluated and the results are shown in this section.

The  H&S  corner  detection  algorithm  (Section  4.3.1.1) was  applied  to  detect  and 

localise the L-corners and X-corners in the pseudo image, shown in Figure 4.3a and 

Figure 4.3b, respectively. The results of the L-corner detection and localisation process 

with  H&S  corner  detector,  with  least  squares  estimator  (LSE)  and  weighted  least 

squares estimator (WLSE) sub-pixel operator were listed in Table 4.1. The results of X-

corner detection are listed in Table 4.2.
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The results in Table 4.1 show that H&S corner detector picks up the location of the L-

corners with offsets at corner locations C2, C3, and C4. The results were plotted and 

shown in Figure 4.8. The performance of sub-pixel operators on the cornerness map 

produced by the H&S corner detector on the L-corner did not improve the result of 

detection.

The results in Tables 4.2 indicate that H&S corner detector picks up the location of the 

X-corners with offsets at corner locations C2, C3, and C4. The results were plotted and 

shown in Figure 4.10. The performance of the least squares sub-pixel operator on the 

cornerness map produced by the H&S corner detector on the X-corner improved the 

results of detection at X-corner locations C2, C3, and C4, but an error was introduced at 

corner location C1.

The performance of H&S corner detector was evaluated on a synthetic image of X-

corners (see Figure 4.35) rotated by 15, 30, 45, 60, and 75 degrees (refer to appendix 

B.1 for the method of image generation). The inner angles of each of the black square 

was right angle and the length of the edge,  i.e. (P1 to P2), was 100 pixel units. The 

result is shown in Tables 4.3 and 4.4. The performance of H&S corner detector on X-

corner was found to suffer more than one pixel unit of error in detecting the corner 

location with least squares quadratic fitting based sub-pixel operator. More than two 
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Table 4.1: Location of the detected L-corner in Figure 4.3 (left), Using H&S corner detection process
Sum of square error

Actual location 5.00 5.00 11.00 5.00 11.00 11.00 5.00 11.00

5.00 5.00 10.00 5.00 10.00 10.00 5.00 10.00
Error 0.00 0.00 -1.00 0.00 -1.00 -1.00 0.00 -1.00 4.00

With sub-pixel
LSE 5.54 5.54 9.46 5.54 9.46 9.46 5.54 9.46
Error 0.54 0.54 -1.54 0.54 -1.54 -1.54 0.54 -1.54 10.68

WLSE 5.49 4.51 9.51 4.51 9.51 10.49 5.49 10.49
Error 0.49 -0.49 -1.49 -0.49 -1.49 -0.51 0.49 -0.51 5.95

C1(u,v) C2(u,v) C3(u,v) C4(u,v)

Detected by H&S 
(k=0.04)

Table 4.2: Location of the detected X-corner in Figure 4.3 (right), Using H&S corner detection process
Sum of square error

Actual location 5.00 5.00 11.00 5.00 11.00 11.00 5.00 11.00

5.00 5.00 10.00 5.00 10.00 10.00 5.00 10.00
Error 0.00 0.00 -1.00 0.00 -1.00 -1.00 0.00 -1.00 4.00

With sub-pixel
LSE 4.40 4.40 10.60 4.40 10.60 10.60 4.40 10.60
Error -0.60 -0.60 -0.40 -0.60 -0.40 -0.40 -0.60 -0.40 2.07

WLSE 4.41 5.59 10.59 5.59 10.59 9.41 4.41 9.41
Error -0.59 0.59 -0.41 0.59 -0.41 -1.59 -0.59 -1.59 6.75

C1(u,v) C2(u,v) C3(u,v) C4(u,v)

Detected by H&S 
(k=0.04)



pixels unit of error where found with weighted least squares quadratic fitting based sub-

pixel operator.

In subsequent sections, we will evaluate the other two types of algorithms to find out 

whether these results could be further improved.
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Figure 4.35: Two synthetic images with checker board pattern(X-corner) were generated by using 
postscript. The accuracy of corner detector algorithms are tested using these images. Please find 

Appendix B.1 for the example script for using postscript to generate the image. The size of each black  
square is 100x100 pixels. (a) The generated image.

(b) Rotating Figure 4.35(a) by 45 degrees at the image centre.

Table 4.4: The overall performance (sum of all the euclidean errors) of H&S corner detector
Overall 0 degree 15 degree 30 degree 45 degree 60 degree 75 degree total
H&S LSE 2.91410 3.81921 4.26788 4.58923 4.26788 3.81921 23.67750

 Table 4.3: Error in detecting the location of the X-corner in Euclidean space (pixel unit), with H&S
Rotation Corner
0 degree P1 P2 P3 P4
H&S LSE 0.72853 0.72853 0.72853 0.72853

H&S WLSE 1.70966 0.72130 1.70966 0.72130
15 degree
H&S LSE 1.14960 1.51767 1.00209 0.14985

H&S WLSE 1.40859 2.19741 1.56232 0.98694
30 degree
H&S LSE 1.38278 1.58516 0.88100 0.41894

H&S WLSE 1.94849 1.99544 0.58326 0.86981
45 degree
H&S LSE 1.09592 1.19870 1.19870 1.09592

H&S WLSE 1.64732 2.41577 1.86868 2.40240
60 degree
H&S LSE 0.41894 0.88100 1.58516 1.38278

H&S WLSE 1.29654 1.14126 1.56710 1.85361
75 degree
H&S LSE 0.14985 1.00209 1.51767 1.14960

                                       (a)                                                                            (b)



4.4.2 Evaluation of the template based corner detection 

algorithms

The evaluation of the template based corner detection algorithms on the L-corner was 

not  carried  out  because  the  designed  corner  template  produced  false  cornerness 

responses (Section 4.3.2.1, Detecting the L-corner with cross shape template).

The template-based corner detector was applied on the synthetic images of X-corners 

(see  Figure  4.35).  Four  different  versions  (indicated  by the  number  0  to  3)  of  the 

templates T21, T21c, T25 and T25c were applied to each of the corners P1 to P4 and 

the best correlated version was considered to estimate the location of the corner. Six 

different versions (indicated by the number 0 to 5) of template T25m were formed and 

applied to each of the corners P1 to P4 and the best correlated type was considered as to 

have  estimated  the location  of  the corner.  The  six  versions  were  the first  four,  i.e. 

T25m(0 to 3) were exactly the same as T25c (0 to 3) and the last two, T25m(4 to 5) 

were T25(2) and T25(3).

The  convolution  of  template  T21,  with  the  synthetic  image,  produced  multiple 

responses with the generated synthetic image with rotations 0o and 45o. Figure 4.36 

shows the produced multiple response.

The convolution of the template T21c,  with the synthetic image,  produced multiple 

responses for the generated synthetic image rotated to 0o.

The  convolution  of  the  template  T25,  with  the  synthetic  image,  produced  multiple 
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Figure 4.36: The multiple respond produced by T21(0) on the generated synthetic image with rotation 0o.  
(a) The first respond produced by T21(0). (b) Another respond.
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responses with the generated synthetic image having rotation 45o.

The convolution of the template T25c and T25m, with the synthetic images, did not 

produce any multiple responses. Hence, the results obtained by the convolution of the 

template  T25c and T25m,  with  the  synthetic  images,  and  the  corresponding corner 

location are discussed in detail below.

The performance of the T25c and T25m templates based corner detector, using least 

squares estimator as the sub-pixel operator (Section 4.3.2.3), is shown in Tables 4.5 and 

4.6.  The  first  column of  Table  4.5  indicates  the  different  types  of  templates  used, 

namely, T25c and T25m. The four numbers, 0 to 6, within the brackets, indicate the 

versions  of  the  respective  templates,  which  gave  the  highest  correlation  value 

corresponding to the four corners P1 to P4. For example T25c(0101), stands for the 

Template  T25c  versions  T25c(0),  T25c(1),  T25c(0)  and  T25c(1)  (see  Figure  4.26) 

applied to the corners P1, P2, P3 and P4 respectively to get the best correlation. The 

overall performance is summarised in Table 4.6.

The  performance  of  the  T25c  and  T25m  templates  based  corner  detector,  using 

weighted least squares estimator as the sub-pixel operator (Section 4.3.2.3), is shown in 

Tables 4.7 and 4.8.
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Table 4.6: The overall performance(sum of all the euclidean errors) of T25c and T25m with LSE. 
Overall 0 degree 15 degree 30 degree 45 degree 60 degree 75 degree total

T25c 0.12609 1.53574 1.17531 0.27579 1.20327 1.53574 5.85194

Rotation Corner
0 degree P1 P2 P3 P4

T25c (0101) 0.03152 0.03152 0.03152 0.03152
T25m (0101) 0.03152 0.03152 0.03152 0.03152

15 degree
T25c (0101) 0.38974 0.32138 0.29928 0.52535
T25m (0101) 0.38974 0.32138 0.29928 0.52535

30 degree
T25c (2323) 0.38972 0.23256 0.27058 0.28245
T25m (2323) 0.38972 0.23256 0.27058 0.28245

45 degree
T25c (2323) 0.07613 0.06177 0.06177 0.07613
T25m (2323) 0.07613 0.06177 0.06177 0.07613

60 degree
T25c (2323) 0.28373 0.27058 0.25857 0.39039
T25m (2343) 0.28373 0.27058 0.70410 0.39039

75 degree
T25c (1010) 0.52535 0.29928 0.32138 0.38974

 Table 4.5: Error of detecting the location of x-corner in Eulidean (pixel unit), with LSE



The error  in  estimating the length of the sides  and the inner  angles  of  the squares 

(Section 4.2.1), using the four detected corner locations, are shown in Table 4.9. 

From the Tables 4.6 and 4.8, the following conclusions could be inferred:
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Rotation Corner
0 degree P1 P2 P3 P4

T25c (0101) 0.00389 0.00389 0.00389 0.00389
T25m (0101) 0.00389 0.00389 0.00389 0.00389

15 degree
T25c (0101) 0.45488 0.62394 0.54463 1.15127
T25m (0101) 0.45488 0.62394 0.54463 1.15127

30 degree
T25c (2323) 1.05676 0.78458 0.34047 0.35039
T25m (2323) 1.05676 0.78458 0.34047 0.35039

45 degree
T25c (2323) 0.50477 0.05017 0.53354 0.10905
T25m (2323) 0.50477 0.05017 0.53354 0.10905

60 degree
T25c (2323) 0.54093 1.27809 0.64383 0.51645
T25m (2343) 0.54093 1.27809 0.94626 0.51645

75 degree
T25c (1010) 0.73221 0.44097 0.26433 0.99343

 Table 4.7: Error in detecting the location of x-corner, in Eulidean space (pixel unit), with WLSE

Table 4.8: The overall performance(sum of all the euclidean errors) of T25c and T25m with WLSE
Overall 0 degree 15 degree 30 degree 45 degree 60 degree 75 degree total

T25c 0.01556 2.77472 2.53219 1.19752 2.97931 2.43095 11.93026

Table 4.9: Error in the estimated length and inner angle using the detected corner locations
The error of measured length (pixel unit) The error of angle measurement (degree) 

of each side of the black square(x-corner). at each corner of the black square(x-corner).
Rotation Length Angle
0 degree L1 L2 L3 L4 P1 P2 P3 P4

T25c (0101) 0.00000 0.00000 0.00000 0.00000 -0.00070 -0.28347 -0.00070 0.28488
0.00000 0.00000 0.00000 0.00000 -1.37140 1.14058 1.38156 -1.15074

T25m (0101) 0.00000 0.00000 0.00000 0.00000 -0.00070 -0.28347 -0.00070 0.28488
0.00000 0.00000 0.00000 0.00000 -1.37140 1.14058 1.38156 -1.15074

15 degree
T25c (0101) 0.10292 -0.03815 0.16483 0.13551 0.00000 0.00000 0.00000 0.00000

0.11498 -1.00377 -0.43143 0.74539 0.69524 -0.69524 0.69524 -0.69524
T25m (0101) 0.10292 -0.03815 0.16483 0.13551 0.00000 0.00000 0.00000 0.00000

0.11498 -1.00377 -0.43143 0.74539 0.69524 -0.69524 0.69524 -0.69524
30 degree

T25c (2323) -0.02556 -0.00344 -0.07430 0.11546 0.00000 0.00000 0.00000 0.00000
0.71852 -1.01503 0.01993 0.66346 -0.66784 0.66784 -0.66784 0.66784

T25m (2323) -0.02556 -0.00344 -0.07430 0.11546 0.00000 0.00000 0.00000 0.00000
0.71852 -1.01503 0.01993 0.66346 -0.66784 0.66784 -0.66784 0.66784

45 degree
T25c (2323) 0.10723 -0.01445 0.10723 0.12153 0.42785 -0.42785 -0.42785 0.42785

0.31808 0.40986 0.50152 0.40934 1.81493 -1.22918 -1.21008 0.62433
T25m (2323) 0.10723 -0.01445 0.10723 0.12153 0.42785 -0.42785 -0.42785 0.42785

0.31808 0.40986 0.50152 0.40934 1.81493 -1.22918 -1.21008 0.62433
60 degree

T25c (2323) -0.07186 0.01978 -0.03527 0.11523 0.00000 0.00000 0.00000 0.00000
0.66924 -1.00809 -0.75507 0.02479 -0.66784 0.66784 -0.66784 0.66784

T25m (2343) -0.07186 0.36905 -0.32075 0.11523 0.00000 0.00000 0.00000 0.00000
0.66924 -0.55370 -1.02246 0.02479 -0.66784 0.66784 -0.66784 0.66784

75 degree
T25c (1010) 0.16483 -0.03815 0.10292 0.13551 0.00000 0.00000 0.00000 0.00000

-1.15790 -0.07915 0.73364 -0.40086 0.69524 -0.69524 0.69524 -0.69524
T25m (1010) 0.16483 -0.03815 0.10292 0.13551 0.00000 0.00000 0.00000 0.00000

-1.15790 -0.07915 0.73364 -0.40086 0.69524 -0.69524 0.69524 -0.69524

T25c (0101)w

T25m (0101)w

T25c (0101)w

T25m (0101)w

T25c (2323)w

T25m (2323)w

T25c (2323)w

T25m (2323)w

T25c (2323)w

T25m (2343)w

T25c (1010)w

T25m (1010)w

Anotation:
T25c (0101)w. The 'w' at the end indicating the result produced with weighted least squares estimator.



The template T25m, obtained by combining templates, T25c and T25 did not yield the 

best result due to the false template giving the highest correlation measurement within 

the correlation window. For example, while detecting the corner rotated to 60 degrees, 

corner P3, template T25m(4) (equivalent to T25(2)) gave the highest correlation value 

compared to T25c(2) even though the result of detection using T25c(2) is closer to the 

ground truth. The false template affected measurement of the length and angle. Hence, 

Template T25c was found to perform better than T25m.

The total error produced by the template T25c with LSE (5.85914) was found to be 

smaller as compared with WLSE (11.93026). Hence, quadratic fit with the least squares 

estimator based sub-pixel operator was found to provide better refined results when 

compared to the weighted least squares estimator.

The overall result of detecting X-corners using template-based approach (T25c) was 

not found to be sufficiently accurate. This X-corner detection algorithm suffers around 

half pixel unit error (Table 4.3, 0.52535) in detecting the location of the corner (Table 

4.3, 0.52535). The error in the measured length along each of the edges is around 0.16 

pixels unit (Table 4.7 left) and the measured inner angles of the square at each corner 

(Table 4.7 right) also suffers around half a degree error.

4.4.3 Evaluation of model based corner detection algorithms

Three  model  based  X-corner  detection  algorithms  namely,  saddle  point  X-corner 

detection  algorithm  (Section  4.3.3.2.1),  Chen  and  Zhang's  X-corner  detection 

algorithms (Section 4.3.3.2.2) and Sojka corner detection algorithm were evaluated and 

the corresponding results are discussed in the following section.
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4.4.3.1 Performance of the Saddle point X-corner detector

The  Saddle  point  based  X-corner  detector,  discussed  in  Section  4.3.3.2.11,  was 

implemented.  A  quadratic  fitting  window  of  size  of  15x15  used  in  Bouguet' 

implementation [46] was adapted. Due to the requirement of large sized fitting window, 

the implemented corner  detection algorithm was directly evaluated on the series  of 

generated synthetic images (Figure 4.35). The results of the corner detection is shown 

in Table 4.10 and Table 4.11.

The accuracy of the implemented Saddle point based algorithm was found to be very 

good.  The  maximum error  of  the  detected  corner  locations  was  found  to  be  only 

0.06040 pixel unit.

4.4.3.2 Performance of Chen and Zhang' X-corner detector

The  Chen  and  Zhang'  X-corner  detector,  discussed  in  Section  4.3.3.2.2,  was 

implemented. The implemented corner detection algorithm was subsequently used to 

detect and localise the X-corners in the 16x16 pseudo image as shown in Figure 4.3b. 

The results of the X-corner detection were plotted and is shown in Figure 4.37.

Figure 4.37 shows the multiple  strong responses produced by Chen and Zhang'  X-

corner detector around the location of the X-corner. The result of the sub-pixel detector 

is shown in Table 4.12.
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 Table 4.10: Error in detecting X-corner location (pixel unit) using Saddle point based corner detector
Corner

P1(x,y) P2(x,y) P3(x,y) P4(x,y)
0 -0.00002 -0.00002 -0.00002 -0.00002 -0.00002 -0.00002 -0.00002 -0.00002

15 0.00181 0.01059 -0.01066 0.00177 -0.00179 -0.01064 0.01059 -0.00189
30 0.00922 0.01037 -0.01036 0.00922 -0.00923 -0.01035 0.01037 -0.00922
45 0.00003 -0.06039 0.06040 0.00005 -0.00005 0.06040 -0.06039 -0.00007
60 -0.00913 0.01039 -0.01038 -0.00913 0.00913 -0.01039 0.01039 0.00913
75 -0.00181 0.01063 -0.01068 -0.00171 0.00168 -0.01070 0.01064 0.00173

Rotation 
(degree)

Table 4.11: Error in the estimated length and the inner angle estimated by Saddle point based corner detector
The error in the estimated length (pixel unit) The error in the angle estimated (degree) 
of each side of the black square(x-corner). at each corner of the black square(x-corner).

Length Angle
L1 L2 L3 L4 P1 P2 P3 P4

0 0.00000 0.00000 0.00000 0.00000 -0.00008 -0.00008 -0.00008 -0.00008
15 0.01432 0.01427 0.01422 0.01433 -0.00011 -0.00010 -0.00001 -0.00008
30 0.01753 0.01752 0.01753 0.01753 -0.00007 -0.00007 -0.00007 -0.00008
45 -0.08543 -0.08542 -0.08543 -0.08538 -0.00009 -0.00007 -0.00007 -0.00009
60 0.01753 0.01752 0.01753 0.01753 -0.00008 -0.00007 -0.00007 -0.00007
75 0.01422 0.01427 0.01432 0.01433 -0.00008 -0.00001 -0.00010 -0.00011

Rotation 
(degree)



110

Figure 4.37: Cornerness map produced by Chen and Zhang's X-corner detector on the X-corner shown 
in Figure 4.3b. Each image pixel was filled with rounded normalised value from 255 (strongest) to 0  

(weakest) cornerness, superimposed on the original image.
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Table 4.12: Location of the detected X-corner in Figure 4.3b

Actual location 5.00000 5.00000 11.00000 5.00000 11.00000 11.00000 5.00000 11.00000
Detected by Chen 5.00000 5.00000 10.00000 5.00000 10.00000 10.00000 5.00000 10.00000

Error 0.00000 0.00000 -1.00000 0.00000 -1.00000 -1.00000 0.00000 -1.00000

With sub-pixel
coordinate (4,4) (10,4) (10,10) (4,10)

4.38240 4.38240 10.38240 4.38240 10.38240 10.38240 4.38240 10.38240
Error -0.61760 -0.61760 -0.61760 -0.61760 -0.61760 -0.61760 -0.61760 -0.61760

coordinate (5,4) (11,4) (11,10) (5,10)
4.61760 4.38240 10.61760 4.38240 10.61760 10.38240 4.61760 10.38240

Error -0.38240 -0.61760 -0.38240 -0.61760 -0.38240 -0.61760 -0.38240 -0.61760

coordinate (5,5) (11,5) (11,11) (5,11)
4.61760 4.61760 10.61760 4.61760 10.61760 10.61760 4.61760 10.61760

Error -0.38240 -0.38240 -0.38240 -0.38240 -0.38240 -0.38240 -0.38240 -0.38240

coordinate (4,5) (10,5) (10,11) (4,11)
4.38240 4.61760 10.38240 4.61760 10.38240 10.61760 4.38240 10.61760

Error -0.61760 -0.38240 -0.61760 -0.38240 -0.61760 -0.38240 -0.61760 -0.38240

4.50000 4.50000 10.50000 4.50000 10.50000 10.50000 4.50000 10.50000
Error -0.50000 -0.50000 -0.50000 -0.50000 -0.50000 -0.50000 -0.50000 -0.50000

C1(u,v) C2(u,v) C3(u,v) C4(u,v)

Averaging the 
result of sub-pixel



From the errors listed in Table 4.12 one could see that the Chen and Zhang' X-corner 

detector produced different errors at different corner locations. Taking the average of all 

the detected locations, within a nearby region, produced a constant offset/error of -0.5 

pixel unit along the image coordinate axis. The constant offset/error could be improved 

by adding 0.5 pixel unit to each of the axis of the final result of the corner detection.

Although the algorithm was implemented with double floating point precision, but due 

to the rounding up issue, the number of strong responses produced by the implemented 

algorithm was slightly different from the results shown above. The actual number of 

responses produced by the implementation are shown in Table 4.13.

Due to the multiple responses issue, the performance of the Chen and Zhang' X-corner 

detector was not evaluated on the series of rotated synthetic images .

4.4.3.3 Performance of the Sojka corner detector in locating X-

corners

The original  implementation of Sojka'  corner detector was downloaded from Sojka' 

website [69]. The downloaded implementation was applied on the generated synthetic 

images (see Figure 4.35). The results are as shown in Tables 4.14 and 4.15.
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Table 4.13: Number of strong corner respond produced by the implem ented Chen' X-corner detector
X-Corner

Number of respond 2 1 2 1
C1(u,v) C2(u,v) C3(u,v) C4(u,v)



The performance of the Sojka' corner detector in locating the corners of the generated 

synthetic X-corner images was found to be sub-optimal since it had more than one pixel 

error (Table 4.14) while detecting the location of the actual corner and the length of the 

edges (Table 4.15). Also the measured angles of the black square were found to suffer 

having more than one degree error.

4.5 Discussion and conclusion

After extensive experimentation and careful analysis  it  was found that saddle point 

based X-corner detector was the best candidate. This is because it was observed that the 

saddle  point  based  X-corner  detector,  inspired  by  Lucchese  [61],  implemented  by 

Bouguet [46], out performed the other two types of corner detector algorithms (i.e.  

image intensity variation  based  and template  based).  This  is  due  to  the  use  of  the 

suitable X-corner model where the location of the corner is located at the saddle point 

of the model. Last but not least, the use of very large window (fifteen by fifteen) and 

repeating interpolation increased the accuracy of the corner localisation. 

Unfortunately, the use of large window and repeating interpolation are very processing 

intensive  and  required  longer  time  to  complete  the  process  of  corner  detection. 

However, the process of corner detection is only needed to be performed once, at the 

initial state of the designed freehand 3-D surface data acquisition system. An accurate 

corner detector, rather than a fast corner detector, is more suitable for this application.

The fundamental  of an accurate corner detector is to identify a good corner model. 
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Corner
P1(x,y) P2(x,y) P3(x,y) P4(x,y)

0 0.00000 -1.00000 -1.00000 0.00000 0.00000 -1.00000 -1.00000 0.00000
15 0.35500 -0.76300 -0.23700 0.35500 0.64500 -0.23700 -0.76300 0.64500
30 -1.69900 -0.83434 0.42999 -0.61864 -0.35953 1.20188 -1.06115 0.98436
45 0.00000 0.71100 -1.71100 0.00000 -1.00000 -1.71100 0.71100 0.00000
60 0.69900 -0.69900 -0.30100 0.69900 -1.69900 -0.30100 -0.69900 -1.69900
75 -1.35500 -0.76300 -0.23700 0.64500 -1.64500 -0.23700 -0.76300 -1.64500

 Table 4.14: Error in detecting the location of the X-corner (pixel unit) with Sojka' corner detector
Rotation 
(degree)

Table 4.15: Error in the estimated length and inner angle estimated using the detected X-corner locations
The error of the estimated length (pixel unit) The error of the inner angle estimated (degree) 
of each side of the black square(x-corner). at each corner of the black square(x-corner).

Length Angle
L1 L2 L3 L4 P1 P2 P3 P4

0 -0.99000 -0.99000 1.00000 1.00000 -0.01100 1.15700 -0.01100 -1.13500
15 -0.27500 -0.79800 1.14000 1.65000 -0.30500 1.11200 0.28600 -1.09200
30 0.72300 0.72000 0.71700 0.72000 0.00000 0.00000 0.00000 0.00000
45 -1.71000 -1.71000 -2.41900 -1.00500 -0.41200 0.00000 0.41200 0.00000
60 0.72000 0.72000 0.72000 0.72000 0.00000 0.00000 0.00000 0.00000
75 -1.30920 -1.53778 -1.30181 -1.54289 0.80700 -1.09200 0.00000 0.28600

Rotation 
(degree)



Several corner models were discussed in this literature survey. L-corner was found to 

be  much difficult  to  model  (as  it  required non-linear  operation)  with respect  to  X-

corner. Hence in this study X-corners (instead of L-Corners) were used as the salient 

features and Saddle point corner locator was used for locating the corners.
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Chapter 5: Design, Implementation and 

Evaluation of Laser Plane Pose Estimation 

Methods

5.1 Introduction

The estimation  of  the laser  plane  pose  was needed for  the process  of  triangulation 

(Chapter 3, Section 3.4.3.1). In a 3-D reference coordinate frame, a plane in 3-D space 

can be represented by two parameters consisting of a 3-D point on the plane m  and 

the unit normal vector of the plane n . Once these two parameters for a laser plane 

are resolved, any pixel, in a calibrated camera image, illuminated by the laser can be re-

projected to the 3-D reference coordinate frame by using the triangulation process. The 

above process was used to estimate the 3-D locations of the points on the surface of any 

object by illuminating them with the intersection of the laser plane with the surface of 

the object. This is performed by sweeping a laser plane across the object and capturing 

the  images  of  the  object  during  the  sweeping  process.  Thus,  the  laser  pose  plane 

estimation is an important component of the 3-D object surface estimation.

In this chapter, the process of estimating the pose of the laser plane is explained in 

detail.  Three different  methods  were  investigated  to  estimate  the  laser  plane  pose 

parameters. 

5.2 Estimating the pose of the laser plane

From the geometry point of view, the result of intersection of a laser plane with a planar 

object is a laser line. When this information was digitised into a camera image, a 2-D 
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line was formed by a series of image pixels illuminated by the laser plane. Different 

approaches can be used to estimate the pose of the laser plane. These different methods 

could either make use of the fact that the pixels, illuminated by the laser, lay on the 

laser plane or the laser line, formed by the pixels illuminated by the laser, lay on the 

laser plane. 

The three different methods used in this study to estimate the pose of the laser plane are 

outlined below.

In the camera image captured while sweeping the laser light across the surface of the 

object, the line formed by the pixels illuminated by the laser light is formed by the 

intersection of the laser plane with the surface of the 3-D object.  The first  method 

makes use of the above fact to estimate the pose of the laser plane. Firstly, using the 

Hough Transform [47] a best fitting line was fitted to the pixels illuminated by the laser. 

Then, transforming the image coordinates of couple of points on the fitted line to the 3-

D world coordinates, the parameters of the laser plane was estimated.

In the second method, the laser plane equation was estimated in 3-D space, by fitting 

the best fitting plane to all the points detected to be lying on the laser line.

In  the  third  method,  the  concept  of  RANdom SAmple  Consensus  [7]  (RANSAC) 

method was applied to solve the problem. 

The above three methods, of estimating the pose of the laser plane, are described in 

detail below.

5.2.1 Estimation of the location of the pixels and the lines on the 

laser plane

To define the equation of a plane (equation 3.23), a minimum of three non-collinear 

points or two non coincided lines are needed. Hence the non-collinear points or lines 

that are lying on the laser plane need to be found first.

To estimate the locations of the pixels, and thus the location of the line lying on the 

laser plane, one needs to first detect those pixels in the image illuminated by the laser. 
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The estimation of the locations of the pixels illuminated by the laser is explained in 

detail in Section 3.4.2.1 (Laser Pixel Extraction Process).

Figure 5.1 illustrates the steps of extracting two non-collinear laser lines lying on the 

laser plane. The lines could be subsequently used for the laser plane pose estimation. 

The steps involved are as follows: A planar object,  comprising of two non-collinear 

planes, was formed by attaching two planes at an angle. A background image  Imgbg  

of the planar object comprising of the two planes, (referred as horizontal plane and 

vertical plane), was first obtained with a stationary camera (Figure 5.1a). The laser line 

generator was then turned on to illuminate a set of pixels along the vertical and the 

horizontal  planes  in  the  scene.  The  scene  image,  referred  as  laser  image   ImgL , 

having the points illuminated by the laser was obtained by the same camera (Figure 

5.1b). 

Since the scene and the camera were keep static while capturing the above two images, 

the pixels illuminated by the laser can be extracted by finding the difference between 

the background image and the laser image (Figure 5.1c). The pixels illuminated by the 

laser on the vertical and the horizontal planes were grouped separately. The process of 

grouping the laser pixels is explained below.

The outermost corners of the black squares in the checker patterns, on the horizontal 

and the vertical planes were detected (Figure 5.2). The detected corners, that were four 

corners  for  each  plane,  were  connected  to  form  the  2-D  boundaries  around  the 

horizontal  and  the  vertical  planes.  The  boundary  of  the  3-D  object  was  manually 

outlined by the user.

To group the pixels, illuminated by the laser, as belonging to the vertical plane, or the 

horizontal plane or on the object, the pixels were tested to determine whether they laid 

within one of the three boundaries. If a pixel, illuminated by the laser line, fell within 

the object boundary as well as the vertical or horizontal plane boundaries, the pixel was 

grouped as a pixel belonging within the boundary of the object.

Using the pixels, illuminated by the laser, grouped within the vertical plane and the 

horizontal plane two lines were fitted (Figure 5.1d).
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For the laser plane pose estimation, the pixels, illuminated by the laser, or the fitted 

lines on both the horizontal and the vertical planes (Figure 5.1d) were than re-projected 

on to the global reference 3-D coordinate system. Using the detected two non-collinear 

lines,  the  equation  of  the  laser  plane,  with  respect  to  the  global  reference  3-D 

coordinate system, was then estimated. All the pixels, illuminated by the laser, grouped 

within the object boundary, were used by the triangulation process (Section 3.4.3.1) to 

generate the 3-D points cloud.

The user had been provided with the facility to sweep with the laser line generator to 

generate a 3-D points cloud of the object during the free hand 3-D scanning process. 

Hence, the pose of the laser plane needed to be re-estimated in real time, every time the 

laser line generator was moved during the scanning process.
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Figure 5.1: Process of extracting laser lines for the laser plane pose estimation. 

(a) Background image. (b) Laser image. (c) Result of background subtraction. (d) Two detected laser  
lines one on the horizontal plane and one on the vertical planes.

Figure 5.2: Image showing the boundaries of the horizontal plane and the vertical plane outlined 
automatically by connecting the detected corners. 

The boundary of the object was manually segmented by the user with the provided mouse interface.

(a) (b)

(c) (d)
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5.2.2 Estimating the pose of the laser plane using lines fitted along 

the laser illuminated pixels

A method used to  estimate the pose of  the laser  plane was by using the two non-

collinear lines, one on the vertical plane and the other on the horizontal plane, fitted to 

the laser illuminated pixels

The Hough transform (HT) [47] line detector was used to fit the best fitting line along 

the laser illuminated pixels.

Using the Hough transform, two 2-D lines, one from the horizontal plane and one from 

vertical plane, were detected. Two points from each of the two lines were chosen. Using 

the back projection process, the homogeneous image coordinates of these two pairs of 

points  xLaser ,  were  transformed  to  the  corresponding  planar  coordinate  point 

X {V , H }plane  of  the  vertical  or  the  horizontal  plane  by using  the  respective  planar 

homography  H {V , H }3x3   of the corresponding plane (5.1). The homogeneous planar 

coordinate points were transformed to the homogeneous point X Laser  in the camera 

coordinate  frame,  which  is  the  world  reference  frame  (5.2),  (refer  also  to  Section 

3.4.2.4).

A 3-D plane is defined by a 3-D point on the plane m  and the unit normal vector of 
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Where H {V , H }3x3
−1  is the inverse of H {V , H }3x3

X {V , H }plane=H {V , H }3x3
−1⋅xLaser i

(5.1)

Where

(5.2)X Laseri
= T {V , H }

C ⋅X {V , H }plane

n⋅X−m=0From equation (3.23)



the plane n  such that any 3-D point X  on the plane will satisfy equation (3.23). 

The unit normal vector of the plane n , with respect to the world coordinate frame, 

can be resolved using equation (5.3).

Where

Resolving for n , we obtain (5.3). The corresponding point of the normal was obtained 

by using equation (5.4). This provides the average of the four points. The flow chart of 

the explained method is shown in Figure 5.3.
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m=
∑
i=1

4

X Laser i

4

(5.4)

n=
 v1×v2
sin 

 (5.3)

v1= XLaser1−XLaser2/∥XLaser1−XLaser2∥
v2=X Laser3−XLaser4/∥XLaser3−X Laser4∥

=cos−1 v1⋅v2



5.2.3 Estimating the pose of the laser plane using the laser 

illuminated pixels through Moment of Inertial Analysis (MIA)

In the second method, the laser plane parameters were computed in the 3-D space. The 

reason for choosing this approach was that it was hypothesised that it was better to 

estimate the pose of the laser plane directly in 3-D space, because the error produced 

during the re-projection step could be reduced by using more pixels illuminated by the 

laser. The details of the process is given in detail below.

Firstly, all the pixel locations detected as illuminated by the laser were transformed as 

3-D points with respect to the camera frame. The transformation was performed by 

using the equations (5.1) and (5.2) as explained in Section 5.2.2. Secondly, a plane was 

fitted to best fit all the 3-D points. In this study, to obtain the best fitted plane through a 

3-D georeferenced data,  and thus to estimate the plane parameters ( m and  n ),  the 

Moment of Inertia Analysis (MIA) method [70][71] was used. MIA has the advantage 

of being able to provide the quantitative measure of the shape of the trace and also 

gives a measure of the reliability of the data set. For more detailed information about 

how to obtain the above measures refer to the paper by Fernandez [70]. 

The estimation of the plane parameters ( m and n ), of the best fitting plane, using the 

MIA method is explained below.

For N  3-D laser points in the 3-D camera reference frame, X Laser1. .. N , projected from 

the 2-D image pixel location illuminated by the laser (5.2), it was assumed that the 
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Figure 5.3: Flow chart for method explained in section 5.2.2 (Estimating the pose of the laser plane 
using lines fitted along the laser illuminated pixels)
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point,  m ,  lying  on  the  best-fitting  laser  plane,  is  the  mean  of  those  points  (

m=meanXLaser 1. ..N
 ). Hence the normal of the best fitting laser plane can be resolved in 

least-square sense. The system of equations for the least-square estimation was formed 

as shown in equation (5.5).

To  solve  the  system  of  equation  (5.5)  in  the  least  square  sense,  Singular  Value 

Decomposition (SVD) was used. Since the input of the SVD must be in square matrix 

format, the matrix M (equation 5.5) was multiplied with it's transpose. The orientation 

matrix T , T=M T M , was obtained as shown in (5.6).

The eigenvector corresponding to the smallest eigenvalue of the matrix T was taken as 

the normal n  of the laser plane. The flow chart of the explained method is shown in 

Figure 5.4.
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T={∑ ai
2 ∑ ai bi ∑ ai ci

∑ b i ai ∑ bi
2 ∑ bi ci

∑ c ia i ∑ c ib i ∑ c i
2 } (5.6)

Where

{ai

bi

c i
}={X Laser xi

−mx

X Laser  yi
−m y

X Laser  z i
−mz

} (5.7)

For i = 1..N

From (3.23)

 (5.5)

n⋅X−m=0

[X Laser x1−mx XLaser y1−m y XLaser z1
−mz

X Laser x2−mx XLaser y2−m y XLaser z2
−mz

⋮ ⋮ ⋮
X Laser xi

−mx X Laser  yi−m y X Laser z i−m z
]


:=M

[nx

ny 

nz 
]=[00⋮0]



5.2.4 The RANdom SAmple Concensus (RANSAC)

The third method to estimate the laser plane parameters makes use of the RANdom 

SAmple Concensus (RANSAC) process. RANSAC is a robust statistical method for 

estimating single or multiple models from a dataset. The method is robust due to it's 

ability to discard outliers. In the RANSAC process a minimum number of measured 

data were randomly selected and were used to compute the unknown parameters of the 

best fitting model. The accuracy or the validity of the instantiated model was evaluated 

by counting the number of consistence samples from all the measured datasets. The 

compared sample was added into a  consensus set,  if  the error  produced during the 

evaluation process was less than a defined threshold error value. A good model might 

have been found if the number of samples inside the consensus set was more or equal 

than the defined probability of number of good samples in the measured dataset. For 

example if the percentage of the samples inside the consensus set was 80% while the 

rate of possible good measured data was 70%, then it could be taken that a good model 

had been found. 

The process of randomly selecting minimum number of points  and instantiating the 

model fitting model was repeated until  the number of trials  exceeded a pre-defined 

confidence limit of the probability of obtaining a good model. Thus, at the end of the 

process one resolves the best model along with it's best consensus data set, with the 

least mean error.

The advantages of RANSAC clearly highlight the weaknesses of the other two methods 

namely the Hough transform line detector based method and the MIA method. Unlike 
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Figure 5.4: Flow chart for method explained in Section 5.2.3 (Estimating the pose of the laser plane 
using the laser illuminated pixels through Moment of Inertial Analysis (MIA)) 
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RANSAC,  the  Hough  transform line  detector  computes  all  the  possibilities  of  the 

unknown 2-D line parameters. The computational time increases proportional to the 

resolution  of  the  model,  the  finer  the  resolution,  the  better  the  accuracy  but  more 

computational time will be required. For example, by increasing the resolution for   

from 180 steps (0 to 179, 1 degree per step) to 360 steps (0.5 degree per step), the total 

computation time will be increased by a factor of two. The second method, Moment of 

Inertia Analysis, assumes that the best fitting model passes through the centre of the 

mass of the projected 3-D dataset X Laser1. .. N
 , and hence the Moment of Inertia Analysis 

(MIA) process will get distracted by outliers.

There are two possible ways of using RANSAC to estimate the pose to the laser plane. 

In the first method the estimated pixel locations, illuminated by the laser, are made use 

of by RANSAC to estimate the best fitting line model's parameters. The laser plane 

pose estimation is subsequently performed by using either the lines or the consensus 

pixel locations. This method is named as the RANSAC 2-D straight line model fitting.

In the second method, RANSAC process was used directly to estimate the best fitting 

plane by using all the estimated pixel locations, illuminated by the laser lying on both 

of  the  horizontal  and  vertical  boundaries.  The  second  approach,  is  named  as  the 

RANSAC 3-D plane model fitting.

The above two possible ways of applying RANSAC to estimate the pose of the laser 

plane were illustrated in Figure 5.5.
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Figure 5.5: The possible ways of using RANSAC to determine the pose of the laser plane.
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5.2.4.1 The RANSAC 2-D straight line model fitting

RANSAC  had  been  used  in  many  different  applications  to  estimate  the  unknown 

parameters of a model to be fitted to a set of data. In the current application, the model 

that needs to be fitted is the equation of a line in polar space to a set of locations in 2-D 

space. 

The 2-D locations are the estimated image pixels illuminated by the laser. Since the 

estimation process, namely thresholding or background subtraction, might yield sub-

optimal or inaccurate locations, we need to find the best possible set of 2-D locations 

which  were  actually illuminated  by the  laser.  To achieve  this,  we make use  of  the 

RANSAC process to find the best fitting line which will represents the intersection of 

the laser plane with the scene which was projected onto the image plane as the set of 

pixels illuminated by the laser. 

To carry out the above RANSAC process, the best fitting line model's parameters ( r

 and  ) were estimated in polar space. The parameters of a line in polar space passing 

through two locations, given in the Cartesian space, can be derived as discussed below.

Following is the process of expressing the function, in polar space, of a line passing 

through two locations given in the Cartesian space. One needs at least two points, in 2-

D space, to define a unique line. A line w1 , (Figure 5.6) passing through minimum 

of two points (say P1 to P4), can be defined by the two polar parameters, namely the 

orthogonal distance  ro  of the line to the origin, and the angle,  a , between the 

orthogonal line and one of the Cartesian axis, u (Figure 5.6). The values of ro  and 

a can be resolved as follows:

Let w0  be the normal to the line w1  drawn from the origin.

Let w0  intersects w1 at the location P2(u,v). 

The polar co-ordinates for the intersecting point P2, can be resolved by using a general 

point equation (5.10).

Then the values of ro and a can be resolved by using the equations (5.8) and (5.9) 
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respectively.

Since P2  was lying on both lines ( w0 , w1 ), the two equations of lines (5.11 and 

5.12) were defined. By solving these equations, the value of intersection point, P2 , 

can be resolved by (5.16). 
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Where

(5.8)

(5.9)

Where

Pl , any point on a line

Ps , a starting point of the line

∥w l∥ , the unit vector of the line

 , the length of the line from Ps to Pl .

(5.10)

ro=P2u
2P2v 

2

a=cos−1 [1 0 0 ]T⋅ w0

w0=[−∥w1v∥ ∥ w1u∥ 0]T

∥ w1∥=[∥ w1u∥
∥ w1v∥

0 ]=∥[P4 u−P1u
P4 v −P1v 

0 ]∥
Pl=P s∥wl∥



5.2.4.1.1 Determine the consensus samples of a line model

The instantiated line model, through the randomly selected pair of locations, had the 

possibility of becoming the best  fitting line model if  the number of the inlier  pixel 

locations,  drawn from the  locations  illuminated  by the  laser,  exceeded a  minimum 

count. The criteria for a pixel location being an inlier of the instantiated line model is 

defined as the maximum orthogonal distance, r3 , of the pixel, P5 , away from the 

line (Figure 5.6). If r3  is smaller than a pre-defined threshold value, e.g. two pixel 

units away from the instantiated line, the pixel location P5  will be considered as an 

inlier. The value of r3 can be resolved using the equation (5.17). 
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By performing cross product of both sides with ∥ w1∥  yields equation (5.14)

the value of 0 can hence be resolved by only taking the magnitude part of right 

hand side, i.e.

From equation (5.11), P2[u v 0 ]T can be resolved by equation (5.16)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

P2=[0 0 0 ]T0∥ wo∥

P2=P11∥ w1∥

0∥ wo∥=P11∥ w1∥

0∥ wo∥×∥ w1∥=P1×∥w1∥

0=magnitude P1×∥w1∥=P1v ∥ w1u∥−P1u∥ w1v∥

P2=0[−∥w1v∥
∥ w1u∥

0 ]



All the possible line models along with their consensus data set were stored. When the 

number of instantiated models exceeded a predefined threshold value, all the previously 

stored line models were evaluated to find the best fitting line model. The stored line 

model with the least mean error, merr , (equation 5.18) was selected as the best line 

model. The flow chart of the process of RANSAC 2-D straight line model fitting is 

shown in Figure 5.7.
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merr=
∑
i=1 

n

ODi

n

Where  ODi is the measured orthogonal distance of a point away from line model, 

e.g. r3  in Figure 5.6 , Equation (5.17), and n is the number of 2-D laser points in 

the consensus set.

(5.18)

Where

∥ wo∥⋅∥ w5∥ is the dot product between the two unit vector.

(5.17)r3=r5∥ wo∥⋅∥ w5∥

∥ w5∥=∥[P2u−P5u
P2 v −P5v 

0 ]∥
r5=P2u−P5u

2P2v−P5 v 
2
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Figure 5.6: The polar space of a line. A line is formed by two points P1 and P4.
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Figure 5.7: Flow chart of the process of RANSAC 2-D straight line model fitting.
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5.2.4.1.2 Estimating laser plane pose with the result of RANSAC 

2-D straight line model fitting

The  result  produced  at  the  end  of  the  RANSAC  process  contained  two  sets  of 

information, namely the fitted line model parameters rf and f   of the best fitting line 

passing through the pixels illuminated by the laser and the consensus samples (pixel 

locations illuminated by the laser), of the line model. Using these two information the 

pose  of  the  laser  plane  can  be  estimated  in  two  different  ways.  These  ways  are 

explained in the following sections.

5.2.4.1.2.1 Laser plane pose estimation with the best fit 2-D 

straight line model

Two best fitting line models, through the pixels illuminated by the laser, one from the 

horizontal  plane  and  one  from  vertical  plane  were  estimated  using  the  RANSAC 

process. Four locations, two from each of the instantiated best fitted line model, were 

then used and the pose of the laser plane was estimated as explained in Section 5.2.2, 

using equations (5.3) and (5.4). The process is illustrated in Figure 5.8.
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Figure 5.8: Flow chart for method explained in Section 5.2.4.1.2.1 (Laser plane pose estimation with the 
best fit 2-D straight line model).
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5.2.4.1.2.2 Laser plane pose estimation with the consensus samples 

of the best fit 2-D straight line model

Another way to estimate the pose of the laser plane is to make use of all the pixel 

locations  which  were  the  consensus  samples  (Figure  5.9).  Using  all  the  consensus 

samples to estimate the laser plane pose will be more accurate for the following reason.

The process of projecting 2-D information (either  the best  fit  2-D lines  and or the 

consensus samples) requires two set of input parameters, namely the pose of the planar 

object  and  the  camera  intrinsic  parameters.  Error  might  be  introduced  during  the 

process  of  estimating  these  two  sets  of  parameters.  If  we  assume  that  the  noise 

introduced in the estimating processes had a Gaussian distribution with zero mean, it is 

recommended to use more locations (that is the consensus samples), where the errors 

might cancel out each other, to estimate the laser plane pose. 
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Figure 5.9: Flow chart for method explained in Section (5.2.4.1.2.2 Laser plane pose estimation with the 
consensus samples of the best fit 2-D straight line model).

Pixels 
illuminated 
by the laser

detected within 
the vertical 

plane

The 
RANSAC 2-D

Straight line fitting

The 
RANSAC 2-D

Straight line fitting

Pixels 
illuminated 
by the laser

detected within 
the horizontal 

plane Projecting to 
3-D camera 
space with 
Equation 
(51 - 5.2)

Estimating 
Laser plane
Pose with 

M.I.A.

BEGIN END

All the consensus sample from
 the estimated line model

All the consensus sample from
 the estimated line model

xLaser

xLaser

X Laser



5.2.4.2 The RANSAC 3-D plane model fitting

In the RANSAC 3-D plane model fitting approach, using RANSAC to estimate the best 

fitting plane, all the estimated pixel locations, illuminated by the laser lying on both of 

the horizontal and vertical boundaries were made use of. This process of RANSAC 3-D 

plane model fitting was performed as explained below.

The process started by converting all the located image pixels illuminated by the laser 

to 3-D points in the camera space using equation (5.2). Next the RANSAC process was 

initiated by randomly selecting three 3-D points in the camera space. Using these three 

3-D  points,  the  unit  normal  vector  of  the  plane  n ,  with  respect  to  the  world 

coordinate frame, was resolved using equation (5.3) and the corresponding point of the 

normal mi , was obtained by equation (5.4). Now, from the rest of the 3-D points a set 

of  consensus  3-D point  samples,  were  selected.  These  inlier  of  the  initiated  plane 

model, was selected by measuring the orthogonal distance,  d  (equation 5.19), to the 
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Figure 5.10: The process flow of the laser plane pose estimation. The error source during each process  
is shown in the left hand side of each process. Two possible scenarios for applying different RANSAC 

fitting process were identified and shown on the right hand side.
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initiated plane model. If the measured orthogonal distance of the 3-D point was smaller 

than  a  predefined  threshold  value,  an  inlier  was  identified  and  appended  into  the 

consensus sample.

A set of consensus 3-D point sample, that is the inlier of the initiated plane model, 

could be determined from the list of 3-D points by measuring the orthogonal distance, 

d  (equation  5.19),  of  a  3-D  point  to  the  initiated  plane  model.  If  the  measured 

orthogonal distance of the 3-D point was smaller than a predefined threshold value, 

then that 3-D point was identified as an inlier and appended into the consensus sample.

After iterating through the list of 3-D points, the initiated plane model was considered 

as a good model if and only if the number of inlier points was found to be more than a 

predefined  value  (of  number  of  inlier  points)  and  the  sum  of  all  the  orthogonal 

distances was the minimum when compared to the other possible instantiated plane 

models. The flow chart shown in Figure 5.11 illustrates the process of the RANSAC 3-

D plane model fitting.

5.2.4.2.1 Laser plane pose estimation with RANSAC 3-D plane 

model fitting

To recapitulate, in the laser plane pose estimation using RANSAC 3-D planes model 

fitting process, the set of pixels, in the horizontal and the vertical planes, identified as 

illuminated by the laser, were first transformed to the camera 3-D space using equation 

(5.2). Subsequently, RANSAC 3-D plane model fitting was used to identify the inlier 

points for the best fitting plane model. Finally, the identified inlier points were used to 

estimate the pose of the laser plane with the M.I.A method. The flow chart in Figure 

5.12 outlines the laser plane pose estimation with RANSAC 3-D plane model fitting 

process.
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From (3.23) n⋅X−m=0

d=ni⋅ X−mi (5.19)
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Figure 5.11: Flow chart of the RANSAC plane model laser plane pose estimation process. 
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5.3 Critical reflection on the different RANSAC based laser plane 

pose estimation methods devised in this study

The process of estimating the pose of the laser plane is subjected to different types of 

errors and noise sources. The errors and noise sources could be the quantisation noise, 

planar  homography estimation  error,  and  planar  pose  estimation  error.  Figure  5.10 

shows the error sources through out the process of laser plane pose estimation.

The quantisation noise is introduced during the process of forming the camera image 

through digitisation, using a digital camera.

Planar homography is needed to project the detected pixel, illuminated by the laser, on 

to  the  planar  space.  The  planar  homography  estimation  error  might  be  introduced 

during the process of identifying corners' location in the digitised image. 

The pose of the planar object is needed to transform the planar coordinate points to the 

camera 3-D coordinate space. The plane pose estimation error, is introduced due to the 

error in estimating planar homography and due to the error in estimating the camera 

intrinsic parameters.

Other less significant error sources, during planar homography estimation, are the non-

rigidity of the planar object and the lack of precision in marking the corners points.

To minimize the effect of the above mentioned errors, during the estimation of the pose 

of the laser plane, one needs to employ a robust method such as RANSAC. The input to 

the RANSAC process is the pixel locations illuminated by the laser. As discussed in the 

earlier  sections,  following are the three different ways one could use the RANSAC 

process to estimate the pose of the laser. 

For the first two methods the estimated pixel locations, illuminated by the laser, are 

made use of by RANSAC firstly to estimate the best fitting line model's parameters. 

This  RANSAC estimation  is  subsequently  used,  to  estimate  the  laser  plane,  in  the 

following two different ways.

• The laser plane pose estimation is performed by using the best fitted lines.
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• The laser plane pose estimation is performed by using the the consensus pixel 

locations.

The above two methods are categorised as the RANSAC 2-D straight line model fitting.

In the third method the RANSAC process was used directly to estimate the best fitting 

plane by using all the estimated pixel locations, illuminated by the laser, lying on both 

of  the  horizontal  and  vertical  boundaries.  This  third  approach,  is  named  as  the 

RANSAC 3-D plane model fitting.

To choose the best possible method, among the above three different methods, one can 

perform the following thought experiment; (since much of modern physics is built not 

upon measurement but on thought experimentation [72]).

To choose the RANSAC 2-D straight line model fitting as the best method, one can 

propose the following argument. This method must be much more robust since this 

method  utilises  the  following  two  different  geometry  constraints.  Firstly,  the  two-

dimensional  straight  line  constraints,  that  the  valid  points  should  lie  on  the  line 

produced by the intersection of the laser plane with the other two planar objects. The 

second, three dimensional geometrical constraint is that the chosen points should lie on 

the same plane which is chosen as the laser plane. The input of the RANSAC 3-D plane 

model fitting is only the data scattering around two regions, intersection of the laser 

plane with the two planar objects, but not fully across the entire laser plane.

To choose RANSAC 3-D plane model fitting as the best method, one can propose the 

following argument. In this method RANSAC was performed, to find the consensus 

sample of the best 3-D laser plane model fitting, by using all the 3-D projected points, 

rather than finding the best fitting 2-D line model through extracted pixels illuminated 

by the laser and subsequently using the points on the line to resolve the plane.

Based on the above two arguments the following were concluded:

Firstly, for the RANSAC 3-D plane model fitting, even though the method makes use 

of all  the 3-D projected points,  those points  are only along the line formed by the 

intersection of the laser plane with the two planar objects. To fit a plane, it would have 
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been more appropriate, if one makes use of a set of points sampled from across the 

entire plane.

In the RANSAC 2-D straight line model fitting, all the inlier pixels illuminated by the 

laser  in  the  fitted 2-D line models  are  subsequently projected into the camera 3-D 

space. The linear least square 3-D plane fitting method (MIA) which makes use of the 

three dimensional constraint and the law of Truly Large Numbers [73], determines the 

pose of the laser plane.

Hence  the  RANSAC 2-D straight  line  model  fitting  is  more  appropriate  since  the 

method fully makes use of the two dimensional constrains.

The conclusion reached above,  through the thought  experiment,  was validated by a 

practical experiment. This practical experiment is discussed in detail in the following 

section.

5.4 Practical experiment to validate the hypothesis

The experimental set up was as follows. Two planar objects, having X-corner patterns, 

were used as the horizontal and the vertical plane. The planar object having sixteen X-

corners  is  shown  in  the  Figure  5.13.  A webcam  was  calibrated  using  the  camera 

calibration toolbox [46].  The Saddle point based corner  detector  algorithm (Section 

4.3.3.2.1)  was  used to  estimate the location of  the sixteen X-corners  on the planar 

objects with up to sub-pixel accuracy. 

To evaluate the accuracy of the 3-D location of points, using the different laser pose 

estimation methods, a 3-D object with precise measurements was used. The white 3-D 

object  used  was  the  shape  of  a  stair  case.  Each  tread  of  the  staircase  was  of  ten 

millimetres depth and height and fifty millimetres in length (Figure 5.13).

To scan the object, the laser line emitter was attached to a linear translator having an 

accuracy of 0.02 millimetre. The configuration of the set up is shown in Figure 5.13.
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The 3-D object was scanned by translating the laser line across the surface of the 3-D 

object. The laser plane was translated linearly by five millimetres along the normal of 

the laser plane, n0 . A total of eleven images, one for each of the scan locations, were 

captured at different locations (the intermediate images of the experiment setting can be 

found in Appendix C). The pose of the laser plane was estimated by using the following 

three methods:

● Fitting the best fitting line model and using the best fitted lines; as explained in 

the Section 5.2.4.1.2.1 (R2D1).

● Fitting the best fitting line model and using the the consensus pixel locations; as 

explained in the Section 5.2.4.1.2.2 (R2D2).

● Directly  estimating  the  best  fitting  plane  by  using  all  the  estimated  pixel 

locations; as explained in the Section 5.2.4.2.1 (R3D).

To evaluate the performance of the above three different methods of estimating the pose 

of the laser plane, the following two measurements were used:
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Figure 5.13: Figure illustrating the experimental set up.
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Measurement of the normal to the laser plane at each scan plane. Since the laser plane 

was translated linearly, along the normal to the laser plane, the measured norm should 

be the same at different locations. The angular difference   , between the normal of 

the laser planes at two different scan locations was estimated using equation (3.24). 

This difference should be equal to zero. 

The distance between each scan plane needed to be measured.  Since the laser scan 

plane was linearly translated precisely five millimetres between each scan, the distance 

between  the  scan  planes  should  be  five  millimetres.  The  distance  between  two 

estimated scan planes ,  m1 , n1 and m2, n2 , was calculated as follows. One of the 

estimated scan plane  m1, n1  was taken as a reference plane. The relative distance, 

d ,  (see  equation  5.20)  between  the  two  estimated  planes  was  then  measured  by 

finding the shortest distance of point m1 , along the normal of the reference plane, n1 , 

and the intersecting point, mi (see equation 5.21) , at the second plane m2, n2 .
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where

(5.21)

d=mix−m1x 
2mi y−m1 y 2mi z−m1 z 2 (5.20)

(5.22)

mi=m1t n1

t=
m2−m1

T n2

n1
T n2
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Figure 5.14: Figure illustrating locations of the points illuminated by the laser on the eleven scan 
planes.

Figure 5.15: The five major points, on the surface of the staircase illuminated by the laser plane at  
eleven different locations, selected by the user to estimate the depth and height of the tread.



5.5 Results and discussions

In this  section the results  obtained to evaluate the accuracy of the laser plane pose 

estimation methods and the the quality of the acquired 3-D points of a calibrated 3-D 

object are presented and discussed. 

5.5.1 Effectiveness of the proposed laser plane pose estimation 

methods

Table 5.1 lists the difference for each of the three different methods of laser plane pose 

estimation. The standard deviation of the difference for each of the method is plotted 

and shown in Figure 5.16.

The results of the estimated distance between the different scan planes are shown in 

Table  5.2.  The  difference  between  the  actual  distance  and  the  estimated  distance 

between  the  scan  planes  are  shown  in  Table  5.3.  The  standard  deviation  of  the 

difference between the actual distance and the estimated distance is plotted and shown 

in Figure 5.17.

From the results of measuring the norm of the scan planes and the distance between the 

scan planes following observations were made:

The performance of estimating the laser plane pose by the method, namely fitting the 

best  fitting  line  model  and  using  the  best  fitted  lines  (R2D1)  is  the  least  accurate 

method. Large standard deviations were obtained in the second set  of measurement 

(Figure 5.17).

The performance of estimating the laser plane pose by the two methods, namely fitting 

the best  fitting line model  and using the the consensus pixel  locations  (R2D2) and 

directly  estimating  the  best  fitting  plane  by  using  all  the  estimated  pixel  locations 

(R3D) are almost the same. Except that the standard deviation of the angular difference 

between the norm of the scan planes, for the laser plane pose estimation using R3D is 

slightly  larger  than  using  R2D2 (Figure  5.16).  This  might  due  to  the  inlier  points 

obtained by R3D are more scatter, subjected to both the planar homography and planar 

pose estimation errors (Figure 5.10) and do not fully utilise the available 2-D straight 
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line constraints to filter them. However, the contribution of this little angular different 

(standard deviation of 0.5 degree) is too small to be observed, as one can see in the 

second measurement  (distance  between each  plane),  across  the 50mm length  (from 

plane number one to the plane number eleven).

5.5.2 The quality of the acquired 3-D points of a calibrated 3-D 

object

The performance of the three methods to estimate the pose of the laser plane were also 

compared by reconstructing the 3-D object. This comparison was done as follows:

The pixels illuminated by the laser, lying on the surface of the calibration object in each 

of  the  camera  image  were  extracted  and triangulated.  The  result  of  the  process  of 

triangulation provided the 3-D location of the pixels illuminated by the laser on the 

surface of the object (see Figure 5.14). Five points of interest, as shown in Figure 5.15, 

were manually selected and the depths (P1 to P2 and P3 to P4) and the heights (P2 to 

P3 and P4 to P5) of the treads of the staircase were evaluated at each of the scan planes. 

All together forty four measurements were estimated. The angular values at locations 

P2,  P3  and  P4  of  the  staircase  were  estimated  (three  measurements  per  plane,  all 

together thirty three measurements).

The results  are  listed in Table 5.4.  From the results  shown the following,  could be 

deduced 

● the results obtained through the methods R2D2 and R3D are better than that of 

R2D1.

● both the method (R2D2 and R3D) produced the same standard deviation of the 

measurement errors. The standard deviation of both the methods were found 

relatively small as compared to the R2D1 method.
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Table 5.1: The angular difference, measured in degrees
between the norm of the laser plane at each scan location

Location 1 2 3 4 5 6 7 8 9 10 11
R2D1

1 0.00 0.39 0.48 0.17 0.19 0.14 0.27 0.37 0.24 0.32 0.45
2 -0.39 0.00 0.11 0.31 0.28 0.47 0.60 0.66 0.58 0.66 0.75
3 -0.48 -0.11 0.00 0.41 0.38 0.55 0.67 0.72 0.65 0.72 0.80
4 -0.17 -0.31 -0.41 0.00 0.03 0.30 0.43 0.54 0.41 0.49 0.62
5 -0.19 -0.28 -0.38 -0.03 0.00 0.32 0.46 0.55 0.43 0.51 0.64
6 -0.14 -0.47 -0.55 -0.30 -0.32 0.00 0.13 0.23 0.11 0.19 0.31
7 -0.27 -0.60 -0.67 -0.43 -0.46 -0.13 0.00 0.12 0.02 0.06 0.18
8 -0.37 -0.66 -0.72 -0.54 -0.55 -0.23 -0.12 0.00 0.14 0.09 0.09
9 -0.24 -0.58 -0.65 -0.41 -0.43 -0.11 -0.02 -0.14 0.00 0.08 0.21

10 -0.32 -0.66 -0.72 -0.49 -0.51 -0.19 -0.06 -0.09 -0.08 0.00 0.14
11 -0.45 -0.75 -0.80 -0.62 -0.64 -0.31 -0.18 -0.09 -0.21 -0.14 0.00

MAX 0.00 0.39 0.48 0.41 0.38 0.55 0.67 0.72 0.65 0.72 0.80
MIN -0.48 -0.75 -0.80 -0.62 -0.64 -0.31 -0.18 -0.14 -0.21 -0.14 0.00
STD 0.15 0.35 0.41 0.36 0.37 0.30 0.30 0.32 0.28 0.29 0.28

Location 1 2 3 4 5 6 7 8 9 10 11
R2D2

1 0.00 0.23 0.24 0.09 0.20 0.26 0.41 0.54 0.39 0.45 0.52
2 -0.23 0.00 0.03 0.15 0.38 0.47 0.61 0.75 0.59 0.66 0.74
3 -0.24 -0.03 0.00 0.16 0.39 0.48 0.62 0.76 0.60 0.67 0.75
4 -0.09 -0.15 -0.16 0.00 0.23 0.31 0.46 0.60 0.44 0.50 0.59
5 -0.20 -0.38 -0.39 -0.23 0.00 0.09 0.23 0.37 0.21 0.28 0.37
6 -0.26 -0.47 -0.48 -0.31 -0.09 0.00 0.15 0.28 0.13 0.19 0.28
7 -0.41 -0.61 -0.62 -0.46 -0.23 -0.15 0.00 0.14 0.02 0.05 0.14
8 -0.54 -0.75 -0.76 -0.60 -0.37 -0.28 -0.14 0.00 0.16 0.09 0.05
9 -0.39 -0.59 -0.60 -0.44 -0.21 -0.13 -0.02 -0.16 0.00 0.07 0.16

10 -0.45 -0.66 -0.67 -0.50 -0.28 -0.19 -0.05 -0.09 -0.07 0.00 0.09
11 -0.52 -0.74 -0.75 -0.59 -0.37 -0.28 -0.14 -0.05 -0.16 -0.09 0.00

MAX 0.00 0.23 0.24 0.16 0.39 0.48 0.62 0.76 0.60 0.67 0.75
MIN -0.54 -0.75 -0.76 -0.60 -0.37 -0.28 -0.14 -0.16 -0.16 -0.09 0.00
STD 0.17 0.34 0.35 0.30 0.29 0.29 0.29 0.34 0.26 0.27 0.28

Location 1 2 3 4 5 6 7 8 9 10 11
R3D

1 0.00 0.05 0.08 0.05 0.63 0.72 0.88 1.04 1.11 1.14 1.13
2 -0.05 0.00 0.04 0.03 0.66 0.74 0.91 1.07 1.14 1.17 1.16
3 -0.08 -0.04 0.00 0.05 0.69 0.77 0.94 1.10 1.17 1.20 1.19
4 -0.05 -0.03 -0.05 0.00 0.64 0.72 0.89 1.05 1.12 1.15 1.14
5 -0.63 -0.66 -0.69 -0.64 0.00 0.09 0.26 0.42 0.49 0.52 0.51
6 -0.72 -0.74 -0.77 -0.72 -0.09 0.00 0.17 0.33 0.40 0.43 0.42
7 -0.88 -0.91 -0.94 -0.89 -0.26 -0.17 0.00 0.16 0.23 0.26 0.25
8 -1.04 -1.07 -1.10 -1.05 -0.42 -0.33 -0.16 0.00 0.07 0.10 0.09
9 -1.11 -1.14 -1.17 -1.12 -0.49 -0.40 -0.23 -0.07 0.00 0.03 0.02

10 -1.14 -1.17 -1.20 -1.15 -0.52 -0.43 -0.26 -0.10 -0.03 0.00 0.02
11 -1.13 -1.16 -1.19 -1.14 -0.51 -0.42 -0.25 -0.09 -0.02 -0.02 0.00

MAX 0.00 0.05 0.08 0.05 0.69 0.77 0.94 1.10 1.17 1.20 1.19
MIN -1.14 -1.17 -1.20 -1.15 -0.52 -0.43 -0.26 -0.10 -0.03 -0.02 0.00
STD 0.48 0.52 0.54 0.53 0.52 0.52 0.52 0.52 0.52 0.52 0.51
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Table 5.2: The measured distance between the scan planes
Location 1 2 3 4 5 6 7 8 9 10 11

R2D1
1 0.00 4.23 9.33 14.00 18.83 25.90 31.82 37.86 41.63 47.31 53.50
2 4.26 0.00 5.14 9.78 14.63 21.75 27.70 33.82 37.53 43.26 49.51
3 9.41 5.14 0.00 4.63 9.46 16.56 22.50 28.62 32.32 38.04 44.28
4 14.05 9.80 4.66 0.00 4.88 12.03 18.01 24.10 27.86 33.59 39.85
5 18.93 14.68 9.54 4.88 0.00 7.15 13.14 19.23 22.99 28.72 34.99
6 25.74 21.52 16.45 11.79 7.00 0.00 5.87 11.86 15.64 21.28 27.41
7 31.43 27.23 22.19 17.52 12.76 5.82 0.00 5.95 9.74 15.34 21.42
8 37.17 32.97 27.95 23.29 18.57 11.70 5.92 0.00 3.78 9.35 15.38
9 41.22 37.01 31.97 27.30 22.53 15.58 9.75 3.79 0.00 5.61 11.70

10 46.68 42.48 37.45 32.78 28.03 21.12 15.32 9.38 5.59 0.00 6.06
11 52.37 48.18 43.19 38.52 33.81 26.98 21.23 15.33 11.54 5.99 0.00

Location 1 2 3 4 5 6 7 8 9 10 11
R2D2

1 0.00 5.05 10.02 14.97 19.97 24.92 29.91 34.90 39.84 44.82 49.62
2 5.03 0.00 4.98 9.90 14.90 19.86 24.84 29.82 34.76 39.73 44.53
3 10.01 4.98 0.00 4.92 9.91 14.88 19.86 24.84 29.78 34.75 39.54
4 14.95 9.92 4.95 0.00 4.99 9.95 14.94 19.92 24.86 29.84 34.64
5 19.94 14.94 9.95 4.98 0.00 4.97 9.95 14.93 19.89 24.87 29.68
6 24.92 19.91 14.93 9.94 4.96 0.00 4.99 9.97 14.93 19.91 24.72
7 29.92 24.91 19.94 14.93 9.95 4.99 0.00 4.98 9.95 14.94 19.75
8 34.91 29.91 24.93 19.90 14.93 9.97 4.98 0.00 4.98 9.97 14.79
9 39.86 34.86 29.88 24.87 19.90 14.94 9.95 4.97 0.00 4.99 9.80

10 44.87 39.86 34.89 29.87 24.90 19.93 14.94 9.96 4.99 0.00 4.81
11 49.71 44.69 39.72 34.70 29.72 24.76 19.77 14.78 9.80 4.81 0.00

Location 1 2 3 4 5 6 7 8 9 10 11
R3D

1 0.00 5.01 9.97 14.97 19.93 24.90 29.89 34.87 39.84 44.82 49.61
2 5.00 0.00 4.97 9.97 14.92 19.89 24.87 29.85 34.83 39.81 44.60
3 9.96 4.97 0.00 5.00 9.94 14.91 19.90 24.88 29.85 34.83 39.62
4 14.96 9.97 5.00 0.00 4.95 9.92 14.90 19.88 24.86 29.84 34.63
5 19.90 14.90 9.94 4.92 0.00 4.98 9.99 14.98 19.98 24.97 29.77
6 24.90 19.89 14.93 9.91 4.98 0.00 5.01 10.00 15.01 19.99 24.80
7 29.93 24.92 19.95 14.93 10.00 5.02 0.00 4.99 10.01 14.99 19.80
8 34.93 29.91 24.95 19.92 15.00 10.01 4.99 0.00 5.03 10.02 14.82
9 39.98 34.96 29.99 24.97 20.03 15.05 10.02 5.03 0.00 4.98 9.79

10 44.97 39.95 34.98 29.96 25.02 20.03 15.01 10.02 4.98 0.00 4.81
11 49.78 44.76 39.79 34.77 29.83 24.84 19.82 14.83 9.79 4.81 0.00
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Table 5.3: The difference between the actual distance and the estimated distance between 
each of the scan planes

Location 1 2 3 4 5 6 7 8 9 10 11
R2D1

1 0.00 -0.77 -0.67 -1.00 -1.17 0.90 1.82 2.86 1.63 2.31 3.50
2 -0.74 0.00 0.14 -0.22 -0.37 1.75 2.70 3.82 2.53 3.26 4.51
3 -0.59 0.14 0.00 -0.37 -0.54 1.56 2.50 3.62 2.32 3.04 4.28
4 -0.95 -0.20 -0.34 0.00 -0.12 2.03 3.01 4.10 2.86 3.59 4.85
5 -1.07 -0.32 -0.46 -0.12 0.00 2.15 3.14 4.23 2.99 3.72 4.99
6 0.74 1.52 1.45 1.79 2.00 0.00 0.87 1.86 0.64 1.28 2.41
7 1.43 2.23 2.19 2.52 2.76 0.82 0.00 0.95 -0.26 0.34 1.42
8 2.17 2.97 2.95 3.29 3.57 1.70 0.92 0.00 -1.22 -0.65 0.38
9 1.22 2.01 1.97 2.30 2.53 0.58 -0.25 -1.21 0.00 0.61 1.70

10 1.68 2.48 2.45 2.78 3.03 1.12 0.32 -0.62 0.59 0.00 1.06
11 2.37 3.18 3.19 3.52 3.81 1.98 1.23 0.33 1.54 0.99 0.00

MAX 2.37 3.18 3.19 3.52 3.81 2.15 3.14 4.23 2.99 3.72 4.99
MIN -1.07 -0.77 -0.67 -1.00 -1.17 0.00 -0.25 -1.21 -1.22 -0.65 0.00
STD 1.29 1.46 1.46 1.67 1.86 0.69 1.23 2.02 1.39 1.56 1.85

Location 1 2 3 4 5 6 7 8 9 10 11
R2D2

1 0.00 0.05 0.02 -0.03 -0.03 -0.08 -0.09 -0.10 -0.16 -0.18 -0.38
2 0.03 0.00 -0.02 -0.10 -0.10 -0.14 -0.16 -0.18 -0.24 -0.27 -0.47
3 0.01 -0.02 0.00 -0.08 -0.09 -0.12 -0.14 -0.16 -0.22 -0.25 -0.46
4 -0.05 -0.08 -0.05 0.00 -0.01 -0.05 -0.06 -0.08 -0.14 -0.16 -0.36
5 -0.06 -0.06 -0.05 -0.02 0.00 -0.03 -0.05 -0.07 -0.11 -0.13 -0.32
6 -0.08 -0.09 -0.07 -0.06 -0.04 0.00 -0.01 -0.03 -0.07 -0.09 -0.28
7 -0.08 -0.09 -0.06 -0.07 -0.05 -0.01 0.00 -0.02 -0.05 -0.06 -0.25
8 -0.09 -0.09 -0.07 -0.10 -0.07 -0.03 -0.02 0.00 -0.02 -0.03 -0.21
9 -0.14 -0.14 -0.12 -0.13 -0.10 -0.06 -0.05 -0.03 0.00 -0.01 -0.20

10 -0.13 -0.14 -0.11 -0.13 -0.10 -0.07 -0.06 -0.04 -0.01 0.00 -0.19
11 -0.29 -0.31 -0.28 -0.30 -0.28 -0.24 -0.23 -0.22 -0.20 -0.19 0.00

MAX 0.03 0.05 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MIN -0.29 -0.31 -0.28 -0.30 -0.28 -0.24 -0.23 -0.22 -0.24 -0.27 -0.47
STD 0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.07 0.09 0.09 0.14

Location 1 2 3 4 5 6 7 8 9 10 11
R3D

1 0.00 0.01 -0.03 -0.03 -0.07 -0.10 -0.11 -0.13 -0.16 -0.18 -0.39
2 0.00 0.00 -0.03 -0.03 -0.08 -0.11 -0.13 -0.15 -0.17 -0.19 -0.40
3 -0.04 -0.03 0.00 0.00 -0.06 -0.09 -0.10 -0.12 -0.15 -0.17 -0.38
4 -0.04 -0.03 0.00 0.00 -0.05 -0.08 -0.10 -0.12 -0.14 -0.16 -0.37
5 -0.10 -0.10 -0.06 -0.08 0.00 -0.02 -0.01 -0.02 -0.02 -0.03 -0.23
6 -0.10 -0.11 -0.07 -0.09 -0.02 0.00 0.01 0.00 0.01 -0.01 -0.20
7 -0.07 -0.08 -0.05 -0.07 0.00 0.02 0.00 -0.01 0.01 -0.01 -0.20
8 -0.07 -0.09 -0.05 -0.08 0.00 0.01 -0.01 0.00 0.03 0.02 -0.18
9 -0.02 -0.04 -0.01 -0.03 0.03 0.05 0.02 0.03 0.00 -0.02 -0.21

10 -0.03 -0.05 -0.02 -0.04 0.02 0.03 0.01 0.02 -0.02 0.00 -0.19
11 -0.22 -0.24 -0.21 -0.23 -0.17 -0.16 -0.18 -0.17 -0.21 -0.19 0.00

MAX 0.00 0.01 0.00 0.00 0.03 0.05 0.02 0.03 0.03 0.02 0.00
MIN -0.22 -0.24 -0.21 -0.23 -0.17 -0.16 -0.18 -0.17 -0.21 -0.19 -0.40



5.6 Conclusion

RANSAC based laser plane pose estimation methods were designed, implemented and 

critically evaluated with two measurements. It was found that both the R2D2 and R3D 

methods are almost the same (similar standard deviation) in determining the translated 

distance between each translated planes in the second measurement of the experiment. 
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Figure 5.16: The plotting of the standard deviation of the measurement of laser plane normal error in  
Table 5.1.
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Figure 5.17: The plot of the standard deviation of the difference between the actual distance and the 
estimated distance between the scan planes listed in Table 5.3.
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Table 5.4: The measurement error of angle, depth and height of calibration object
Error type Angle (degree) Depth and Height (mm)
Method R2D1 R2D2 R3D R2D1 R2D2 R3D
Maximum error 0.09 1.27 -0.24 0.4 1.97 0.11
Minimum error -1.56 0.25 -1.41 -1.48 -0.29 -1.85
Standard deviation of the error 0.38 0.28 0.28 0.41 0.38 0.38



Method R2D2 was experimentally proved to be better compare to R3D due to a smaller 

standard deviation of measured plane normal produced in the first experiment method. 

Although method R3D produced a larger standard deviation (~0.5 degree) than method 

R2D2 (~0.35 degree), however the influence is too insignificant to be observed in other 

experiments  through  out  the  length  of  50mm  workspace.  Method  R2D2  is 

experimentally proved to  be more appropriate,  in determining the pose of the laser 

plane, since the method fully makes use of the two dimensional constrains.
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Chapter 6: Three Dimensional Reconstruction of 

Objects Using a Turntable

6.1 Introduction

In our method of reconstructing the surface of an object one needs to illuminate the 

surface of the object with a laser light source. This process can be termed as scanning. 

Scanning  of  an  object  surface  could  be  either  performed  by  keeping  the  object 

stationary and moving the laser light across the object's surface or by keeping the laser 

light source stationary and moving the object surface across the laser light source. To 

accomplish the second method one can place the object at the centre of a turntable and 

rotate the object around the object's axis such that the object's surface is illuminated by 

the stationary laser light source.

Turntable based 3-D surface reconstruction system consists of three major components, 

namely  a  turntable,  a  camera,  and  a  laser  light  source.  To  perform a  3-D surface 

reconstruction, one needs to know the relative pose between each of these three major 

components. One way to know the relative pose between them is to manually align 

them to one another, with respect to a fixed coordinate frame [74].

Figure 6.1 shows the configuration of the components of a turntable based 3-D surface 

reconstruction system. To know the relative pose between each of the components the 

following manual operations were performed [74]:

•The camera  lens  axis  was  aligned to  the  Z-axis  of  the  turntable  coordinate 

frame, hence, producing the image plane which was parallel to the XY plane of 

the turntable coordinate frame.
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•The  distance  between  the  focal  point  of  the  camera  and  the  centre  of  the 

turntable, D, was measured. 

•On the surface of the turntable a line at an angle  l  to the YZ plane of the 

turntable was marked and the laser plane was aligned with this line.

•Also the laser plane was made perpendicular to the XZ plane and correlating 

with the Y-axis of the turntable coordinate frame.

Using the above set up, the location M X ,Y ,Z  on the surface of the scanned object, 

illuminated by the laser, was estimated from the camera image coordinate m u , v  , by 

using equations (6.1), (6.2) and (6.3).
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Figure 6.1: The general configuration of the apparatus used in turntable based 3-D surface 
reconstruction system.
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uu cosl−sinl

(6.1)



Where  u and  v is the size of a pixel, in metric, along the image axis  u and  v , 

respectively.

The  above  described  method  required  extensive  manual  intervention.  The  manual 

operation  of  aligning  the  camera  and  the  laser  light  source  with  each  other  was 

laborious, time consuming and error prone. Error introduced during the alignment of 

the components resulted in inaccurate estimate of the 3-D location of the points lying 

on the surface of the object.  In order to eliminate the error prone laborious manual 

alignment of the components, a set of auto-calibration procedures, to estimate the pose 

of  the  components  of  the  system,  were  investigated.  This  chapter  elaborates  these 

procedures and demonstrates their accuracy 

6.2 The need to know the relative pose of the laser plane and the 

relative pose of the turntable with respect to the camera

For the turntable based 3-D reconstruction along with a calibrated camera one needs to 

know the  relative  pose  of  the  laser  plane  and  the  turntable  with  respective  to  the 

camera. The need for this information is explained in detail below.

To reconstruct the 3-D surface of an object, the object was placed on the top of the 

turntable. Using a laser light emitter a laser plane was shone at the object. Where the 

laser plane intersected with the surface of the object,  being scanned, a laser line of 

locations  illuminated  by the  laser  was  formed.  A camera  image of  these  locations, 

illuminated by the laser was captured by the camera. In the camera image, the 2-D 

locations of the pixels illuminated by the laser were found. These 2-D locations were 

converted  into  3-D  coordinates  with  respect  to  the  camera.  This  conversion  was 

achieved by means of a triangulation process. For this process one needs to know the 

camera calibration parameters and the relative pose of the laser plane with respect to 

the camera. 
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Y=v v Z cosl−D  (6.2)

X=uu Z sinl−D (6.3)



To estimate the 3-D coordinates of the rest of the locations on the surface of the object, 

the laser plane was made to intersect on those locations. This was achieved by keeping 

the  camera  and  the  laser  plane  static  while  the  object  was  rotated  by rotating  the 

turntable. As the turntable was rotated, different locations on the surface of the object 

were  illuminated  by  the  laser.  Using  the  camera  images  of  the  newly  illuminated 

locations,  the  3-D  coordinates  of  these  locations  with  respect  to  the  camera  were 

estimated using the triangulation process. Making use of these set of 3-D coordinates, 

the 3-D surface of the object was reconstructed. 

For  this  reconstruction,  it  was  necessary to  know the relative angular  displacement 

between the set of 3-D coordinates. To estimate this angular displacement, the relative 

pose  of  the  turntable  with  respect  to  the  camera,  the  location  of  the  centre  of  the 

turntable and the rotational axis were needed to be known.

Hence, for the 3-D reconstruction of the surface of the object using the turntable, the 

relative pose of the laser plane and the relative pose of the turntable with respect to the 

camera were required. The relative pose of the laser plane with respect to the camera 

was estimated as discussed in the chapter Laser Plane Pose Estimation (Chapter 5). In 

this  chapter,  the estimation of the relative pose of the turntable  with respect  to  the 

camera, the location of the centre of the turntable and the rotational axis are discussed 

in detail in the following sections.

The estimation of the relative pose of the turntable with respect to the camera,  the 

location of the centre of the turntable and the rotational axis is termed as “turntable 

calibration”. In this study two different methods were used for the turntable calibration. 

In the first method, a checker pattern planar object was used and in the second method 

the turntable calibration was performed by using the features or markers on the surface 

of the turntable. These two methods of calibrating the turntable is discussed in detail in 

the following two sections.

6.3 Turntable calibration using checker pattern planar object 

The calibration planar object comprised of two planes having a common intersecting 

side. The calibration object was carried out by folding a checker pattern planar object 

151



along  the  common  intersecting  side.  This  calibration  object  is  referred  as  folded 

checker board (Figure 6.2a). 

In this method, to calibrate the turntable, first the folded checker board was placed, on 

the top of the turntable, such that the common intersecting side of the two planes was 

vertically at the top of the centre of rotation of the turntable. It was assumed that the 

axis of rotation of the turntable runs along the common intersecting side of the two 

planes. So, to resolve the rotational axis of the turntable only the common intersecting 

side of the two planes needed to be resolved. 

The orientation and the location of the common intersection line side of the two planes 

were estimated as follows. The folded checker board was represented by two planes, 

left hand side plane (P1) and the right hand side plane (P2) (Figure 6.2b). 

The plane P1 was represented by a point  A[a1,a2,a3]T  and its plane unit normal vector 

u  [u1,u2,u3]T and the plane P2 were defined by a point B[b1,b2,b3]T and its plane unit 

normal vector v  [v1,v2,v3]T. The intersection of the two planes was represented by the 

equations (6.4) and (6.5); where, the  x, y and  z in equations (6.4) and (6.5) are the 

coordinates of the point p(x,y,z) along the intersection of the two planes. 

Where the point p(x,y,z) is any point along the intersection of the two planes, there is a 

specific point, where the XY plane of the camera intersects the axis of rotation (Figure 

6.3).  If  we resolve  this  point  of  intersection  with  respect  to  the  camera  coordinate 

system then the value of y at this location will be equal to zero. Making the value of y 

equal to zero in the equations (6.4) and (6.5), the x and z values are determined using 

the equations (6.6) and (6.7).
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(6.4)

(6.5)v1x−b1v2 y−b2v3 z−b3=0

u1x−a1u2 y−a2u3 z−a3=0



Thus, the rotational axis of the turntable was characterised by the 3-D point p and the 

unit vector T rotA  of the intersection of the two planes. The value of T rotA  is given by 

the equation (6.8). In the equation 6.8 the normal of the two intersecting planes, u

and v  was estimated by estimating the pose of the two planes using equation 3.13 

(Refer Section 3.4.1, Planar object pose estimation). The third column of the rotation 

matrix of the estimated planar pose is the plane normal of the planar object.
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Figure 6.2: Figure (a) illustrating the calibration object, folded checker board, placed at the centre of  
the turntable.

Figure (b) illustrating the notations for the different planes of the folded checker board and the location 
of the rotational axis of the turntable. 
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The accuracy of estimating the orientation and location of the rotational axis of the 

turntable  using  the  above  described  method  was  verified.  The  verification  was 

performed by simulating a turntable by creating an artificial image in POV-ray [75] 

with the known turntable rotational axis ( T rotA ) and the points on the rotational axis 

(p). The estimated results were subsequently compared with the actual values as shown 

in Table 6.1. The following paragraph explains the process of the simulation. 

The scene in the POV-ray was created with the virtual camera, a virtual turntable and a 

virtual folded checker board. The creation of the virtual objects in the scene is detailed 

below.

The properties of the virtual camera are listed in the Table 6.2. The 3-D coordinate 

frame of the camera was taken the same as the world 3-D coordinate frame. 

The turntable 3-D coordinate system was centred at the centre of the turntable with the 

XY plane on the surface of the turntable and the Z-axis perpendicular to the turntable. 

Initially, the turntable 3-D coordinate frame was aligned with the camera coordinate 

frame. Subsequently, the virtual turntable was rotated around the X-axis of the camera 

coordinate frame by 50 degrees and translated by 32 units along the camera Z-axis. 

Thus, the turntable normal  i.e.  its  the rotational axis, was oriented [0.0000, 0.7660,  

0.6428]T with  respect  to  the  world  coordinates  which  was  the  same as  the  camera 

coordinate frame. And the turntable rotational axis intersected the camera XY plane at 
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(6.8)T rotA=
CrossProduct u ,v 

sin
Where

=cos−1u⋅v 

u=[u1u2 u3]
T , [ pose P1

camera ]4x4=[1,1 1,2 u1 1,4 
2,1 2,2 u2 2,4
3,1 3,2 u3 3,4 
4,1 4,2 4,3 4,4]4x4

v=[v1 v2 v3]
T , [ poseP2

camera ]4x4=[1,1 1,2 v1 1,4
2,1 2,2 v2 2,4
3,1 3,2 v3 3,4
4,1 4,2 4,3 4,4

]
4x4



[0.0, 0.0, 32.0]T. 

Two planar checker  board objects  (P1 and P2) were created to simulate the virtual 

folded checker board for the turntable calibration process. To ease the creation of the 

virtual scene,  the P1 plane was created by attaching a three dimensional coordinate 

frame to the bottom right corner of the plane, with the XY plane along the surface of 

the planar object and the Z-axis perpendicular to it.  To start with, the planar object 

coordinate frame was aligned with the camera coordinate frame. Subsequently, the P1 

plane was firstly rotated around the Y-axis by 20 degrees and -40 degree around the 

camera X-axis. After the rotation the planar object was translated by 32 units along the 

camera  Z-axis.  This  placed  the  planar  object  perpendicular  to  the  surface  of  the 

turntable (i.e. form a right angle between the turn-table and the planar object).

The  P2 plane was created similar  to  the  P1 planar  object  except  for  the  following 

differences :

● The three dimensional coordinate frame was located to the bottom left corner of 

the plane

● The P2 plane was firstly rotated around the Y-axis by -20 degrees

To ease the process of determining the poses of the planar planes, the coordinate frames 

of the two planar object (P1 and P2) were re-located from the initial locations (bottom 

right and bottom left) to the locations shown in Figure 6.2b. 

Correspondences of four known locations on the planar objects were used to estimate 

the pose of each of the planar object. The four known locations were the four corner 

locations. Both the ground truth locations of the corners as well as the corners' locations 

estimated by the  corner  detection  processes  were used.  The difference between the 

ground truth corners' location with the detected corners are shown at the beginning of 

the table. The difference between the estimated pose of the planar object (found by 

using the estimated corner locations with their corresponding grid coordinate, Section 

(3.4.1), Planar object pose estimation) and the ground truth poses are listed at the centre 

of the table. The difference between the estimated and the ground truth turntable pose 

parameters (p, T rotA ) are listed at the bottom of the table.
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Figure 6.3: Intersection between camera plane at Y=0 with turntable rotational axis.
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Table 6.1: Comparison of turntable calibration result between the ground truth and detected from 
artificial images.

Corners,(grid coordinate)
Plane (0,0) (3,0) (3,7) (0,7)Left Plane, P1

Ground Truth 250.096 142.381 303.040 133.363 305.494 231.569 260.473 241.795
Detected 250.335 142.019 303.031 133.783 305.162 231.942 260.203 241.403

Error 0.239 0.362 0.009 0.420 0.332 0.373 0.270 0.392

Right Plane, P2
Ground Truth 354.257 136.309 408.277 145.511 395.057 245.323 349.258 234.919

Detected 354.003 136.741 407.953 145.079 395.358 244.781 349.639 235.434
Error 0.254 0.432 0.324 0.432 0.301 0.542 0.381 0.515

Plane Pose P1 P2
Ground Truth 0.9397 0.0000 -0.3420 -3.7588 0.9397 0.0000 0.3420 1.8794

-0.2198 0.7660 -0.6040 -5.2490 0.2198 0.7660 -0.6040 -5.6887
0.2620 0.6428 0.7198 25.8097 -0.2620 0.6428 0.7198 26.3337
0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000

Detected
0.9445 -0.0001 -0.3286 -3.7769 0.9437 0.0004 0.3308 1.8885

-0.2092 0.7710 -0.6015 -5.3003 0.2095 0.7731 -0.5987 -5.7040
0.2534 0.6368 0.7282 26.0126 -0.2560 0.6343 0.7295 26.4891
0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000

Information from Pose:
Rotation at X-axis (degree)
Ground Truth -40.000 -40.000
Detected -39.559 -39.375
Rotation at Y-axis 
Ground Truth 20.000 -20.000
Detected 19.182 -19.317
Rotation at Z-axis 
Ground Truth 0.000 0.000
Detected -0.006 0.026
Translation (unit)
Ground Truth
X -3.759 1.879
Y -5.249 -5.689
Z 25.810 26.334
Detected
X -3.777 1.888
Y -5.300 -5.704
Z 26.013 26.489

Rotation Error -0.441 0.818 0.006 -0.625 -0.683 -0.026
Translation Error
X 0.018 -0.009
Y 0.051 0.015
Z -0.203 -0.155

Ground Truth -0.3420 -0.6040 0.7198 0.3420 -0.6040 0.7198
Detected -0.3286 -0.6015 0.7282 0.3308 -0.5987 0.7295
Error -0.0134 -0.0025 -0.0083 0.0112 -0.0053 -0.0096

Ground Truth -3.7588 -5.2490 25.8097 1.8794 -5.6887 26.3337
Detected -3.7769 -5.3003 26.0126 1.8885 -5.7040 26.4891
Error(same as 0.0181 0.0514 -0.2029 -0.0091 0.0153 -0.1554
erro of translation)

Rotational axis p(x,y,z)
x y z

Ground Truth 0.0000 0.7660 0.6428 0.0000 0.0000 32.0000
Detected -0.0020 0.7727 0.6348 -0.0831 0.0000 32.0677
Error 0.0020 -0.0066 0.0080 0.0831 0.0000 -0.0677

A(a 1,a2,a3) B(b 1,b2,b3) 

a1 a2 a3 b1 b2 b3

∣v∣∣u∣

T rotA



6.4 Turntable calibration by using the features marked on the 

turntable

The major short coming of the turntable calibration using folded checker pattern planar 

object is the need to place the common axis of the two planes vertically above the 

centre of the turntable. This to ensure that the rotational axis of the turntable lies along 

the line of intersection of the two planes (See Section 6.3). This manual process is time 

consuming, laborious and error prone. One way to assist the human operator, in placing 

the common axis of the two planes vertically above the centre of the turntable, is to 

mark turntable with concentric circles and radial lines passing through the centre of the 

turntable. The human operator could make use of the grooves of the radial  lines as 

guides to place the common axis of the two planes vertically above the centre of the 

turntable.

A much better solution is to completely eliminate the need for the planar object. This 

could  be  achieved by making use  of  the  turntable  itself  as  a  planar  object  for  the 

calibration of the turntable. The following sections (Section 6.4 and 6.5) discusses two 

such methods where the turntable is used as the calibration planar object.

6.4.1 Turntable calibration by marking regular grid points on the 

turntable

In this method, regular grid points are marked on the surface of the turntable. Making 

use  of  these known locations  the  axis  of  rotation and the  centre  of  rotation of  the 

158

Table 6.2: The properties of the virtual camera
Camera Type Perspective Render Mode

x y z Size
Location 0.0000 0.0000 0.0000 Width: 640
Sky 0.0000 1.0000 0.0000 Height: 480
Direction 0.0000 0.0000 1.0000 Quality
Right 1.3333 0.0000 0.0000 Quality: Mode 9
Up 0.0000 1.0000 0.0000 Anti-aliasing: Enabled
Look at 0.0000 0.0000 1.0000 Method Non-recursive

Threshold 0.3
Depth 2



turntable were estimated.

In this process, it is assumed that the centre of rotation of the turntable does not change 

while  the turntable  rotates.  But the pose of the rotational axis  might change as the 

turntable  rotates.  That is,  the surface of the turntable might  not  rotate on the same 

plane.  To address  this  issue,  the  pose  of  the  rotational  axis  is  estimated  for  every 

angular interval (every 20 degrees say) 

Knowing the actual locations of the regular grid points marked on the planar surface of 

the  turntable  and their  corresponding image coordinates,  a  planar  homography was 

estimated (See section 3.3.2.1). Making use of this planar homography, the pose of the 

planar plane,  i.e.  the surface of the turntable, was estimated (See section 3.4.1). Once 

the pose of the turn table was estimated, the centre point of the turntable (p), on the 

estimated plane, could be found by projecting the assigned grid coordinate of the centre 

point to the camera coordinate system by using equation (3.22). 

The  regular  grid  points  on  the  turntable  were  the  points  on  the  concentric  circles 

marked at regular angular interval. The grid points were marked on the turntable by 

making  use  of  standard  carpentry  tools  (calliper/protractor)  commonly  available  in 

general mechanical workshop. An image of the real turntable with grid points marked 

on it is shown in Figure 6.4.
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Figure 6.4: An image of the surface of the turntable. White markers were systematically installed on the 
platform. Lines were intersecting at the centre of the turntable. 



To find the grid coordinates of the points on the turntable, the inner most concentric 

circle was used. The points were marked at a regular angular interval of 45 degrees. 

Using a calliper, the radius of the innermost concentric circle was measured accurately 

and was found to be 40mm.

Planar homography can be formed by considering any set of four points on the regular 

grid.  Figure  6.5  shows  the  grid  coordinate  frame  marked  in  green  on  top  of  the 

turntable. The planar homography was formed (Section 3.3.2.1) making use of the four 

points  ( pp1 , pp2 , pp3 , pp4 )  as  shown  in  Figure  6.5.  The  homogeneous  grid 

coordinates of the four points in camera calibration unit are given in equation (6.9). 

Once the planar homography was determined, the pose of the virtual plane, created by 

the four markers, was estimated (Section 3.4.1). The 3-D coordinate of the centre of the 

circle,  p  was determined from the last  column of  the estimated virtual  plane pose, 

which is the translation of the origin of the turntable coordinate frame to the origin of 

the camera coordinate frame. The rotational axis which is perpendicular to the surface 

of  the  turntable,  parallel  to  the  Z-axis  of  the  homography  coordinate  frame  was 

extracted from the third column of the detected pose of the coordinate frame.
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Figure 6.5: A chosen grid coordinate system of the turntable.



Using a simulated image, as a scene in the POV-ray, with known parameters of the 

turntable,  the above implementation  was tested.  The  simulated environment  for  the 

turntable was the same as the one discussed in Section 6.3 (See Section 6.3 Turntable 

calibration using checker pattern planar object), except when the folded checker board 

was removed and instead the grid locations were marked on the turntable. The centre of 

the turntable expressed in the camera coordinate frame is point p(x,y,z).

The validation was carried out as follows:

Using  four  known  grid  locations  and  the  correspondences  of  the  points  with  the 

locations in the camera image (found by blob locations, the centre of gravity of the blob 

of white pixels), the homography, was found (Using equation (3.5)).

Using the homography, the pose of the virtual plane having the four marker locations 

was estimated (equation (3.17)). This was the pose of the turntable.

From the pose estimation,  the centre  and the axis  of rotation of the turntable were 

extracted (explained previously, five paragraphs above, in this section).

The point  p(x,y,z) with  y is equal to zero was subsequently resolved using equation 

(5.20) by projecting the point p along the rotational axis vector T rotA  to the plane with 

the origin coordinate [0.0,0.0,0.0]T at default plane normal,Y-axis [0.0,1.0,0.0]T.  The 

results obtained making use of the above implementation are provided in Table 6.3.
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Where r  is the radius of the circle used.

(6.9)

pp1=[0,−r ,0,1]T

pp2=[r ,0,0,1]T

pp3=[0,r ,0 , 1]T

pp4=[−r ,0,0,1]T
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Table 6.3: Comparison of turntable calibration result between the ground truth and detected from 
artificial images by using markers on checker board.

Corners,(grid coordinate)
Plane pp1 pp2 pp3 pp4

Homography plane on turn table
Ground Truth 245.267 191.963 394.733 191.963 418.143 303.085 221.857 303.085

Detected 244.500 191.500 394.500 191.500 417.500 302.500 221.500 302.500
Error 0.767 0.463 0.233 0.463 0.643 0.585 0.357 0.585

Plane Pose P1
Ground Truth 1.0000 0.0000 0.0000 -5.6569

0.0000 0.6428 0.7660 -3.6362
0.0000 -0.7660 0.6428 36.3334
0.0000 0.0000 0.0000 1.0000

Detected
1.0000 0.0004 0.0000 -5.7287

-0.0003 0.6499 0.7600 -3.6800
0.0003 -0.7600 0.6499 36.4207
0.0000 0.0000 0.0000 1.0000

Information from Pose:
Rotation at X-axis 
Ground Truth 50.000
Detected 49.466
Rotation at Y-axis 
Ground Truth 0.000
Detected 0.000
Rotation at Z-axis 
Ground Truth 0.000
Detected 0.023
Translation
Ground Truth
X -5.6569
Y -3.6362
Z 36.3334
Detected
X -5.7287
Y -3.6800
Z 36.4207

Rotation Error 0.534 0.000 -0.023
Translation Error
X 0.072
Y 0.044
Z -0.087

Rotational axis p(x,y,z)
x y z

Ground Truth 0.0000 0.7660 0.6428 0.0000 0.0000 32.0000
Detected 0.0000 0.7600 0.6499 -0.0626 -0.0381 31.9737
Error 0.0000 0.0060 -0.0071 0.0626 0.0381 0.0263

Ground Truth 0.0000 0.0000 32.0000
Detected -0.0623 0.0000 32.0057
Error 0.0623 0.0000 -0.0057

p(x,y,z) along vector the Rotational axis with y equal to zero

T rotA



6.4.2 Turntable calibration using X-corner features on a planar 

object of irregular checker pattern

An issue faced in the turntable calibration using features marked on the turntable was 

that the detection of the markers suffered from perception distortion. That is the size of 

the marker, appearing in the image, varied depending upon how far it was away from 

the camera. That was one of the main reason it was found that the accuracy of the 

marker based turntable pose estimation, discussed in section 6.4.1, in an idle simulated 

camera  image,  was  slightly  less  compared  to  the  folded  checker  board  method 

discussed in section 6.3. 

Hence, instead of markers on the surface of the turntable it was decided to make use of 

a  patterned checker  board struck flat  on the surface of  the turntable.  The X-corner 

detection methodology,  made use of the detected corner  features (Section 4.6.3),  to 

handle  the  perspective  distortion  (of  the  corner  sizes).  To eliminate  the  process  of 

manually select the extreme corners, an irregular checker board pattern was designed 

(Figure 6.6a). Using this an algorithm can automatically estimate the extreme corners 

(Figure 6.14). 

A regular planar pattern, e.g. a symmetric checker board pattern (Figure 6.2) does not 

give a unique corner orientation when the pattern was rotated around its axis. Hence, to 

determine the pose of the checker board, some initial information,  e.g. setting the top 

left  corner  as  the  origin  of  the pattern,  need to  be  provided  to  the  machine  vision 

algorithm. In contrast an irregular planar pattern, with a unique orientation, makes it 

possible  for  the  machine  vision  algorithm  to  automatically  determine  the 

correspondence of the features in the camera image (namely corners) with the planar 

object  (Figure  6.14).  Planar  homography  can  be  estimated  by  making  use  of  this 

identified correspondences. Once the planar homography was estimated, the pose of the 

planar object was found by using the method discussed in planar object pose estimation 

in Section 3.4.1.

Still the camera image of a irregular planar pattern can be distorted due to perspective 

distortion. Before one tries to get a match of the camera image, with the actual pattern, 

it is necessary to rectify the camera image for perspective distortion. The rectification 
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was performed by estimating the perspective distortion parameters; using which the 

camera image was rectified.  The actual perspective distortion might  be resolved by 

repeatedly rectifying the camera image. Using the rectified camera a set of accurate 

correspondences  were  subsequently  identified.  The  planar  homography  can  be 

estimated by making use of this more correctly identified correspondences. Once the 

planar homography was estimated, the pose of the planar object was found by using the 

method discussed in planar object pose estimation in Section 3.4.1.

The  following  sections  will  discuss  in  detail  the  process  of  perspective  distortion 

rectification  (Within  Section  6.4.2.2)  and  the  robust  estimation  of  the  planar 

homography (Section 6.4.2.1).

Making use of the irregular pattern, the pose of the turntable was estimate as described 

below:

The irregular planar object was placed flat on the turntable. The turntable was rotated at 

regular angular interval and the pose of the turntable was estimated. The reason for 

estimating the pose of the turntable at different angular orientation was to handle the 

possibility that  the  turntable  might  not  rotate  at  a  perfect  plane  due to  non-centric 

rotational axis and/or non-vertical rotational axis. The estimated poses of the planar 

object at multiple locations help in handling these errors. The design of non-self-similar 

planar pattern and the process of automatic turntable pose calibration are discussed in 

detail below.

6.4.2.1 Design of the irregular planar pattern having X-corner 

features

A minimum of four correspondences are needed to create a planar homography. But the 

more the number of correspondences are used, the more robust will be the estimation of 

the planar homography. Hence, an irregular planar pattern with twenty one X-corners 

was created as shown in Figure 6.6a. A grid coordinate frame was assigned,  to the 

irregular planar object, with the origin of the coordinate frame centred at the centre of 

the pattern.  To ease the process of turntable  pose estimation,  the origin of the grid 

coordinate frame was aligned to the centre of rotation of the turntable (Figure 6.6b).
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6.3.2.2 The process of automatic turntable pose calibration

To accurately estimate the pose of the planar object, and hence the pose of the turntable, 

one need to know the perspective distortion parameters. To determine these parameters, 

the correct grid coordinates of each of the salient features, on the planar object, need to 

be  corresponded  with  the  correct  projected  image  coordinates  of  the  features.  The 

salient features of the planar object, in this case are the twenty one X-corner locations.

The  correspondence  of  the  grid  coordinates  of  the  X-corner  locations  with  their 

corresponding projected image coordinates were performed as follows:

Initially,  all the prominent features in the image (Figure 6.7) were identified with a 

general feature detector, such as the Shi-Tomasi [76] feature detector. The result of this 

detection process is shown in Figure 6.8. Next, to pick up only those features that are of 

interest  (i.e. the  X-corners),  inter-image  subtraction  technique  was  used.  The  inter-

image subtraction technique made use of another image where the features of interest 

had changed to another location. For example, this could be the camera image of the 

turntable  platform  rotated  by  a  constant  step  angle  (Figure  6.9).  The  inter-image 
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Figure 6.6: (a) Figure showing the designed irregular planar pattern. 

(b) Figure showing the location of the grid coordinate frame assigned to the planar object and the grid 
coordinate assigned to each of the X-corners. All the X-corners are circled.
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subtraction was performed by firstly subtracting the next image with the current image. 

In the resulting image (Figure 6.10),  if  the change of the pixel  intensity value was 

larger than a threshold value, it  was considered that there was a possibility that the 

feature  of  interest  was  located  at  that  pixel  location.  This  way all  the  extraneous 

features points were eliminated from consideration. The result of thresholding, where 

the image pixel location with very little difference between the current image and the 

next image were thresholded and binarised into white colour is provided in Figure 6.11. 

The image pixels with high difference were subsequently thresholded and binarised into 

black colour.  The detected features,  produced by using Shi Tomasi feature detector, 

were superimposed into the binarised image and shown in Figure 6.12. The features 

points lying at the white region of the binarised image were subsequently removed.

The designed irregular planar pattern consisted of both the L and X-corners which were 

successfully  detected  by  the  Shi-Tomasi  feature  detector.  These  corner  features 

remained detected even after the process of inter-image subtraction (since all the planar 

features points were rotated together). Within a small  window of interest  centred at 

each of the location of the features, detected above, an X-corner detector proposed by 

Chen (Section 4.6.4), was subsequently used to pick up the actual twenty one X-corners 

in  the image of  the irregular  planar  pattern.  At  each feature  location,  the  X-corner 

detection process yielded two results, namely the refined X-corner image coordinate 

and  the  X-cornerness  of  the  X-corner.  From  this  list  of  X-corners  with  their 

corresponding X-cornerness twenty-one of the X-corners, with highest  X-cornerness 

measurements, were identified as the X-corners. The result of this operation is shown in 

Figure 6.14.

Once the twenty one X-corners were successfully identified, in the image, the next step 

was to identify the corresponding grid coordinate of each of the identified X-corner in 

the image. This was performed by identifying the corners at the top left most and right 

most and bottom left most and right most corners. These corners, located at the extreme 

points,  were  identified  by  finding  those  four  corners  which  form  the  largest  area 

spammed by the polygon.

Once the extreme four X-corners were identified, the four X-corners were sorted to be 

located in a clock-wise direction/orientation. Making use of these four extreme corners, 
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a trial and error method was adapted to estimate the perspective distortion parameters. 

The  trial  and  error  process  was  carried  out  as  follows.  Making  use  of  the 

correspondence between the four sorted X-corner image coordinate points and the four 

grid  coordinate  points  arranged  in  clock  wise  ([-2,-2],  [2,-2],  [2,2],  [-2,2])  (Figure 

6.6b),  the  planar  homography  was  estimated  together  with  the  corresponding 

perspective  distortion  parameters.  Applying  the  estimated  perspective  distortion 

parameters  the image coordinates of the planar  object was corrected.  The corrected 

image  was  binarised  and  a  black  and  white  image  of  the  perspective  distortion 

corrected planar object image was formed. To find out whether the estimated planar 

homography was accurate, the area within the white cross (Figure 6.6a) was estimated, 

by counting the number of white pixels. If the number of white pixels were within a 

thresholded  value,  (say  80%  of  the  expected  value),  then  the  estimated  planar 

homograhy was accepted.  Else the process was repeated by cycling the four sorted 

points,  with  maximum  up  to  four  trials.  The  four  possible  results  of  perspective 

distortion corrected planar object images were shown in Figure 6.13.

Before proceeding with the process of estimating the pose of the turntable, each of the 

detected X-corners needs to be assigned the corresponding grid coordinate. This was 

performed  by  projecting  the  grid  coordinates  onto  the  image  making  use  of  the 

estimated planar homography. The nearest X-corner with respect to the projected grid 

coordinate was assigned the grid coordinate. An index, corresponding to each of the 

grid coordinate was assigned to each of the corresponding X-corner as shown in Figure 

6.14.

Once the correspondences were identified, the estimation of the perspective distortion 

was refined by estimating a planar homography by making use of all the twenty one 

correspondences. 

Thus, the pose of the planar pattern lying on the surface of the turntable was estimated. 

Hence, the pose of the turntable (p, T rotA ), was estimated by using the same method as 

discussed in Section 6.4.1 (Turntable calibration by marking regular grid points on the 

turntable). 
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Figure 6.7: Figure showing the camera image of the irregular pattern attached to the surface of the 
turntable.

Figure 6.8: The result of Shi-Tomasi feature detector.
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Figure 6.9: The image of the turntable rotated to difference location. 

Figure 6.10: The result of the image subtraction between Figure 6.7 and Figure 6.9.
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Figure 6.11: Result of binarisation of Figure 6.10.

Figure 6.12: The result of Shi Tomasi feature detector (Figure 6.8) was superimposed onto the binarised 
image. The background features lying at the white region were subsequently removed.
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Figure 6.14: Image showing the detected salient features. All the detected twenty one X-corners are 
highlighted in yellow. 

A unique index (from 0 to 20) is assigned to each of the X-corner, corresponding to the X-corner's  
location in the grid coordinate.

Figure 6.13: The cropped images four possible perspective distortion corrected planar pattern. The right  
most image is the correct detected planar pattern (Figure 6.6a).



6.5 Robust turntable pose estimation based on multiple estimates

To estimate the turntable  pose robustly,  the turntable pose was estimated at  regular 

angular intervals  and subsequently global optimisation was applied to the estimated 

parameters to arrive upon a consensus value of the pose parameters. This process is 

explained in detail in this section as follows. 

Using the process “Turntable calibration using X-corner features on a planar object of  

irregular checker pattern” (Section 6.4.2), the pose of the turntable was estimated at 

regular angular interval as the turntable was rotated around its central axis. From the 

list, of the estimated turntable pose parameters, the locations of the centre of rotation, 

was extracted.  From this  list  of  the location of the centre  of rotation the euclidean 

distance between each of the location with the rest of the locations were found. For 

each turntable, angular placement of the mean of the euclidean distances between its 

location of the rotational axis, with the rest of the locations, of the rotational axis, for 

other angular placements of the turntable, was found [Table 6.4].

The turntable  was  rotated and the pose of the turntable  was  estimated at  a  regular 

angular interval of eighteen degrees. Table 6.4 lists the euclidean distance difference 

between the location of the centre of axis of rotation for each of the turntable angular 

position  and  the  rest  of  its  angular  position.  The  mean  difference  along with  their 

standard deviation were plotted and shown in Figure 6.15. From this plot,  the pose 

estimation at angular position 2600  (20x13) and 3400(20x17), having the largest mean 

difference,  were  found  to  be  outliers.  Removing  the  pose  parameters  of  these  two 

angular positions, of the turntable, the pose parameters from the rest of the angular 

positions were considered as a list of consensus poses.

Removing the  outlier  poses,  that  had the  largest  mean difference,  yielded  a  list  of 

consensus poses. The process of global optimisation was carried out as follows.

Firstly,  for each of the poses (in the list  of  consensus poses) the four extreme grid 

coordinates ([-2,-2],[-2,2],[2,2],[2,-2]), of the designed planar pattern, were projected to 

the camera coordinate frames. The result of this process was a set of 3-D coordinate 

points distributed across the plane of rotation of the turntable. 
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Assuming that the turntable was a perfect planar object, a plane was fitted to the set of 

3-D coordinate points by using Moment of Inertia Analysis (MIA) global optimisation 

process  (Section  5.5.2.3).  The  result  of  Moment  of  Inertia  Analysis  yielded  two 

information about the best fitted plane, namely the normal of the plane and a 3-D point 

lying on the plane.

Since the planar object was firmly fitted onto the turntable, the plane normal yielded by 

MIA was the global optimised plane normal of the turntable.

The 3-D point was the average of all the four extreme grid coordinates, of the planar 

object, at different rotational pose of the turntable. This average was in fact the centre 

of  the  planar  object.  Since  the  centre  of  the  planar  object  was  physically  made to 

correlate  with  the  centre  of  the  turntable,  thus  the  centre  of  the  turntable,  p,  was 

estimated.

The estimated centre of rotation, p, of the turntable, was subsequently multiplied with 

the  corresponding  metric  unit  for  a  single  unit  of  the  designed  planar  pattern,  in 

millimetre. 

173

Table 6.4  Euclidean dis tance different between each measured turntable centre point 

LOC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 0.00 6.46 3.51 1.58 0.24 3.79 5.60 3.98 2.20 1.58 2.98 0.42 10.80 2.96 0.77 2.24 9.96 5.35
2 6.46 0.00 2.95 4.89 6.25 10.25 12.07 10.44 8.65 8.03 3.52 6.17 17.26 9.40 5.74 8.68 3.50 1.14
3 3.51 2.95 0.00 1.94 3.30 7.30 9.11 7.49 5.71 5.08 0.65 3.23 14.31 6.46 2.80 5.73 6.45 1.85
4 1.58 4.89 1.94 0.00 1.36 5.37 7.18 5.55 3.77 3.15 1.42 1.32 12.38 4.52 0.89 3.80 8.39 3.78
5 0.24 6.25 3.30 1.36 0.00 4.01 5.82 4.19 2.41 1.79 2.75 0.25 11.02 3.17 0.57 2.46 9.75 5.14
6 3.79 10.25 7.30 5.37 4.01 0.00 1.82 0.30 1.61 2.23 6.76 4.10 7.01 0.92 4.52 1.62 13.75 9.14
7 5.60 12.07 9.11 7.18 5.82 1.82 0.00 1.67 3.43 4.05 8.57 5.91 5.21 2.71 6.34 3.42 15.57 10.95
8 3.98 10.44 7.49 5.55 4.19 0.30 1.67 0.00 1.79 2.41 6.93 4.27 6.83 1.08 4.70 1.81 13.93 9.33
9 2.20 8.65 5.71 3.77 2.41 1.61 3.43 1.79 0.00 0.62 5.15 2.49 8.61 0.78 2.92 0.30 12.15 7.54
10 1.58 8.03 5.08 3.15 1.79 2.23 4.05 2.41 0.62 0.00 4.53 1.86 9.23 1.38 2.29 0.70 11.53 6.92
11 2.98 3.52 0.65 1.42 2.75 6.76 8.57 6.93 5.15 4.53 0.00 2.67 13.76 5.90 2.25 5.18 7.00 2.42
12 0.42 6.17 3.23 1.32 0.25 4.10 5.91 4.27 2.49 1.86 2.67 0.00 11.10 3.23 0.46 2.52 9.66 5.06
13 10.80 17.26 14.31 12.38 11.02 7.01 5.21 6.83 8.61 9.23 13.76 11.10 0.00 7.86 11.52 8.59 20.76 16.14
14 2.96 9.40 6.46 4.52 3.17 0.92 2.71 1.08 0.78 1.38 5.90 3.23 7.86 0.00 3.66 0.74 12.89 8.28
15 0.77 5.74 2.80 0.89 0.57 4.52 6.34 4.70 2.92 2.29 2.25 0.46 11.52 3.66 0.00 2.94 9.23 4.62
16 2.24 8.68 5.73 3.80 2.46 1.62 3.42 1.81 0.30 0.70 5.18 2.52 8.59 0.74 2.94 0.00 12.17 7.55
17 9.96 3.50 6.45 8.39 9.75 13.75 15.57 13.93 12.15 11.53 7.00 9.66 20.76 12.89 9.23 12.17 0.00 4.62
18 5.35 1.14 1.85 3.78 5.14 9.14 10.95 9.33 7.54 6.92 2.42 5.06 16.14 8.28 4.62 7.55 4.62 0.00

MAX 10.80 17.26 14.31 12.38 11.02 13.75 15.57 13.93 12.15 11.53 13.76 11.10 20.76 12.89 11.52 12.17 20.76 16.14
STD 3.10 4.18 3.44 3.09 3.11 3.76 4.00 3.79 3.41 3.24 3.31 3.10 4.80 3.57 3.09 3.41 4.80 3.91

MEAN 3.58 6.97 4.88 3.96 3.58 4.69 6.08 4.82 3.90 3.74 4.58 3.60 10.69 4.22 3.68 3.91 10.07 6.10



6.6 Verifying the accuracy of the turntable pose estimation

The pose of the turntable, (p, T rotA ), was initially estimated with the designed method 

(Section 6.5). To verify the above estimation the following physical verification was 

performed. Firstly the platform of the turntable was replaced with a calibration object 

having a very sharp tip (Figure 6.16a). The calibration object, was placed in such a way 

that the tip physically lie along the rotational axis of the turntable (Figure 6.16b). The 

laser plane was made to intersect the sharp tip and the pose of the laser plane was 

estimated (Section 5.2.4.1.2.2).

Using both the estimated laser plane pose parameters and the image pixel location of 

the tip, illuminated by the laser, the 3-D location of the tip,  pt,  (Figure 6.16b), was 

determined using the triangulation method (Section 3.4.3.1). Using the two locations p 

(from the pose of the turntable estimation) and pt, (3-D location of the tip) a vector, V t , 

was estimated. Theoretically the angle,  at, between this estimated vector  V t  and the 

vector,  T rotA , got from the turntable pose estimation should be equal to zero. Using 

equation (3.24) it was found that at is very close to zero (0.1 degree).
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Figure 6.15: The plotting of mean different between the measured location of the turntable centre point  
and the standard deviation.
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Figure 6.16: (a) The laser plane was made intersected at the tip of the calibration object. (b) The 
location of the measured 3-D coordinate of the tip should lie on the calibrated rotational axis, T rotA .
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6.7 Three-dimensional surface reconstruction using the estimated 

turntable pose parameters

The object whose surface needed to be reconstructed was placed on the turntable. The 

object surface was scanned by making use of a laser strip light as the turntable was 

rotated at regular angular intervals. At each rotational step, an image of the laser line 

illuminated  points  on  the  object  was  captured.  The  image  location  of  the  pixels 

illuminated  by  the  laser,  with  very  high  red  colour  image  intensity  values,  were 

segmented by thresholding the red channel of the RGB colour space. The segmented 

image pixels, illuminated by the laser, were subsequently triangulated (Section 3.4.3.1) 

to create the list of 3-D coordinate points with respect to the camera coordinate frame. 

These set of 3-D coordinate points with respect to the camera coordinate frame were 

resolved/rotated to their corresponding angular location ( tt ),  on the surface of the 

object. This transformation was performed as follows: The set of 3-D locations were 

first translated to the centre of location of the camera, as the origin. This was carried 

out by deducting the location of the estimated turntable centre point, p, from each of the 

3-D coordinate  points.  Subsequently the  3-D coordinate  points  were rotated  by the 

angular displacement by which the turntable was rotated. The rotation was performed 

by multiplying the translated set of 3D coordinate points with a three by three rotation 

matrix, using the known Rodrigues' rotation formula [77], as shown in equation (6.10). 

The parameters of the three by three rotation matrix was generated from the estimated 

parameters of the turntable rotational axis,  T rotA , and the angle, ( tt ), to which the 

turntable was rotated. After the 3-D points rotation, they were translated back to the 

camera coordinate frame by adding the estimated turntable centre point,  p, to each of 

the location. 
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6.8 Result and discussion

The implemented  turntable  pose  estimation  algorithm using  X-corner  features  on  a 

planar  object  of  irregular  checker  pattern  (Section  6.4.2)  was  used  to  calibrate  a 

turntable.  The  calibrated  turntable  was  subsequently  used  to  perform  3-D  surface 

reconstruction of a plastic cap in white colour (Figure 6.17). The cap was installed 

around the centre of the turntable. A laser line emitter was cast to the object and the 

pose  of  the  laser  plane  was  estimated  (Section  5.2.4.1.2.2).  Table  6.5  provides  the 

system  calibration  parameters.  The  turntable  was  designed  with  1000  steps  per 

revolution. 100 images were captured by systematically rotating the turntable with 10 

steps per image, 3.6 degree angular interval. The captured images (Figure 6.17) were 

thresholded (Figure 6.18a) and sub-pixel operator (Section 3.4.2.2.2) was applied to 

each row of the detected pixels illuminated by the laser (Figure 6.18b). The result of the 

sub-pixel  operator,  the  detected pixel  illuminated  by the laser  with up to  sub-pixel 

accuracy  was  triangulated  (Section  3.4.3.1)  and  subsequently  rotated  to  the 

corresponding location (Section 6.6). All the acquired 3-D points of the scanning object 

were loaded into Meshlab for visualisation (Figure 6.19). The cloud of 3-D points was 

subsequently processed by Powercrust  to  generate a polygonal  mesh and plotted in 

Meshlab (Figure 6.20a).  A close up look of the object  being scaned was shown in 

Figure 6.21b.
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Where

[ cos ttwx
21−costt w x w y1−costt−w z sintt w y sinttwx w z 1−costt

w z sinttwx w y1−cos tt cos ttwy
21−costt −w x sinttw y w z 1−costt

−w y sinttw x w z 1−costt w x sinttw y w z1−cos tt costtw z
2 1−costt

]
(6.10)

T rotA=[w x

w y

w z
]
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Table 6.5 System parameters for 3-D surface reconstruction system
Camera Intrinsic parameters

537.752 0.000 325.406
0.000 534.896 219.324
0.000 0.000 1.000

Laser plane pose estimation
[ 0.928 -0.196 0.318
[ -6.397 -29.222 372.188

Turntable pose estimation
[ -0.019 0.879 0.477

[ 22.917 43.819 329.955

]T

]T

]T

]T

n
m

T rotA

p

Figure 6.17: The white colour cap illuminated by the laser.

Figure 6.18:(a) The cropped image of the process of thresholding applied on Figure 6.17. (b) The result  
of sub-pixel operator was rounded and rendered.

(a) (b)
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Figure 6.19: Visualising the acquired 3-D points with MeshLab.

Figure 6.20: (a) The created polygonal mesh with Powercrust [37].(b) The object scanned (container 
cap in white colour).

(b)(a)



6.9 Conclusion

A number of turntable pose estimation techniques were proposed in this study and they 

were simulated with POV-ray [75]. Of these techniques the irregular checker planar 

pattern with X-corner features was chosen as the best (Section 6.4.2).

Using  the  chosen  technique,  the  pose  of  the  turntable  (p,  T rotA )  was  estimated  as 

follows. Multiple estimates of the pose parameters of the turntable, was estimated by 

rotating the turntable at multiple angular steps, around the centre of the turntable. The 

estimated poses that had a large difference with the mean of the other estimations were 

discarded. The final pose parameters of the turntable was subsequently estimated with 

the remaining poses, using a global optimisation method (Section 6.5). 

The  estimated  pose  parameters  of  the  turntable  was  evaluated  for  its  accuracy  as 

outlined below. 

Using a calibration object, the rotational axis of the turntable was estimated (Section 

6.6). The rotational axis, estimated using the calibration object, and the rotational axis, 

derived  from  the  pose  estimation  T rotA ,  was  found  almost  aligned.  The  angular 

difference between the rotational axis, estimated using the calibration object, and the 

rotational axis, derived from the pose estimation T rotA , was found to be 0.1 degrees.

Using the  result  of  the  turntable  calibration,  the  3-D locations  on the  surface  of  a 

regular object  (cylinder)  was estimated.  The plotted 3-D locations was found to  be 

visually accurate (multiple concentric circles were formed).

Using  the  developed  method,  the  turntable  was  calibrated  with  minimal  manual 

intervention. The only manual effort involved, in the calibration, was to precisely stick 

the designed irregular planar pattern onto the turntable, such that it's origin correlates 

with the centre of the turntable. 
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Chapter 7: Development of a Vision Based 

Respiration Monitoring System

7.1 Introduction

In this chapter an overview of different types of non-contact approaches to monitor 

respiration rate in infant is provided. The objective of this work was to develop a vision 

based, non-contact, multi sensory respiration monitoring system to determine the rate 

of breathing in infants in a clinical environment.

A number of physiological changes occur during breathing. These include: chest and 

abdomen movements and changes in the surface skin temperature around the tip of the 

nose.  The  major  considerations  in  developing  the  system  were  its  patient  safety, 

measurement accuracy and reliability, cost effectiveness and ease of use.

A commonly used method to monitor respiration rate is by attaching thermistors under 

the subject nose to measure temperature changes caused by inhalation and exhalation of 

air. However, as this method requires the sensor to be attached to the subject, it causes 

discomfort.  Also,  the  thermistors  can  be  used  only once  for  hygiene  reasons  (cost 

implication) and can also interfere with the process of breathing. Infants can also detach 

the  sensors  causing  the  system  to  malfunction.  Therefore,  methods  that  allow 

respiration rate to be measured remotely have distinct advantages.

In two different studies, chest movements, produced during respiration process were 

measured with infra-red and ultrasonic sensors [78,79]. A basic non-contact respiration 

monitoring  system,  consisting of  an  embedded system with either  the ultrasonic  or 

infra-red sensor was developed. The system's software displayed the measured distance 

180



of the sensor to the chest (thus chest movements), transferred the captured data in real-

time through the embedded system connected to a PC via Universal Serial Bus (USB). 

The ultrasonic sensor measured the time difference for the sound signal to travel from 

the sensor to the chest and its reflection back to the sensor. As the speed of sound in air 

is  known, and the delay time can be accurately measured,  then the distance of the 

sensor  to  the  chest  can  be  computed  using,  the  measure,  distance  =  0.5*(delay 

time*signal speed). The infra-red based distance sensor, consisted of three major units, 

namely an infra-red light-emitting diode (LED), a Position Sensitive Device (PSD), and 

a  digital  signal  processing  unit.  The  PSD  composed  of  a  linear  array  of  infra-red 

photodiode. The infra-red signal emitted by the infra-red LED, was reflected by the 

chest, and was measured by the PSD. Based upon the location of the incidence of the 

reflected  signal,  on the PSD, the  distance  of  the  chest,  away from the sensor,  was 

measured by the digital signal processing unit, using the principle of triangulation. A 

number of laboratory tests using manikins were carried out to evaluate these two types 

of  respiration  monitoring  systems.  These  indicated  that  the  infra-red  sensor  based 

approach was less effective than the ultrasonic sensor based approach [78, 79]. The 

main  problem with  the  infra-red  sensor  based  approach  was  its  high  sensitivity  to 

optical noise. The ultrasonic sensor could detect chest movements to within 0.5 mm 

accuracy, but required the subject under test to be still.

In order to overcome the limitations of the infra-red and the ultrasonic based sensors, 

vision  based  approaches  to  directly  detect  chest  movements  were  investigated. A 

monocular vision system was implemented by using one webcam. This required a small 

marker acting as a planar pattern to be attached to a manikin’s chest. Manikins had to 

be  used during  the  development  stages  as  they facilitated laboratory developments. 

They  could  be  manually  pumped,  making  their  chest  to  move,  thus  simulating  a 

respiration process. The respiration rate of the manikins was monitored in real time. 

This study highlighted that the vision algorithm needed to be sufficiently fast to track 

the chest movements.

Another vision based approach, involved using the addition of a second camera. This 

eliminated  the  need  for  the  chest  marker.  The  aim  was  to  use  the  principle  of 

triangulation to monitor the chest movements. Based on this approach, a pilot system 

was developed [80]. This created a stereo-vision system, consisting of a USB web-cam, 
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one off-the-shelf Firewire camera, and the necessary software that ran on a PC. The 

system was able to track and estimate the 3-D location of a single salient feature of the 

cloth worn by the manikin and then determined the respiration rate. The operation was 

performed in real-time and involved a manual thresholding method of the captured 

images  to  detect  the  feature  [80].  The  details  of  the  system  are provided  in  the 

following sections.

7.2 Motivation

Respiration rate is a physiological measure used by the clinicians to detect and monitor 

a  varied  range  of  medical  conditions.  According  to  respiratory experts,  ninety five 

percent of the patients can be identified as high risk, with up to twenty four hours in 

advance by using the measurement of the change of respiratory rate. Hence, the ability 

to accurately measure respiratory rate can significantly help reducing the morbidity or 

mortality of the patients and significantly reduce financial cost for the NHS.

Guidelines were published by the National Institute for Clinical Excellence (NICE) in 

2007, stating that measurement of respiratory rate is obligatory in the assessment of 

children with fever in the hospital setting [2]. At least one assessment of respiratory rate 

needs to be carried out for every child visiting the emergency department. The result of 

the respiratory rate measurements were subsequently used to monitor the changes in the 

state  of  health  of  the  child.  The  respiratory  rate  of  every  child  on  the  wards  and 

intensive care units (ICUs) needs to be measured at least every few hours [2]

7.3 Existing methods

A critical review of non-invasive respiratory monitoring system was produced by Folke 

et. al. (2003)  [81] Folke  et. al  (2003), categorised respiration monitoring system into 

three  types:  (i)  approaches  based  on  detection  of  movement,  volume  and  tissue 

composites,  (ii)  airflow  sensing  approaches,  (iii)  blood  gas  content  measurements. 

Folke et. al (2003) have recommended the use of miniature gas sensors to monitor the 

exchange gas during respiration. A study to measure the carbon dioxide in expiratory 

air with a canola based carbon dioxide sensor system was conducted by Folke  et. al.  

(2005) [82].  The disturbance created by the canola was reported to  affect  subjects’ 
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breathing.

A review of both contact and non contact based approaches to monitor respiration rate 

is provided in the next sections.

7.3.1 Contact based respiratory measurement systems

Thermistor is a heat sensor, that  is attached very near to the nostril to measure the 

change of temperature caused by inhaling and exhaling air. A thermistor is made from 

the process of sintering of sulphides, solenoids or oxides of nickel, manganese, cobalt, 

copper, iron or uranium [83]. The resistance of the created mixture is changed with 

respect  to  the  temperature.  The  corresponding  resistance  ( RT )  is  calculated  with 

respect to temperature ( T ) , in Kelvin, a reference temperature of the material ( T ref ), 

and the reference resistance of the material ( Rref ) is shown in Equation 7.1.

where   is  a  factor  that  depend  upon  the  composition  of  the  mixture,  normally 

supplied by the manufacture.

The strain gauge is an extensometer, in a belt-like form, strapped around the thorax and 

abdomen,  measuring  the  change  of  strain  of  the  thorax  and  abdomen  during  its 

expansion  (inhaling  air)  and  contraction  (exhaling  air).  It  is  made  from 

extendible/deformable conducting material, either a very fine wire or thin foil, such that 

the conductivity can be maintained during the stretching process. The principles of the 

strain gauge sensor are the conductivity and geometry of the conductor. The area of the 

conductor  is  increased  during  the  process  of  stretching,  causing  an  increase  in  the 

resistance of the conductor. The change of resistance ( ΔR ) is subsequently converted 

into the measured strain ( ε ), as shown in equation (7.2). The belt-like strain gauge has 

to be strapped properly around the thorax and abdomen to maximise the sensitivity of 

the device.
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Where RG is the resistance of the strain gauge without any deformation.

The change of resistance of the sensor can be measured by using a Wheatstone bridge 

as  shown  in  Figure  7.1.  A  Wheatstone  bridge  consists  of  four  resistors 

R1 ,R2 ,R3 and R s  . The resistance of the resistors R1 ,R2 and R3  is constant. R s  has a 

variable resistance and that can be either the thermistor or strain gauge. The output 

voltage ( V out ) of the bridge varies according to the change of the resistance of the 

sensor and hence a small electronic signal is generated. This signal is amplified and 

converted to digital format by an Analogue to Digital Converter (ADC). 

The digital signal is plotted versus time on a computer screen. By looking at the plot, a 

clinician estimates the time-dependent respiratory parameters (e.g. respiratory rate per 

minute). A combination of two strain gauges, one strapped at the rib cage and one at the 

abdomen, allows measurement of independent compartment of rib cage and abdomen 

[84].  This  provides  the  volume-dependant  respiratory  parameters  (e.g. volume  of 

respiratory at a particular time,  V T , and the rate of volume changing with respect to 

time, V T /T 1 [85]).

Photoplethysmograph (PPG) has also been used for measuring the respiratory rate. It 

was suggested that during the process of inhaling air, the pressure within the thoracic 

cage decreases and hence, the right atrium expands allowing faster filling from the vena 
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cave. The ventricular pre-load increases and the amount of blood pumped during the 

cardiac  contraction  increases.  This  effect  can  be  observed during  exhaling  process, 

where the heart is compressed and the cardiac efficiency is reduced, hence, reducing the 

stroke volume. Nevertheless, the overall net result of respiration, the frequency and the 

depth of respiration, can be considered as a pump to the entire cardiovascular system. 

The cardiac output increases proportionally to the rate and depth of respiration [86].

The PPG signal can be collected by attaching a probe, consisting of a infra-red light 

emitting  diode  (LED)  and  a  photo-detector,  to  a  finger,  ear,  or  forehead.  Infra-red 

wavelength generated by the infra-red LED illuminates the skin. The emitted infra-red 

wavelength is more strongly absorbed by blood and weakly by the tissue. Hence, the 

change of blood volume, affecting the constant rate of emitted infra-red energy from 

the emitter to the photo-detector, can be observed by the photo-detector.

Ogawa et. al.(1999) [87] implanted a probe with one photo-detector and four infra-red 

LED  (wavelength  880nm),  waterproof  with  silicon  rubber,  into  the  bottom of  the 

bathtub for collecting the PPG signal during shower. The PPG signal was subsequently 

filtered with an analogue low-past filter with a cut-off frequency of 0.5Hz. Both the 

respiratory and heart rates were successfully measured simultaneously. Depending on 

the probe’s contact surface area with the skin, the photo-detector could be configured to 

receive the reflective signal (forehead) or transmitted signal (finger) [88].

Electrocardiogram (ECG), represents the electrical activity of the heart. It is recorded 

using skin electrodes. This signal provides another mean to monitor respiration rate. 

The  ECG-Derived-Respiration  (EDR)  technique  makes  use  of  an  existing  ECG 

recording device, to derive the respiratory rate. A technique to obtain the respiratory 

rate from ECG is by measuring the fluctuation in the mean cardiac electrical axis [89]. 

An open source free software to measure the respiratory rate derived from the ECG 

signal is available from the reference site [90]. 

Surface  Electromyography (sEMG)  has  also  been  examined  as  a  mean  to  monitor 

respiration rate. The sEMG was used to measure the activation signal of the respiratory 

muscle (e.g. intercostal muscle). The ECG artifact in the collected signal was removed 

by an adaptive filter to enhance the signal to noise ratio of the measured signal [91]. 
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An idea to create a miniaturised, wearable, and battery-operated monitoring system to 

monitor  breathing,  using  microphone  was  proposed  by Corbishley and Rordriguez-

Villegas (2008) [92]. The omnidirectional microphone was mounted to an aluminium 

conical  bell  and  was  attached to  the  skin  to  measure  the  acoustic  breathing  signal 

produced  from a  human body.  A low power  consumption  system was  proposed  to 

discriminate the respiration signal from artifacts and noise. The designed sensor was 

tested in domestic environment and was reported to be 91.3% accurate .

7.3.2 The non-contact based respiratory measurement systems

A prototype respiration monitoring based for detecting the carbon dioxide has been 

reported [93]. The system was tested fifty centimetres away from the subjects. Several 

carbon dioxide sensors were mounted around four sides of a baby's crib, away from the 

baby to avoid uneasiness. The system was not able to measure respiration rate, but it 

was  possible  to  integrate  the  carbon  dioxide  sensors  to  an  existing  respiration 

monitoring system to reduce the false alarm.

Chest movements produced during the process of respiration can be measured in a non-

contact  manner  using  the  Doppler  radar.  The  ultrasound sensor  emits  a  continuous 

waveform using an antenna toward the direction of the moving chest.  The reflected 

waveform,  from the  chest  is  subsequently picked up by the antenna and the phase 

different is measured. The location of the chest, x t  , at a particular time is determined 

using Equation (7.3). Based on this principle, different breathing measurement systems 

or Radar Vital Signs Monitor Technology were reported [94],[95],[96].

Machine vision systems, using a static camera to detect thorax motion has been be used 

186

Where

t  is the measured phase shift of the reflecting continuous wave at time t .

 is the wavelength of the continuous waveform

x t =t 
4

(7.3)



to monitor respiration [97]. The projection of the surface of thorax was presented as a 

region  with  a  range  of  brightness/intensity  values  in  the  images.  Respiration  rate 

monitoring was made possible by detecting the variation of the location of those image 

intensity values across different time values.

The relative motion between the camera and the moving thorax produced a pattern of 

apparent  motion  namely,  the  optical  flow.  To  measure  the  optical  flow,  the  image 

intensity value at each pixel location x , y  captured at time t , the point on the surface 

of thorax was projected onto the camera image. The system was reported to correctly 

classify 99.4% of the movements over 61 hours of monitoring [97].

Infra-red cameras were also used to monitor respiration rate [98][99]. A thermal infra-

red camera, measuring the respiratory rate passively, consists of a focal plane array of 

mid-wave infra-red sensor. It detects the change of infra-red energy around the nostril 

region  of  the  subject.  The  minor  change  in  detected  infra-red  energy  due  to  the 

absorption of emitted carbon dioxide around the nostril region during the process of 

inhaling and exhaling air was picked up by a sensor array and digitised. In order to 

correctly  determine  the  location  of  measuring  region,  image  processing  algorithms 

were applied.

The process of tracking required identification of salient features.  Zhen Zhu  et.  al.  

(2005) [98] selected the two areas between the bridge of nose and the inner corner of 

the eyes (i.e. the periorbital regions which are the face warmest areas) as two salient 

features. Another salient feature was the apex of nose which has lowest temperature 

around the face region. This is due to the lower blood supply to this region and it is 

widely exposed to ambient environment. To correctly identify the measuring region, the 

flow of  carbon  dioxide,  these  three  salient  features  were  used  to  manually  form a 

triangle  and  the  perspective  distortion  of  the  triangle  was  estimated.  Hence,  a 

quadrilateral region, e.g. in rectangle shape with zero perspective distortion, right under 

the apex of nose was formed as the measuring region. The mean temperature of the 

measuring region was subsequently used to estimate the breathing signal.

Instead of using mid-wave infra-red energy, Chekmenev et. al (2005) [100] made use of 

focal  plane  array of  long-wave infra-red sensor  to  measure the temperature change 
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around the neck region, carotid vessel complex, and the nasal region. A wavelet-based 

method, using a kernel with second derivative of the Gaussian function, was used to 

decompose the image to  difference scale.  A three-scale  decomposition  was used to 

decompose the image of manually selected carotid vessel complex and nasal regions. 

The mean values of the regions, along with the time stamps, where subsequently used 

by the continuous wavelet analysis to reconstruct the breathing signal.

Instead  of  using  the  projective  distorted  information,  e.g. the  projected  three 

dimensional movement of thoracic into the two dimensional camera image,  directly 

measuring the three dimensional movement could help to provide a better measurement 

of  respiratory  rate  in  a  non-contact  based  environment.  Measuring  the  three 

dimensional information for respiration monitoring was carried out by Aoki et. al [101] 

using a fibre grating vision sensor. Their system consisted of two units, namely the 

fibre grating projecting an array of invisible infra-red light spots (wavelength 810nm) 

and a unit of CCD camera with and optical band-pass filter (light of wavelength 760-

900nm). The CCD camera was used to capture the scene of light spots and an image 

processing algorithm was subsequently used to detect the barycentric of each of the 

light spots. Since the distance between the camera and the fibre grating was known, the 

principle of triangulation could be used to determine the relative 3-D location of each 

light spot. The thoracic movements, displacing the location of light spots appeared in 

each inter  image frame, was detected using inter  image subtraction techniques.  The 

moving distances of bright spots in each image were extracted and used to classify as 

respiration (periodic displacement), or rolling over (large amount of displacement) of 

the subject.

Multiple  infra-red sensors  were  used  to  monitor  respiration  rate  by detecting  chest 

movements [78].  The type of infra-red sensor used was a low cost distance sensor, 

SHARP  GP2Y0A21YK. The sensor operated based on the principle of triangulation 

where the incidence of the reflected, modulated infra-red signal on one of the position 

sensitive device (PSD) was a function of the distance of the object. This relationship 

was used to estimate to determine the distance to the chest (and thus its movements). 

The layout of the sensor is shown in Figure 7.2.
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The  sensitivity  of  the  sensor  was  about  three  millimetres.  This  was  found  to  be 

insufficient to accurately detect finer chest movements.

Another approach involved the use of an ultrasonic distance sensor. It measured the 

phase difference of the transmitted and received ultrasound echo signals to determine 

the distance of the chest (thus chest movements) [79]. An accurate ultrasonic sensor, 

Mini-A series  [102],  provided  by  Senscomp  was  used.  The  distance  measurement 

accuracy of the sensor was 0.5 mm. The sensor was connected to an analogue to digital 

converter, provided by a Microchip’s PICDEM FS USB board. The measured distance, 

along with the time the measurement was taken and were transferred to the PC via USB 

port.  A software module read the transferred data and displayed it in real time. The 

respiration rate was estimated by setting a threshold value, the average value between 

the maximum and minimum distance during the process of inhaling and exhaling. The 

implemented system was further improved by Mr. Stephen Tan Kang Song (a Ph.D. 

research student at Sheffield Hallam University). He added a web-cam to record the 

subject's  movements  and the  respiration  rate  was  automatically  estimated  from the 

measured distance by using the Fast Fourier Transform (FFT) of the recorded data.

7.4 Implemented computer vision based system

Vision systems provided provided another route to monitor respiration rate.

A vision based respiratory rate monitoring system works by sampling the location of 

the  area  of  interest,  e.g. the  chest  or  abdomen,  into  images.  These  images  are 

subsequently  processed  to  measure  the  generated  motion  during  the  process  of 
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Figure 7.2: The operation of SHARP GP2Y0A21YK infra-red distance sensor.
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respiration.  The  operation  to  estimate  the  motion  can  be  performed  in  the  two 

dimensional  projective  space  and  the  re-projective,  three  dimensional,  space.  The 

optical flow method discussed previously is an example of motion estimation in two 

dimensional  projective  space.  The  re-projective  space  method,  makes  use  of  the 

principle of computer vision geometry, by projecting back the information available in 

the  sampled  image  to  the  three  dimensional  space  to  perform the  required  motion 

estimation.

A monocular vision system, using the images captured by a calibrated camera and a 

small planar marker attached to the position of the body generating the motion during 

breathing,  was  implemented  and  is  discussed  in  the  following  section.  Another 

respiratory rate measuring system, using the principle of triangulation and stereo vision 

system  to  measure  the  generated  motion  in  three  dimensional  space,  was  also 

constructed and will be discussed in the following section.

7.4.1 Monocular vision system

The use of monocular vision system for measuring the respiration rate was inspired by 

the  planar  object  pose estimation  method discussed  in  the  section  3.4.1.  Using the 

estimated  planar  homography  (Section  3.3.2.1)  and  the  calibrated  camera  (Section 

3.3.1),  the  pose  (location  and  orientation)  of  the  planar  object  with  respect  to  the 

camera  coordinate  frame  could  be  estimated.  To  accommodate  the  application  of 

respiratory  rate  measurement,  a  small  planar  object  (about  20mm  by  20mm)  was 

implanted with black and white checker board pattern (size of each square was 3.75mm 

by 3.75mm each) as shown in Figure 7.4. Grid coordinates were assigned to each X-

corner, formed by the intersection of the corner of each black square, to create a planar 

homography. The set-up of the respiratory rate measurement system is shown in Figure 

7.5.

The  process  of  estimating  the  respiratory  rate  involved  attaching  a  checker  board 

marker  to  the  position  of  the  body where  maximum displacement  occurred  during 

respiration. A software with graphical user interface (GUI) running in a PC was created 

to display both the camera image and the measured respiratory rate. A web camera was 

connected to the PC and was adjusted in such a way so that the marker appeared around 
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the  centre  of  the  image.  The process  of  determining  the respiratory rate  started  by 

requiring the user to click once in the centre of the the black square in the middle of the 

the marker. Once this centre position was identified, a window region, centred at this 

point was used by the X-corner detector algorithm to determine the location of four 

corners of that square, with up to sub-pixel accuracy.  When the four corners of the 

square were successfully found, the window was saved as a reference template and 

could be used for recovering the location of marker within the image, with any template 

based tracking method.

A coarse planar homography was formed using the equation (3.5) by employing the 

detected four corners. Using the estimated coarse planar homography the remaining X-

corners were detected, using the similar technique described in Appendix A1. A planar 

homography was subsequently estimated using all  the detected sixteen corners. The 

pose of the planar marker was estimated using equation (3.13). The 3-D position of the 

centre of the marker, with respect to the camera coordinate frame, was hence estimated. 

The estimated 3-D coordinate was used as the initial location of the measurement. The 

image  location  at  the  centre  of  gravity  of  the  marker  was  estimated  by  using  the 

projection of planar homography by using equation (3.4).

The  image  location  previously  provided  by  the  user  was  replaced  with  the  image 

location of the centre of gravity of the marker. The process of detecting four nearest 

corners around the centre of gravity of the marker was repeated in a newly captured 

camera image and a coarse homography was estimated. Due to the intensive processing 

required for the corner  detection,  the number of corners to form the refined planar 

homography was reduced from sixteen to  eight  (i.e. the four corners  nearest  to  the 

centre of gravity of the marker and another four extreme diagonal corners). The pose of 

the  planar  homography  was  again  estimated  and  the  second  location  of  the  3-D 

coordinate of the centre of marker was estimated. 

The  process  of  monitoring the  breathing  was initialised  as  follows.  To monitor  the 

breathing process one needs to locate the centre of gravity of the planar pattern in a pair 

of consecutive images. The process is initialised if the Euclidean distance between the 

locations was larger than a threshold value, 1.5mm was used in this experiment. The 

value 1.5mm was decided based on the accuracy of the calculation of the 3-D location 
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of a point on the planar object which is around plus or minus 1mm., 

It was assumed that the position of the camera was always right in front of the marker. 

Hence, the generated motion was very much aligned to the viewing axis, the Z-axis of 

the camera. The motion generated along the other two axes (X-axis and Y-axis) was 

neglected.  Based  on  the  movements  of  the  location  along  the  Z-axis  only,  the 

respiration was estimated. 

To further improve the detection of the chest  movements caused by respiration, the 

average of several estimated Z-axis values ( Z a ) was used. A cyclic buffer with a size 

of three was used to find the average value of movement which is used and updated 

through the monitoring process. Since the movement values from the initial first three 

frames needed to be known before the monitoring could be started, there will be a two 

frames delay at the starting of the monitoring process.

The  state  of  respiration,  inhaling  or  exhaling,  was  identified  by  determining  the 

direction of the motion of planar marker. During the process of inhaling, the volume of 

thoracic  increased  and  move  toward  the  camera.  Hence,  the  planar  marker  moved 

toward the camera and the measured average Z-axis value of the marker reduced. The 

difference ( Z d ) between the latest Z-axis value ( Z ai  ) and the previous Z-axis value (

Z ai−1 ) was measured as shown in equation (7.4). If this Z d  was negative, the state of 

respiration was quantified as inhaling, otherwise, exhaling. The state of respiration was 

displayed on the GUI. The subsequent task was to make use of the highest peak and 

lowest  peak  of  the  measured  3-D coordinate  point  of  the  centre  of  the  marker  to 

estimate the respiratory cycle.

Respiration transition  state  from inhaling to  exhaling,  or  the other  way round,  was 

determined  by  detecting  the  change  of  sign  of  the  value  Z d .  Once  a  complete 

breathing  cycle  was  detected,  the  time  taken  to  complete  the  breathing  cycle  was 

determined  and  the  rate  of  respiration  per  minute  ( bpm )  was  measured  by using 

equation  (7.5).  The  measured  respiration  per  minute  was displayed on a  GUI.  The 

complete flowchart of the process is shown as a flow chart in Figure 7.3. 
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The developed system was tested using manikins that could be manually pumped to 

perform a simulated respiration (Figure 7.6). In order to obtain maximum accuracy of 

estimating the location of the marker, the webcam was positioned to only monitor the 

torso area (140mm width, 110mm height) of the manikin. This required the webcam to 

be placed very close (around 130mm to 140mm) to the torso of the manikin. To obtain 

the same accuracy without placing the camera very close to the manikin, the optical 

range of the camera could be increased by attaching a lens to it. This could be achieved 

by using a lens attached to a commercial camera by means of a C-mount (Figure 7.7).

The results obtained from measuring respiration waveform were plotted and shown in 

Figure 7.8. The snapshot of the designed GUI with qt-ruby [103] is shown in Figure 

7.9. The machine vision algorithms and process of estimating the rate of respiration 

was  coded  with  Hornetseye  [5],  a  Ruby  real-time  computer  vision  extension.  An 

average of 6.5 frame per second was achieved by using a Pentium 4 3GHz machine 

with a web cam with resolution 640x480 at 10 frames per second (fps). The actual 

setting of the system is shown in Figure 7.6.
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c , the number of breath count,

t , the measured time, in second.

bpm=60∗c
t

(7.5)
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Figure 7.3:The flow chart of the monocular vision system for measuring breathing rate.
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Figure 7.5: The setup of the monocular respiratory rate measuring system.

Webcam

Figure 7.4: The dimension of the planar object marker (left). Grid coordinates were assigned to four X-
corners (right).
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Figure 7.7: Using the commercially available c-mount camera with the monocular respiratory rate 
measuring system.

Figure 7.6: The actual testing scenario with the webcam, planar marker, baby mannequin, and pump, to 
simulate the breathing action.
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Figure 7.9: The snapshot of the designed GUI, with Qt-Ruby and Hornetseye, for measuring the rate of  
respiration. The eight detected corners and the centre of gravity were highlighted.

Figure 7.8: The plotting of waveform of respiration, produced by using the average measured Z-axis 
value, Za , with respect to the system time.
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7.4.2 Stereo vision system

A physical point location in the real world can be expressed with it's 3-D coordinates, 

with respect to a coordinate frame in the Cartesian coordinate system. The use of a 

single camera, attaching to a computer system, enables the use of the computer system 

to estimate multiple 3-D locations or points with up to a scale. Camera pin-hole model 

is  a  commonly  used  model  used  by  the  geometry  computer  vision  community  to 

perform the measurement. A three dimensional coordinate frame, with the origin at the 

centre  of  the  projection  of  the  camera  viewing  scene  into  the  camera  image,  was 

assigned as a  global  reference coordinate frame. Any physical  point  in the viewing 

scene of the camera, can subsequently be expressed with a 3-D coordinates with respect 

to the camera coordinate frame, up to a scale. By introducing some constraint, e.g. four 

points lying on a planar object or the planar homography, allowed the computer system 

to  recover  the  metric  measurement  of  a  plane,  in  the  calibrated  monocular  vision 

system. 

Adding  another  calibrated  camera  into  the  computer  system  allowed  the  metric 

measurement of the physical scene to be recovered without any constrain. Once the 

relative location and orientation between the calibrated cameras were estimated, the 3-

D coordinates of any physical point in the viewing scene accommodated by the two 

calibrated cameras could be estimated by using the method of triangulation. Hence, the 

planar marker introduced in the previous section,  was replaced by the stereo vision 

system.  In  the  following  section  initially  the  steps  of  determining  the  rigid  body 

transformation in between two cameras is discussed, the method of triangulation, and 

the process of using the calibrated system to measure the breathing rate is also outlined.

7.4.2.1 To estimate rigid body transformation between two 

cameras 

A stereo  rig,  consisting  of  two cameras  firmly mounted  onto a  rig,  was  created  to 

perform the stereo vision system. The process of calibrating the stereo rig determined 

the  relative  location  and  orientation,  the  rigid  body  transformation,  between  the 

coordinate frame of the two cameras. 

A rigid  body  transformation  consist  of  two  components,  namely  a  three  by  three 
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rotation  matrix  ( R )  and  a  three  dimensional  translation  vector  ( T )  .  These  two 

components were used to transform any 3-D coordinate point in a coordinate frame ( C

)  into another  coordinate  frame ( C' ).  The rigid body transformation preserved the 

rigidity,  e.g. the  Euclidean  distance  in  between  the  two  coordinate  points  in  a 

coordinate frame ( C ) remained the same in the transformed coordinate frame ( C' ). 

The  four  by  four  transformation  matrix  ( C'
ΓC ),  representing  the  rigid  body 

transformation  of  a  homogeneous  point  P= [x y z 1 ]T  in  C  into 

P'= [x' y' z' 1 ]T in C'  is shown in equation (7.6).

A pose of a planar object ( C
PoseO ), transforming the grid coordinates representing in a 

planar object coordinate frame O   into a camera coordinate frame C  , was estimated 

by using equation (3.13). Using the two cameras (see Figure 7.10), namely camera left 

CL   and camera right  CR   looking at the same planar object, two sets of poses, 
CL

PoseO  and CR
PoseO , were estimated, respectively. Using the two estimated poses and 

the principle of rigid body transformation, the relative orientation ( R ) and locations (

T ) of the two cameras, from the right camera to the left camera, could be estimated 

with equation (7.8) and (7.13), respectively.
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Where

p '= C
C ' p

C
C ' =[R T

0T 1 ]
0=[0 0 0 ]T

(7.6)



A point expressed in the planar object coordinate frame, PO , can be expressed in both 

the  left  and  right  camera  coordinate  frame,  using  equations  (7.9)  and  (7.10), 

respectively.

Using  the  same  principle,  a  point  expressed  in  left  camera  coordinate  frame  can 

subsequently  be  expressed  in  right  camera  coordinate  frame  as  shown in  equation 

(7.11).
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Figure 7.10: Three coordinate frames and their transformation.
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Substitute equation (7.9) and (7.10) into (7.11), we get (7.12)

Solving equation (7.12), the relative translation between two camera coordinate frames, 

T , is resolved as shown in equation (7.13).

To  achieve  a  better  accuracy  in  determining  the  relative  orientation  and  location 

between the two camera coordinate frames, multiple left and right images of the planar 

object  at  different  locations  were  captured  to  perform the  calibration.  A stereo  rig 

calibration software toolbox was created by Bouquet (2008) [104] and used to perform 

the calibration in this project.

7.4.2.2 Using the principle of triangulation in a stereo vision rig to 

recover the physical 3-D location of a point

A physical point in three dimensional space, P= [X Y Z ]T (inhomogeneous), within 

the  line  of  sight  of  both  the  cameras  in  a  stereo  vision  rig,  was  projected  as  a 

correspondence,  x l ,xr  ,  in  camera  images  left  and  right,  respectively.  Using  the 

camera pin hole model, the process of projection was assumed centred at the origin of 

the camera coordinate frame. Hence, the location of the correspondence in the camera 

image was actually the intersection of the line formed by the physical  point of the 

origin of the camera coordinate frame with the CCD/focal plane array sensor of the 

camera.  Two unit  vectors,  v l and  vr ,  representing the original line of sight of the 

physical point to the left and right camera, is shown in Figure 7.11. With two of the 

lines of sight and the transformation in between the two cameras, a virtual triangle was 

formed.
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PR=R PLT (7.11)

RR X0 T R=RRL X0 T LT (7.12)

T=T R−R T L (7.13)



As discussed previously in section 3.4.3.1, the vector representing the line of sight was 

determined,  in  their  corresponding coordinate  frame,  by using  an image coordinate 

x l ,xr   and the camera intrinsic parameters I l ,I r   (see Equation (7.14) and (7.15)).

The point  of interest,  in this  case,  the physical  point  producing the correspondence 

x l ,xr  in  both  the  left  and  right  camera  image,  was  determined  by  finding  the 

intersection of two lines of sight. The intersection of two 3-D straight lines. lines of 

sight, in 3-D space forms a 3-D point. To resolve the 3-D coordinate of the intersection 

point,  the line of sight,  vr ,  had to be transformed into the left  camera coordinate 

frame,  vr ' ,  the reference coordinate frame of the stereo rig,  as shown in equation 

(7.16).

Using the two lines of sight,  v l and vr ' , the point of interest,  P , expressing in the 

left camera coordinate frame, was determined as follow:
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Figure 7.11: The virtual triangle formed by the stereo rig with a 3-D point.
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Let the point, expressed in left camera coordinate frame, be 

where λ1 is the length of the line, measured from origin of the left camera coordinate 

frame to the point of interest.

Let the same point, expressed in right camera coordinate frame, be

where λr is the length of the line, measured from origin of the right camera coordinate 

frame to the point of interest. Using equation (7.16), the point expressed in right camera 

coordinate  frame  was  transformed  into  left  coordinate  camera  frame,  as  shown  in 

equation (7.19).

Hence,

Arranging Equation (7.20) in matrix form, as shown in Equation (7.21).

The length of each line was determined by solving the non-homogeneous system in the 

least square sense as shown in Equation (7.22).

Once the values of λl and λr were obtained, the 3-D location of the physical point, the 

point of interest, was determined using either equation (7.17) or (7.19) in left camera 

coordinate frame, or equation (7.18) in right camera coordinate frame.
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l v l (7.17)

r R vrT (7.19)

l v l=r R vrT (7.20)

(7.18)r vr

(7.21)[v l −R vr ]
:=A

[l

r ]=T

(7.22)[l

r]=AT A−1 AT T



Various sources of errors such as uncertainties in camera intrinsic parameters and error 

in determining the exact location of the correspondence x l ,xr  , might make the lines 

do not intersect at all. A general approach, taking the average of the measured result 

with equations (7.17) and (7.19) was used as shown in equation (7.23).

7.4.2.3 Using the stereo vision system to measure the breathing 

rate of a baby mannequin

Using the strategy described in monocular vision system (section 7.4.1), the respiration 

rate of a manikin was measured by using the depth value if the Z-axis of the reference 

camera coordinate frame was almost aligned to the direction of the movement induced 

during  the  process  of  respiration.  If  this  was  not  the  case,  the  measurement  was 

substituted with the change of Euclidean distance of the physical point. As discussed in 

the previous section, using the principle of triangulation in a stereo vision rig to recover 

the  physical  3-D location  of  a  point  required  a  correspondence,  x l ,xr  .  This  was 

performed  by  providing  the  user  with  a  GUI  to  select  the  point  of  interest  to  be 

measured  x l  and  xr ,  in  both left  and right  camera image,  respectively.  Once the 

inputs x l ,xr   were provided,  a window of interest,  centred at  each of the provided 

input point, and a tracking templates, one in each image, was initialised. Two important 

issues, namely, the selection of tracking feature and the accuracy of the triangulation 

with the detected correspondence feature are discussed following the following section.

The aim was to use the feature provided by the user during the process of initialisation 

was  to  perform  the  tracking  using  the  image  tracking  algorithms,  e.g. template 

matching based (normalised cross-correlation) or image intensity value based (colour 

segmentation, mean-shift) method. Unfortunately, non of these two dimensional image 

tracking algorithm worked well on a texture less object/surface,  e.g. a plain wall with 

same colour or texture less part of the thoracic. Hence, the user needed to provide the 

machine vision algorithm with unique high contrast feature.

The process of triangulation was carried out by using the result of tracking algorithm. 
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0.5 l vlr R vrT  (7.23)



For  the  template  matching  based  method,  the  centre  of  the  template  window, with 

highest  matching  value,  was  used  for  triangulation.  The  advantage  of  template 

matching based method is its high accuracy of detection, but it is processing intensive. 

When the image intensity value based method was applied, the centre of gravity of the 

segmented colour region was used for triangulation. The advantages of this tracking 

method is that it is less processing intensive, but at the same time it is less accurate 

compared to template matching and the selected segmentation colour must be unique 

within the image region.

To handle the two issues described above, a colour segmentation technique was used to 

track a small unique colour marker. A unique colour was chosen for the marker and the 

shape of the marker was made to provide a sharp feature, e.g. the shape of a water drop. 

The  shape  of  water  drop  allowed  the  feature  detector  (e.g. Shi-Tomasi  [76])to  be 

applied around the colour segmented region,  centred at  the centre of gravity of the 

result of the colour segmentation. Hence, the triangulation could be applied accurately 

on the distinct feature. The designed marker was shown in Figure 7.12.

The discussed system was used by a student Mr. Chong Chi Wei in his Msc project 

“Development of stereo vision based respiratory rate measurement system” to measure 

the simulated respiration of a baby manikin [80]. The simulated respiration state and 

rate of respiration were correctly determined by the designed system, with two off the 

shelf  cameras,  Hornetseye  and Qt-Ruby.  A sample  measured respiration  wavefrom, 

estimated  by  measuring  the  change  in  the  Euclidean  distance,  of  a  single  tracked 

feature,  with  respect  to  time,  was  recorded  and  plotted  (Figure  7.13).  The  baby 

mannequin was manually pumped at a constant rate. The pumping count was manually 

recorded and was correlated well with the estimated rate of the respiration. A visual 
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Figure 7.12: The designed marker.
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correlation between the estimation and the physical breathing state of the mannequin 

was also correlated. More result and discussion regarding this work can be found in the 

master's student thesis [80].

7.5 Conclusion

A real time mono vision and a stereo vision based non contact breathing monitoring 

systems, for pilot studies, were designed and implemented. The systems were tested on 

a baby mannequin and the state of the estimated respiration, e.g. inhaling or exhaling, 

were successfully estimated and visually correlated well with the simulated pumping 

action. The designed and implemented mono vision based breathing monitoring system 

demonstrated the possibility of using a camera, with the help of a planar marker, to 

measure the breathing rate. This could subsequently be ported to any embeded device, 

e.g. mobile phone with a camera, or a laptop/netbook. The designed stereo vision rig, 

implemented  as  part  of  a  masters  thesis  [80],  under  the  supervision  of  the  author, 

demonstrated the possibility of marker-less breathing monitoring system. However, a 

very small custom made marker (2mm x 3mm), with a unique colour, was used by the 

designed stereo vision based breathing monitoring system to provide better accuracy. 

Colour segmentation method was used to locate the location of the same feature in both 

the  camera  images  (left  and  right).  The  pointed  feature  of  the  marker,  in  both  the 

camera images, were picked up by Shi-Tomasi feature detector [76] and subsequently 

used by the process of triangulation to accurately locate the 3-D location of the feature. 

The rate of respiration was successfully measured by using the estimated 3-D location 

of the feature, in a series of camera image, across the time.
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Figure 7.13: Measured change of Euclidean distance of a tracked feature marker versus time using the 
calibrated stereo vision rig [80].
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Chapter 8: Conclusion and Future Works

8.1 Conclusion

This  research  work has  resulted in  a  number of  major  contributions,  namely novel 

vision based 3-D surface data acquisition system, an automatic calibration for turntable 

based 3-D surface reconstruction system, and a  vision based respiration monitoring 

system. The contributions are summarised in the following sections.

8.1.1 Novel vision based 3-D surface data acquisition system

For this thesis a novel vision based 3-D surface data acquisition system was designed 

and implemented. Off-the-shelf equipment, mainly a webcam, a laser line emitter, and 

two planar objects implanted with 'X'-type corners, along with a personal computer, 

were used to develop this system. Using of off-the-shelf equipment, avoided the need 

for expensive hardware and enabled the system to be designed for use in any desktop 

PC environment. The novelty of the designed system is that it does not require the use 

of positional sensors to provide the pose of the laser plane and allows the 3-D surface 

data to be acquired using freehand. The results achieved in this work are summarised in 

the following sections.

8.1.1.1 The imaging framework

An imaging framework was developed to achieve 3-D reconstruction.  The essential 

elements  of  this  framework  were;  camera  calibration,  corner  detection,  planar 

homography  estimation,  planar  object  pose  estimation,  laser  points  detection,  laser 

plane pose estimation, triangulation, and real time update display window. A number of 

camera  calibration  techniques  were  explored  and  the  most  effective  technique,  i.e. 
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camera calibration using planar objects, was chosen. Another two essential elements, 

namely  the  planar  homography estimation  and  planar  object  pose  estimation,  were 

provided by the chosen camera calibration technique. 

Two  different  2-D  laser  points  detection  techniques,  colour  segmentation  and 

background subtraction, were proposed to detect the camera image pixel illuminated by 

the laser. It was found that the background subtraction technique performed better than 

the  colour  segmentation technique.  The reason for  this  effect  being  that  the colour 

values  of  the  pixels  change  under  different  imaging environmental  conditions.  The 

accuracy of the 2-D laser points detection was improved, by incorporating a known 

Blias and Rioux sub-pixel operator. 

The emitted laser line was made to intersect with the calibrated planar objects during 

the  process  of  3-D surface  data  acquisition.  Using  the  parameters  provided  by the 

calibrated planar  objects,  the detected 2-D laser points  lying on both the calibrated 

planar objects, were transformed into 3-D laser points with respect to the camera 3-D 

coordinate frame. Using the non-collinear 3-D coordinate points, the pose of the laser 

plane at the time captured by the camera was subsequently estimated. The estimation 

methods are explained in the next section.

8.1.1.2 The novel laser plane estimating methods

Using the geometry constraints obtained through the process of intersecting the laser 

plane with two planar objects, a number of novel laser plane pose estimation methods 

were designed and implemented. The first constraint is the pair of straight lines, formed 

by the intersection of the laser plane with the two non-collinear planar objects, which is 

captured  in  the  camera  image.  This  constraint  was  projected  onto  the  camera  3-D 

coordinates  frame.  The  second  geometry  constraint  is  that  the  two  projected  lines 

belong to the laser plane. The pose of the laser plane was subsequently estimated using 

the  above  two  geometry  constraints.  This  process  is  outlined  in  the  following 

paragraph.

An effective way to accurately determine the pose of the laser plane is to make use of 

as much input data as possible,  discarding the outliers, and subsequently forming a 

208



laser plane model with the inlier data. The rejection of the outliers was achieved using 

RANdom SAmple Consensus (RANSAC) based method either in the 2-D or 3-D space. 

RANSAC randomly selected the minimum number of input sample data and formed a 

model.  It  subsequently  tested  the  model  to  determine  the  percentage  of  samples 

conforming to the model.

In the 2-D space, the rejection of the outliers was achieved by using RANSAC line 

model  fitting  process.  Subsequently  two  different  methods  were  implemented  and 

compared to estimate the pose of the plane, using the projected inlier points. The first 

method, given the name R2D1 (see Section 5.2.4.1.2.1), was designed to make use of 

the two pairs of points, each pair from each of the two best fitted line models, (totalling 

four points in the camera 3-D coordinate frame). The second method, given the name 

R2D2 (see Section 5.2.4.1.2.2), was designed to make use of the all the inlier points. 

The method of least square plane fit was used to approximate the best fitting plane to 

the set of the projected points identified in R2D1 or R2D2.

In the 3-D space,  the rejection  of  the outliers  was  achieved using RANSAC plane 

model fitting process. This was the third developed method, named R3D (see Section 

5.2.4.2.1). Based on this method, all the 2-D laser points were projected to the camera 

3-D coordinates and the inlier points were identified using the RANSAC plane model 

fitting process. The coordinates of these inlier points were subsequently used by the 

least square plane fitting method to determine pose of the laser plane.

The above developed methods were critically evaluated empirically. The experimental 

results indicated that multiple 3-D laser points were needed to accurately estimate the 

pose of the laser plane. Based on these, it was established that the methods R2D2 and 

R3D provided a better estimate of the pose of the laser plane. 

Both the R2D2 and R3D methods, made use of all the inlier points to estimate the pose 

of the laser plane and provided good estimation. However, R3D which only made use 

of  the  3-D  plane  geometry  constraint,  without  considering  the  2-D  line  geometry 

constraint, produced a larger standard deviation on the errors as compared with R2D2 

in determining the orientation of the computed laser plane.  The effect  of the larger 

standard deviation (0.5 degree for R3D and 0.35 degree for R2D2) was not obvious 
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within the 50mm length scanning workspace.

The  experimental  results  (Section  5.5)  showed  that  the  R2D2 method  was  able  to 

estimate the laser plane pose parameters in 3-D (described by a point in 3-D lying on 

the plane and the normal of the plane) with the following minimal uncertainty. For the 

normal  of  the plane,  the variation in  the value was found to  be from 0.15(min)  to 

0.41(max) degrees and, for the point in 3-D, the variation between the values was found 

to be between 0.07mm(min) to 0.14mm(max) (Figure 5.16 and Figure 5.17).

The accuracy of the acquired 3-D points, using the R2D2 method, was assessed by 

scanning a  staircase-like calibration object.  The standard deviation of the estimated 

dimensions of the calibration object was found to be 0.38mm (linear dimension) and 

0.28 degrees (angular dimension, i.e. the estimated angle formed by each stair).

Using the estimated laser plane pose parameters and the calibrated camera parameters, 

the 2-D laser points lying on the scanned object were triangulated. The triangulation 

result produced a cloud of points in 3-D. These were subsequently rendered in a real 

time operation to update the display window. The real time feedback allowed the user 

to keep track of the scanning progress. This assisted the user in filling up the sparsely 

populated areas with cloud of points in 3-D.

8.1.1.3 Critical evaluation of Salient feature detectors

The  result  of  detecting  corners  lying  on  the  planar  object  directly  influences  the 

accuracy of the laser plane pose estimation. A set of correspondences was formed by 

the implanted L-type and X-type corners on the planar object and their projected image 

coordinates. These were needed to calibrate the planar object. There are a variety of 

corner detection algorithms that have been developed during the last twenty years and 

these can be characterised into three types; image intensity variation based, template-

based,  and  model  based.  Candidates  from  each  category  were  selected  and  their 

accuracy in detecting the location of L- type and X-type corners in the synthetic images 

were critically evaluated. The result of the experiments showed that the Saddle point 

based  X-type  corner  detector,  one  of  the  candidate  from  the  model  based  corner 

detector, performed the best. This was considered to be due to the use of a suitable X-
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type corner model, where the corner is located at the saddle point of the model. Also, 

the  use  of  a  very  large  window  (15x15)  and  recursive  interpolation  increased  the 

accuracy of  the  corner  localisation.  The  basis  of  an accurate  corner  detection  is  to 

identify a good corner model. Several corner models were examined and the L-type 

corners were found to be difficult to model (as they required non- linear operation) as 

opposed to X-type corners. Hence in this study, X-type instead of L-type corners were 

used as the salient features and the Saddle point corner locator was used for locating the 

corners.

8.1.1.4 A basic graphical user interface for the developed freehand 

3-D surface data acquisition system

A Graphical User Interface (GUI) for the vision based 3-D surface data acquisition 

system, using the critically evaluated essential  elements,  was subsequently designed 

and implemented. This software was executed on an Intel Core2 Duo 2.10 GHz CPU 

(single process, single threaded) that could process approximately 3 frames per second. 

Using this system, a deformable breast phantom was scanned and a visual inspection of 

the surface confirmed that  an accurate  scanning of  the phantom's surface had been 

obtained. The details of the phantom were visible in the reconstructed surface.

8.1.1.5 The system performance

Using the most accurate plane pose estimation method, i.e R2D2, the designed system 

was able to estimate the 3-D surface points at a rate of 3 frames per second (frame size 

640 by 480 pixels). Hence the system was able to provide an accurate laser plane pose 

estimation as well as display the scanned 3-D points sufficiently rapidly.

8.1.2 Automatic calibration for turntable based 3-D surface 

reconstruction system

An immediate  application for the novel  laser  plane pose estimation method was to 

calibrate the laser plane in a turntable based 3-D surface reconstruction environment. 

Traditional  turntable  based  methods  required  extensive  manual  intervention.  The 

manual operation of aligning the camera and the laser light source is laborious, time 
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consuming and error prone. Errors introduced during the alignment of the components 

resulted  in  an  inaccurate  estimation  of  the  3-D location  of  the  points  lying  on the 

surface  of  the  object.  Different  ways  of  calibrating  the  pose  of  the  turntable  were 

proposed and simulated. Based on the results of simulation, a set of auto-calibration 

procedures, to estimate the pose of the components of the system, were designed and 

implemented.  The  auto-calibration  procedures  consisted  of  two  major  components, 

namely  the  laser  plane  pose  estimation  method  and  automatic  turntable  pose 

calibration. In the developed turntable pose calibration process, the only required task 

was to mount an irregular planar pattern to the surface of the turntable, such that its 

origin  correlated  with  the  centre  of  the  turntable.  Using  the  planar  object  pose 

estimation  method,  the  poses  of  the  turntable,  rotated  with  multiple  angular  steps 

around the centre of the turntable, were estimated several times. The estimated poses 

that had a large difference with the mean of the other estimations were discarded. The 

pose of the turntable  was subsequently estimated with the remaining poses using a 

global optimisation method.

Using a calibration object, the rotational axis of the turntable was estimated (Section 

6.6). The rotational axis estimated using the calibration object, and the rotational axis 

derived  from  the  pose  estimation  T rotA , were  found  almost  aligned.  The  angular 

difference between the rotational axis estimated using the calibration object and the 

rotational axis derived from the pose estimation T rotA , was found to be 0.1 degrees. 

Using the  result  of  the  turntable  calibration,  the  3-D locations  on the  surface  of  a 

regular object (cylinder) were estimated. The plotted 3-D locations were found to be 

visually accurate (multiple concentric circles were formed).

8.1.3 Vision based respiration monitoring system

Inspired by the accuracy and the efficiency of the implemented planar homography 

based  3D  surface  acquisition  system,  a  monocular  vision  based  baby  respiration 

monitoring  system  was  proposed  and  implemented.  The  monocular  vision  based 

respiration monitoring system consisted of a webcam and a small planar marker. The 

planar marker was attached to the chest of a baby mannequin. The respiratory chest 

movement  was  simulated  by  means  of  a  chest  pump.  Using  the  computed  3-D 
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coordinates provided by the centre of gravity of the planar marker, the torso motion was 

obtained and subsequently used to generate a respiration waveform.

The regular pattern based marker method that was used in this study had the problem of 

not being able to be reinitialised once tracking of the pattern was lost. This was due to 

the  regularity  of  the  pattern  which  prevented  the  designed  method  from resolving 

whether  a  location  had  moved  or  not.  Making use  of  an  irregular  pattern  was  not 

practical due to the complexity of locating the pattern using brute force methods.

Inspired by stereo-vision technique, the marker was removed and a second camera was 

added to the system. The proposed stereo vision based baby respiration monitoring 

system had been implemented independently in an Msc degree project supervised any 

the author [80]. A simulated feature was attached to the torso of the baby mannequin 

and the 3-D locations were tracked during the simulated respiration. The movements of 

the baby mannequin's chest were estimated and the respiration rate was computed.

8.2 Future research

The performance of the implemented 3-D surface data acquisition system can be further 

improved  by  utilising  multi-core  processors  available  in  most  personal  computer 

nowadays.  A  possible  optimisation  would  be  to  concurrently  run  the  RANSAC 

algorithm of each the planar objects on separate CPUs. 

The current system requires manual intervention to segment the object being scanned 

and could benefit from a background subtraction technique to automate this process. 

Finding the difference between two image scenes, a background image and an image 

with the object to be scanned inserted to the scene, could provide a region of interest, 

with both the object and the shadow of the object. The shadow region could be detected 

and subsequently removed from the region of interest by using the property of how 

shadow influences the image pixel values, represented in HSV colour space [105][106].

A line scan operation was carried out to extract a single image pixel illuminated by the 

laser, from each row of the image. Instead of only having a single image pixel per row 

to  represent  the  points  lying  on  the  object  being  scanned,  it  is  possible  to  use  an 

interpolation method, such as polynomial curve fitting [107], to provide more densely 
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distributed  data  points.  The  required  order  of  the polynomial  curve fitting function 

could be decided based on the complexity of the shape of the object appearing in the 

camera image.

At the moment, the process of turntable calibration is performed using a ruby script. A 

GUI can be developed to enable the users to visualise the processes. The camera used 

in  the  turntable  based  3-  D  surface  reconstruction  system was  calibrated  with  the 

Matlab camera calibration toolbox [46]. Investigation could be carried out, using the 

planar  object  based  calibration  technique  [45]  with  the  collected  images,  from the 

turntable pose and laser plane pose calibration process, to automate the entire process.

Due to the performance issue of ruby scripting language, the developed mono vision 

based respiration monitoring system was limited to only 6.5 frames per second. The 

developed prototyping  system could  be  ported  to  C/C++ programming language  to 

increase its performance. Finally, an efficient planar marker tracking algorithm can be 

included to handle the localisation of the marker in the camera image.
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Appendix A

A1: Automatic detection of the initial X-corner locations in a 

planar object made of a regular pattern

 
Traditionally a  planar  object  is  made up of  a  checker  board  pattern.  To locate  the 

location of the corners of the black and white squares the user is expected to mark the 

outer corners of the pattern and give the interval between the squares of the regular 

pattern. Based on these two user inputs the corner detection algorithm will initialise the 

initial coarse location of the corners and then proceed with the estimation of the actual 

location of the corners. 

There had been prior studies which had come out with recommendations to automate 

the process of the initial estimation of the corners of the checker board pattern.

In this study following method was used to automate the initialisation of the corner 

location process. The regular pattern made use of as the planar object is shown in the 

Figure A1. As it could be seen in the figure the planar object consists of colour square 

patterns embedded within some of the black squares (i.e. within the bigger out corners). 
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Figure A2 illustrates the assumed direction of u, the horizontal axis and v the vertical 

axis with the origin at the top left corner of the image. The location of the sixteen X-

corners (4 corners around each colour blob) are marked by dark circles in the figure. 

Following steps are involved to automatically locate the initial location of the sixteen 

corners.

Colour  blob  segmentation:  Four  colour  blobs  were  segmented  using  the  colour 

segmentation method described in Appendix A2. 

Estimation of the centre of the Colour blob: Using the segmentation output, from the 

previous step, the pixel co-ordinates (ucolour, vcolour) of the pixels belonging to each of the 

different colours were collected in their  own respective list  of  u and  v values.  The 

centre of each of the colour blob was estimated by finding the median values, um_colour,  

vm_colour, of the pixel locations in each of the corresponding  u and  v list. The median 

value ensures that outlier pixel co-ordinates due to noise will have minimal influence 

on estimating the centre of the colour blob. 
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Figure A1: Figure showing the image of the planar object having X-corner type corners.



Estimation of the location of the sixteen corners in the grid co-ordinate system:

The estimated median value (um_colour, vm_colour) in each of the colour list was assumed as 

the corresponding image coordinates of the projected centre point (Figure A2) of each 

coloured square on to the planar object. For e.g. (um_red, vm_red) in the image co-ordinate, 

is the projected centre point (0.5, 0.5) in the grid co-ordinate system.

These four correspondences were used to estimate the projective transformation matrix 

(eight unknowns, with h9 normalised to one) by solving the set of equations (A.1). The 

system of equations was solved by using the linear least square estimation which is the 

eigenvector corresponding to the smallest eigenvalue of the matrix M 

Estimation  of  the  pixel  co-ordinates  of  the  sixteen  corners:  Using  the  projective 

transformation  matrix  the  grid  coordinates  of  the  sixteen  corner  locations  were 

transformed into the corresponding image pixel locations using the equation (A.2). 

These sixteen corner locations are used as the initial coarse location of the corners and 

corner detection was applied around these locations within a ten by ten region.
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Figure A2 : Figure showing the assumed coordinate system and the location of the sixteen X-corners,  
marked with dark coloured circles.
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A2: Simple colour segmentation

Let  p be  the  rgb  pixel  value  of  each  pixel  in  the  image  and  pr,  pg,  pb be  the 

corresponding value of red, green and blue channel. 

Let  ratio_red,  ratio_blue, ratio_yellow and ratio_green be the threshold value for the 

ratio  of  red,  blue,  yellow,  and  green  colour,  with  respect  to  the  other  colours, 

respectively. These thresholding values are from 0.60 to 1.10 

Let red1 = 100, blue1 = 100, yellow1 = 130, yellow2 = 120, yellow3 = 120, green1 = 90, 

green2 = 150.

be the threshold values for each of the colour channels pixel values.

All these values are getting from manually observation of image.

The above threshold values were found by manually selecting the respective colour 

pixels in the image and observing the values of the different channels.

Following pseudo code outlines the the colour segmentation process which was used in 

the automatic coarse location of the corners (Appendix A1).
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
0.5 0.5 1.0 0.0 0.0 0.0 0.5∗um_red 0.5∗um_red um_red

0.0 0.0 0.0 0.5 0.5 1.0 0.5∗vm_red 0.5∗vm_red vm_red

6.5 0.5 1.0 0.0 0.0 0.0 6.5∗um_green 0.5∗um_green um_green

0.0 0.0 0.0 6.5 0.5 1.0 6.5∗vm_green 0.5∗v m_green v m_green

6.5 2.5 1.0 0.0 0.0 0.0 6.5∗um_blue 2.5∗um_blue um_blue

0.0 0.0 0.0 6.5 2.5 1.0 6.5∗vm_blue 2.5∗vm_blue v m_blue

0.5 2.5 1.0 0.0 0.0 0.0 0.5∗um_yellow 2.5∗um_yellow um_yellow

0.0 0.0 0.0 0.5 2.5 1.0 0.5∗v m_yellow 2.5∗v m_yellow vm_yellow




:= M


h1

h2

h3

h4

h5

h6

h7

h8

h9



:=h

=
ε'u_red
ε'v_red

ε'u_green
ε' v_green
ε'u_blue
ε'v_blue

ε'u_yellow
ε' v_yellow

 (A.1)

[u
 v
 ]=[h1 h2 h3

h4 h5 h6

h7 h8 h9
][XY1 ] (A.2)



Using the following conditions one can decide to which of the four different colour 

blobs (red, green, blue, yellow) a pixel, p, belongs.

if(  pr/(pb+pg) > ratio_red && pr > red1) //this pixel might belong to the red colour 

blob

if(pb/(pr+pg) > ratio_blue && pb > blue1 ) //this pixel might belong to the blue colour 

blob

if ( pr/pg > ratio_yellow && pr > yellow1 && pg > yellow2 && pb < yellow3 ) //this 

pixel might belong to the yellow colour blob

if(  pg/(pb+pr) > ratio_green && pg > green1 && pg < green2 ) //this pixel might 

belong to the green colour blob
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Appendix B

B.1 Code in Postscript scripting language to generate synthetic 

images. The sample image created with the code was shown in 

Figure 4.35a

%begining of code to create the sample image
/inch {25 mul} def % Convert inches->points (1/72 inch)
/image {
0 setlinewidth
0 setgray
newpath % Start a new path
-2 inch 2 inch moveto
4 inch 0 inch rlineto % an inch in from the lower left
0 inch -4 inch rlineto
-4 inch 0 inch rlineto
0 inch 4 inch rlineto 
closepath % Automatically add left side to close path
fill % Fill in the box on the paper
newpath % Start a new path
-6 inch 6 inch moveto
4 inch 0 inch rlineto % an inch in from the lower left
0 inch -4 inch rlineto
-4 inch 0 inch rlineto
0 inch 4 inch rlineto 
closepath % Automatically add left side to close path
fill % Fill in the box on the paper
newpath % Start a new path
2 inch 6 inch moveto
4 inch 0 inch rlineto % an inch in from the lower left
0 inch -4 inch rlineto
-4 inch 0 inch rlineto
0 inch 4 inch rlineto 
closepath % Automatically add left side to close path
fill % Fill in the box on the paper
newpath % Start a new path
-6 inch -2 inch moveto
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4 inch 0 inch rlineto % an inch in from the lower left
0 inch -4 inch rlineto
-4 inch 0 inch rlineto
0 inch 4 inch rlineto 
closepath % Automatically add left side to close path
fill % Fill in the box on the paper
newpath % Start a new path
2 inch -2 inch moveto
4 inch 0 inch rlineto % an inch in from the lower left
0 inch -4 inch rlineto
-4 inch 0 inch rlineto
0 inch 4 inch rlineto 
closepath % Automatically add left side to close path
fill % Fill in the box on the paper
} def
gsave
12 inch 16 inch translate
0 rotate   %set the degree of rotation here
0 0 image stroke
grestore
%%BoundingBox: 75 170 525 630
showpage % We're done... eject the page
%end of code
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Appendix C:

C1: Intermediate results of the experiments carried out in chapter 

5

232

Figure C.1: The intermediate images of the experiment setting.

(a) Background image. (b) Laser image. (c) Result of background subtraction. (d) Two detected laser  
lines one on the horizontal plane and one on the vertical planes.

(a) (b)

(c) (d)
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