#include <svd_correspondence.h>
Inheritance diagram for mimas::svd_correspondence< InputIter1, SimilarityMeasure >:


Public Types | |
| typedef boost::numeric::ublas::matrix< double, boost::numeric::ublas::column_major > | Matrix |
| typedef boost::numeric::ublas::identity_matrix< double > | IdentityMatrix |
Public Member Functions | |
| svd_correspondence (SimilarityMeasure &aSimilarityMeasure, InputIter1 aBegin1, int aSize1) | |
| Constructor. | |
| template<class InputIter2, class OutputIter1, class OutputIter2> | |
| void | match (InputIter2 begin2, int size2, OutputIter1 outputIndexed, OutputIter2 outputLost) throw (mimasexception) |
| Match against new feature set. | |
Protected Attributes | |
| SimilarityMeasure | similarityMeasure |
| Similarity measure. | |
| InputIter1 | begin1 |
| Iterator on indexed feature set. | |
| int | size1 |
| Size of indexed feature set. | |
This class implements the core algorithm described in Maurizio Pilu's article.
Given
where
is an index set and
is a set of features
.
giving real numbers between zero and one
, where
. If the algorithm detects ambiguity, it will drop some indices and
will be a true subset of
.
InputIter1 must implement the concept of Input Iterator and it must be an iterator on a pair with an index as first and a feature as second element. Usually this will be something like
map< Index, F >::const_iterator
F denotes the feature class.
SimilarityMeasure must be a binary_function< F, F, double >, where F denotes the feature class.
Definition at line 47 of file svd_correspondence.h.
| typedef boost::numeric::ublas::matrix< double, boost::numeric::ublas::column_major > mimas::svd_correspondence< InputIter1, SimilarityMeasure >::Matrix |
Definition at line 51 of file svd_correspondence.h.
| typedef boost::numeric::ublas::identity_matrix< double > mimas::svd_correspondence< InputIter1, SimilarityMeasure >::IdentityMatrix |
Definition at line 52 of file svd_correspondence.h.
| mimas::svd_correspondence< InputIter1, SimilarityMeasure >::svd_correspondence | ( | SimilarityMeasure & | aSimilarityMeasure, | |
| InputIter1 | aBegin1, | |||
| int | aSize1 | |||
| ) | [inline] |
Constructor.
The constructor will take the index-map and the similarity measure.
| aSimilarityMeasure | Similarity measure, giving values . | |
| aBegin1 | Iterator on feature-map . | |
| aSize1 | Number of elements in . |
Definition at line 59 of file svd_correspondence.h.
| void mimas::svd_correspondence< InputIter1, SimilarityMeasure >::match | ( | InputIter2 | begin2, | |
| int | size2, | |||
| OutputIter1 | outputIndexed, | |||
| OutputIter2 | outputLost | |||
| ) | throw (mimasexception) |
Match against new feature set.
This method will take a feature set
containing new features. The method will give the result by writing index-feature-pairs to output.
| begin2 | Input iterator on new feature set. | |
| size2 | Size of new feature set. | |
| outputIndexed | Output iterator to store indexed features in (usually an object of type map<>::iterator). | |
| outputLost | Output iterator to store lost features in. |
SimilarityMeasure mimas::svd_correspondence< InputIter1, SimilarityMeasure >::similarityMeasure [protected] |
Similarity measure.
An object of type binary_function<> giving similarity estimates as double values.
Definition at line 78 of file svd_correspondence.h.
InputIter1 mimas::svd_correspondence< InputIter1, SimilarityMeasure >::begin1 [protected] |
int mimas::svd_correspondence< InputIter1, SimilarityMeasure >::size1 [protected] |